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In this paper, we present a new numerical method for the solution of linear two-point boundary
value problems of ordinary differential equations. After reducing the differential equation to a
second kind integral equation, we discretize the latter via a high order Nystr6m scheme. A somewhat
involved analytical apparatus is then constructed which allows for the solution of the discrete system
using O(N • p2 ) operations, where N is the number of nodes on the interval and p is the desired
order of convergence. Thus, the advantages of the integral equation formulation (small condition
number, insensitivity to boundary layers, insensitivity to end-point singularities, etc.) are retained,
while achieving a computational efficiency previously available only to finite difference or finite
element methods.
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I. Introduction

Second kind integral equations have been a popular analytical tool in the study of ordinary
differential equations for nearly a century. When boundary value problems are being considered.
the integral equations which arise are of the Fredholm type. From an abstract viewpoint, the
advantage of this formulation is that many properties of the solution are readily apparent. From
a computational viewpoint, the advantage of this formulation is that the linear systems which
arise from discretization are generally well-conditioned. An ill-behaved differential equation.
such as a high order Bessel equation, can often be reduced to a perfectly tractable integral
equation by means of an appropriate choice of the "background" Green's function (see Example
2 in Section 5 below). Standard finite difference and finite element methods, on the other hand,
which discretize the original differential equation, encounter serious numerical difficulties when
the solution possesses derivatives of large magnitude (boundary layers). A second advantage is
that there exist extremp!y sta,e, high order numerical methods for the solution of second kind
Fredholm equations, while the order of convergence of most practical schemes for the solution
of ordinary differential equations tends to be limited, even if Richardson extrapolation and
deferred correction approaches are considered.

Despite all these advantages, integral equations are virtually never used as a numerical tool
for the solution of two-point boundary value problems, since their discretization leads to dense
systems of linear algebraic equations, and the solution of a dense linear system of dimension N
requires order O(N 3) arithmetic operations. Finite difference and finite element schemes lead
to banded systems of linear algebraic equations, and the solution of the latter requires order
O(N) arithmetic operations, where N is the dimension of the problem. This makes the use of
integral equations extremely unattractive as a numerical tool, despite their superior analytical
properties. A similar difficulty is encountered when spectral methods are applied to boundary
value problems. They yield high order accuracy, but result in dense systems of linear algebraic
equations.

In [9], it is observed that while the integral operators of one-dimensional potential theory
are dense, they can be applied to arbitrary functions in a "fast" manner (for a cost proportional
to the number of nodes N). This observation is then used to construct iterative schemes for
the numerical solution of second kind Fredholm equations resulting from two-point boundary
value problems, with an asymptotic CPU time estimate proportional to N. Unfortunately, the
number of iterations required by the resulting procedure depends on the problem being solved
(the usual drawback of iterative schemes), leading in many cases to excessive computation
times. A different approach, using Chebyshev polynomials is described in [8]. A method is
constructed which solves the corresponding integral equation directly. It requires an amount
of work of the order O(N log N), but applies only when the differential operator has constant
coeffficients. 0

In this paper, we extend the results of [9] and [8] by showing that not only the integral 0
operators of one-dimensional potential theory but also their inverses can be applied numerically
to arbitrary functions for a cost proportional to N. This observation is used, in conjunction
with a pth order Nystr6m scheme, to construct a fast algorithm for the solution of the original
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differential equation. While the asymptotic CPU time estimate is proportional to p2 .N, the
algorithm retains the flexibility and stability expected from second kind Fredholm equations.

The plan of this paper is as follows: in Section 2 we summarize the relevant properties of
Green's functions for second order differential equations, in Section 3 we develop the analytical
apparatus to be used, and in Section 4 we describe the numerical scheme itself. The performance
of the method is illustrated in Section 5 with practical examples. Our conclusions and several
generalizations are discussed in Section 6. Finally, in Appendix A, we describe the relevant
portions of the theory of Chebyshev approximation and quadrature.

The algorithm of this paper is based on a set of simple observations, but involves a large
amount of notation and a modest amount of algebraic manipulation. For the sake of clarity.
we will attempt to use two levels of description throughout, one cursory and qualitative and
the other detailed and rigorous.

II. Mathematical and Numerical Preliminaries

In this section we summarize several classical results.

2.1. Green's functions for second order ordinary differential equations.
We consider the problem of determining a function 0 in C 2 [a,c) which satisfies a second

order differential equation

0"(.T) + p(X). -'O ) + q().- 0(X) = f W) (1)

on the interval [a, c] C R, where p, q : (a, c) - R are continuous functions, subject to boundary
conditions of the form

( 11 "0(a) + (12"€0'(a) =1, (2)

(21 • O(c) + (;22 .'(c) = (2 . (3)

As is well-known, the original equation (1) with inhomogeneo- h-undary conditions of the
form (2), (3) can be reduced to one with homogenous boundary ojidtions

(I, I 0(a) + (12" - '(a) = 0, (4)

(21 • (c) + (22 . '(c) = 0, (5)

by the addition of an appropriate linear function to the unknown function 0. We will, therefore.
assume that the problem to be solved has been provided in the form (1). (4), (5).

Let us now consider the equation

0"(x) -r- p0(r)" 0'(x) + qo()" ) -- 0 =(6)

with the functions Po,qo E Cl(a,c), and denote by G0 the Green's function for equation (G)
with the boundary conditiot; (4) and (5). The standard procedure for converting a two-point
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boundary value problem into a second kind integral equation then consists in representing the
solution 0 of the problem (1), (4), (5) by the formula

O(x) Go(x, t) -(t) dt (7)

with a :[0, 1) , R a new unknown function to be determined. Substituting (7) into (1), we
obtain the desired integral equation

a(x) + P() - po()1G- I(xt)(t) dt

+ [q(x) - qo(x)]. Go(x,t)ar(t)dt= f(x) (8)

where the function G1 : [a, c] x [a, c] - R is defined by the formula

G,(x,t) = d Go(xt) (9)T(9)

for all (x, t) E [a, cl x [a, cl.
Of course, if po(z) = p(x) and qo(x) = q(x), then the solution to equation (8) is trivially

a = f. Our working assumption is that for some functions po, qo, the the Green's function is
known or computable, but that for the original differential equation the Green's function is
unavailable. Fortunately, there is a well known mechanism for constructing Green's functions
from known independent solutions of a differential equation. This construction, described in
the following theorem, is the principal analytical tool of the paper. For a proof, see (3].

Theorem 2.1 Suppose that ul,u, : [I, e] -- R are two linearly independent solutions of the
equation (6), such that ul satisfies the boundary condition (4) and u, satisfies the condition
(5). Suppose further that the functions ul, u', v1, vT : [a, c] -* R are defined by the formulae

= dU11 W -TuI(t),

du';(t) = dur I Ur (t),

VIt lut(t) (10)
v (,.(I = u'()u(t) - U'(t).-u,(t)'

v,(t) U(t)u'(t) .u(t) - u(t) .u(t)"

Then the Green's function and its derivative for equation (1,) with the boundary conditions (4)
and (5) are given by

Go(x,t) = ul(x) .v(t) for t < z,

Go(x,t) = u,(x) .v,(t) for x < t, (11)
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G1(x,t) = u'(x) .vi(t) fort < x,
GI(x,t) = U'(X) .vr(t) for x < t. (12)

2.2. A Lemma from Linear Algebra.
The following lemma provides analytical inverses for rank one perturbations of the identity

matrix. It is a particular case of the Sherman-Morrison formula (see, for example, [61) and is
easy to verify directly.

Lemma 2.1 For any two vectors U, V E L 2 such that (U, V) 1,

(I _ EU o T) - 1 =-I- I • U o VT. (13)
1 - (U, v)

III. The Analytical Apparatus

In the remainder of this paper, we assume that the solution to the differential equation
(1) is being sought on the interval [a,c] and that b is some intermediate point (a < b < c).
The fundamental observation on which the fast algorithm is based is that the solution to the
integral equation (8) on the entire domain [a, c] can easily be constructed from the solution of
two independent integral equations, one defined on [a, b] and one on [b, c). This leads naturally
to a recursive algorithm, in which independent solutions on a large number of subintervals are
successively merged until the full solution is obtained. A precise formulation of the construction
and the resulting numerical scheme will require some notation.

3.1. Notation.
We will denote the subintervals [a,b] and [b,c] of [a,c] by A and B, respectively. For

convenience, we write the integral equation (8) in the form

u(X) + (z). J Gj(., t)a(t) dt + 4(x). j Go(x, t)or(t) dt = f(x)

where P(x) = p(x) - po(x) and 4(x) = q(x) - qo(z). The functions Go,G, : [a,c] x [a,c] - R
are the Green's function and its derivative defined by formulae (11) and (12).

We define the operator P: L 2 [a,c] - L 2 [a,c] by

P(o)(X)= C(X)+ AX)J.G(xt) r(t)dt+ 4(x) -Go(xt). (t)dt , (14)

so that equation (8) assumes the form

P= f. (15)

We will require the four operators

PAA L ' [a,b) - L 2 [a,b] ,

PAB L 2 [b, c -* L 2 [a,b] ,

PBA L2 [a,b] -- L2 [b,c] ,

PBB L2[b,c]"4 L2 [b,c]
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defined by

PA.4(()(X) = + Gi(x, 1) -(t) di + 4(x) Go(x, t) a(t) dt , (16)

PAB(Ca)(X) = A(X). - a6C (x, t) .a(t) dt + 4(x).- Go(xr, ).-a(t) dt ,(1T)

PB.4 (,T(x) = P(x) . GI(x,t) a(t)dt + 4(x) . Go(x,t) a(t)dt (18)

PBB(a)(X) = a(X) + P(X) G(xi). r( ) di + 4(X) I Go(x, t) .a(t)dt. (19)

We will also require the functions f'1 and ;', defined by

Ob(x) = (x). u'() + 4(x) -u(x) (20)

0,r(Z) = P() Ur(x) + 4(x) U,(.) (21)

Given a function f E L 2 [a, c], we will follow the convention of denoting its restriction to A and
B by flA and fiB respectively. Assuming that the operators P, PAA, PBB are non-singular, we
then define the mappings

XIXkr ' [a,c]- R,
4)1A) Or : A -R,

( ,B I 6rB B- -- R

via the formulae

- P-(¢), (22)

Xr = P-'(',), (23)

OrA = P (IA),A, P,; (A )

OIR = Pg( (I1 B)' (24)

Finally, we will define three 2 x 2 matrices aA, aB and a by the formulae

all = (VIII I , ) , a2 = (vIIA,rA) ,

21 = (vrIA,10) , a 2 2 = (VIAIrA) , (25)

C= (v)IE,¢B) , a1 = (vlIB I OB),

021 = (vr jIB) , Ba22 = (VrIB,krB) , (26)
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011 = (VI.,xi) a12 = (vI, x,),

21 (v,,X) , o22 = (Vr,Xr) (27)

and the coefficients 61a.-& by

1 = (vI, a),
6, = (v,a), (2s)

where a is the solution to equation (15).

3.2. Analysis of the operators PAB, PBA.

In this subsection, we observe that each of the operators PAB and PBA is of rank one and

give simple expressions for these operators as outer products.

Lemma 3.1 In the notation of the preceding subsection,

PAB = V/riA 0 UrT, (29)

PBA = L T o (30)PBA 01B 1A"

Proof. Combining expressions (11), (12) and (17), and observing that z < t for any

7 E (a, b], t E [b, c], we have for apy E L2[b, C],

PAB(a)(x) = (X). j G1(x, 1) a(t) dt + 4(x) j Go(x, t) a(t) dtC C
= (). u'(X)v r(t) .a(t) dt+4(x) /u (X) . v,(t) .a(t) dt

= (j(x).'(x)+4(x).u,()). (v,1 8 ,). (31)

The result (29) now follows from the definition of 0, in equation (21).

Similarly, combining expressions (11), (12) and (18), we observe that for any a E L2 [b,c]

and x E [b, c],

PBA(C)(z) = (X). , G(x, t). a(t) dt + 4(x) Go(x, t) a(t) di

= (x). u (x). v,(t) a(t) dt + 4(x) j ui(x) v1(t) a(t) dt

= ((x). uI(x) + 4(X) uI(x)). (vIAa). (32)

The result (30) follows from the definition of ;bj in equation (20). 0
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3.3. Recursive solution of the integral equation (15)
We now consider the original integral equation (15)

Pa = f

and two auxilliary equations
PAA(77A) = flA (33)

PBB(r/B) f(B (34)

The main result of this subsection is the following lemma, which constructs the solution a
of equation (15) from the solutions r/A, 7713 of equations (33) and (34).

Lemma 3.2 If, in the notation of Subsection 3.1, all three operators P, PAA, PBB are non-
singular, then

6B _ 12r .(6A _ aA (35)

oUIB 77B- ( r A 12 (6 - ~6r"))i (36)A,,ls =  7/s-B - r 021. (1so, 5 ) .¢B (36)

wher the real numbers 6jA , b, 6A, 6P, A are given by

JAI= (v,77A),

r = (VrJAIA), (37)

6 B = (V,,B),

B =. _ . aA (3s)

Proof. Using definitions (14) - (19), the integral equation

Pa = f

can be rewritten in the form

PAA(alA) + PAB(aIB) = flA, (39)

PBA(CIA) + PBB(alB) = fiB" (40)

The outer product expansions (29) and (30) for PAB and PBA, respectively, can then be used
to obtain an explicit solution to the coupled equations (39) and (40) in terms of the functions
'7A, 77B, IA, rA, c1B and 0,,. Indeed, applying the operator P-1 to equation (39) and the
operator Pj to equation (40), we have

alA + P;A' o PAB(OIB) = P;A'(flA), (41)
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PBB 0 PBA(CI4) + OIB = PB(fB). (42)

Substituting the outer product expansions (29) and (30) into (41) and (42) yields

%t ~ VJ +p- .oVT OB -T (43)
"IA + P- "A 0 rIB = nA,

iB a1A 0 , T A + 47B= 7B, (4.1)

or T
'IA + Or A o VrIB 0 aIB 7rA,

1'B oVIA o CIA + 61B = 7B, (4()

where we have used the definitions (24) for OIA and 01B- Now, multiplying (46) by O A 0 1T

and subtracting it from (45), we obtain
( T 0 VT 

0
B(47)

( I A € ovrI o OB o NIA ) CIA = 774 -- (4T) v B rS

Similarly, multiplying (45) by 1, o T and subtracting it from (46), we get1
1A

(I- B 0 V7A 0 'A 0 Vr,) OTIB = 17B - IA o 71A. (48)

Due to (25) and (26), we can rewrite these equations in the form

(I 21"OrA OV T )' 1A--rA ovT 0 r7B, (49)
--Q A  01"0 V

(I -
0

r r vA) CIB 77 - 1B 0 VA 0 77A. (50)

By application of Lemma 2.1, we obtain

B
CI ( 1+ A , vIA) (f0A -- OrA 0ovT r 07B), (51)
al 1+ - B • VTr o VT

(B a 2  T ) (77B - B  IA 0 77A) (52)

The results (35) and (36) now follow from simple algebraic manipulation using equations (25).
(26) and (37). 0

Remark 3.1. Suppose that b, and b2 are a pair of reai numbers such that a < b, < b2 <
c, and that the interval [bl,b 2] is denoted by C. We will denote by Pcc the restriction of
the operator P to the interval C. Assuming that Pcc is invertible, we define the functions
17c, O,, 0,, :C -- R by

7C = PC-r(flc) (53)

OIC = P COP1c), (54)

O', = P81 (?P). (55)
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By applying the above lemma twice (once for the subinterval (a, bj] and once for (a, b2]). we
may easily observe that there exist two real numbers A1, A2 such that

o() = riC(x) + A, - ¢1,(z) + A2 " 0,, (x) (56)

for all x E C. The exact expressions for the coefficients A1 ,A 2 are complicated, but irrelevant
for the purposes of this paper. The existence of a relation of the form (56). however, will be
critically important in Section 4.

3.4. Further Analytical Results

We now collect a number of identities which are necessary for the algorithm to be presented
in Section 4. First, we apply Lemma 3.2 to the particular cases f = V1, f = b,. to obtain
analytical expressions for the functions )t and Xr defined in equations (22) and (23).

Corollary 3.1 If. in the notation of Subsection 3.1, all three operators P, PAA, PBB ar( non-
singular, then

X11A = OA -A "0'''(57)

1= (1-- o k120, . -.1 (58)

aA _=CA (1 2 1 _ _ _

_ _ __2 12 21- - '  22 o r , (59 )

(1 - o= QA
(1c = OrB- 2A12 4 1B (60)

where the coefficients ot and are given by equations (25) and (26).

We will also require analytical expressions for the inner products 61 and 6r defined in (28)
in terms of the restricted inner products 64 "b , 6A and 6B defined in (37).

Corollary 3.2 If, in the notation of Subsection 3.1, all three operators P, PAA, PBB are non-
singular, then

=1 (V/.') = (VlIA,O'IA)+(VIIBIUIB)

= 1 o( ( an,- ).a :2 .6 . (6)
al 6A 11 126

6, = (v,,cr) = (VrIIA,UIA) + (vrIB ,IB)

A aA ."o
-aII It (62)
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Proof. Multiplying equation (35) by z1JA and v, A' and equation (36) by vI and We

obtain
1 6 A .26 (63)

(JA'ar') = CIA - A )

6B BiIBI I A2(vcroi- =A : 22 _ 2-.0A
7' J' -,E .6A~ + 6 (64)

( r, I ,UIA ) - *A 2
"6 B -r 

O 2A "*j: 4 ,  (66j)
A A

(v r CrIB ) 6 .6AB _ Z -

Adding up the first pair of equations (63) and (64), we obtain the result (61). Adding up

the second pair of equations (65) and (66), we obtain (62). 0

A special case of Corollary 3.2 is obtained when f = 7, or f = si,.. The proof foUows easily

from the definitions of Xi and ),. in (22) and (23).

Corollary 3.3 If, in the notation of Subsection 3.1, all three operators P, PAA, PBB arc non-

singular, then
(1- fB) •(oA- OA2. 2B)

al = (XI) = A + OB1. (67)

a V • (1-c4).(1 - o) A .
A2l = (V,6XS) )

a12 =(vIX ' )= a12"(-)2B2 -aA) B (69)
_ ~ ~ ( 1 a1). a--a 2 .

22=(VI, Xr) 22 22A Q2 B + Q A (70)

Finally, combining Lemma 3.2 with the expressions (57)-(60), we have

Corollary 3.4 Suppose that in the notation of Subsection 3.1, all three operators P, PAA. PBB

are non-singular. Suppose further that the function F : [a,c] , R is defintd by the formula

F(z) = A, • Xl(x) + 2 •Xr(X) + A3" C(X) (71)

Then on the interval [a, b],

F(x) = pl•A(X) + 92 0,,(X) + P3" A(X). (72)

with the coefficients jl, P2, P3 defined by tht form',!ac

p = A1,

(1 - CA~\ ____B

P2 111 .A + 1-- . A 2
A A

+ A r A, (73)

143 = A3.
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Similarly, on the interval [bc],
F(x) = vi • 0B() + V2 TB(X)+ V3 t7B(X), (74)

with the coefficients v1, V2, V3 defined by the formulae
(1 -aA) ( B __A

+ (-1-

V2 = A2, (75)

V3 = 3 -

IV. Description of the Algorithm

We turn now to the construction of the fast algorithm for the solution of the integral
equation (15)

Pa =f

based on the apparatus developed in Section III. The main tool at our disposal is the ability
to merge the solutions of restricted versions of the integral equation in adjacent subintervals
(Lemma 3.2). As this suggests a recursive procedure, we begin by subdividing the whole
interval [a, c], on which the solution to (15) is sought, into a large number of subintervals. For
the sake of simplicity, we assume that m is a positive integer and that M = 2"' is the number
of subintervals created. The boundary points of the subintervals are then given by a strictly
increasing sequence of numbers

bi, b2 , ... , b ,Af +1 (76)

with b, = a and bM+l = c. We define

Bin = (bi,bi+1] for i = 1 .. ,M (77)

and create a hierarchy of intervals Bik by recursively merging adjacent pairs. That is, for
k= m- 1,...,1.0, wedefine

B = B- k+ kUB+1 for i- 1 , . , 2k (78)

We will refer to ea.-.,i :.d k as a level. We will also refer to the two fine intervals B,+'I and
B2 1 as children a, ,u the larger interval B' as a parent.

It is obvious that

B [ )(79)

and that for each level k,
2k

[a,c= U B' (SO)

11



4.1. Notation.
Generalizing the notation of Section Ill, we will denote by Pt.k the restriction to the interval

B,k of the integral operator P, so that

P,,k(,)(:) = a(X) + P(X)-bl . G, (x, t) ,a(t) dt

+ q(X) .14 -  Go(x, t) .a(t) dt (81)

for any a E L2(Bk). For each Bk we will define the functions 77,,k, 0,k CT,k B,* - R as tho
solutions of the equations

P,,k( =,)) fIB,", (s2)

Pi,k( 1,)= VIlBkl' (83)

P,k( ( r,,k) = 'l, "k (84)

provided that the operator P,k is non-singular.

Remark 4.1. Suppose now that the operator P,,k is non-singular on the interval Bk. Then.

by equation (56), there exist two numbers k Ai'k  E Rsuch thatA1 ,"2E scta

0(X) = ?7,k(Z) + A (k (aT) + 1\. i2 (85)

for all x E B k.

For each k =0,1,...,m, and i = 1,2,...,2 , we define a 2 x 2 matrix a i,k, by
i,, = B , , .'

i,ka1 '1  ( V rj I0, k 1

012 (v j k,,, )1 (86)
i,k v ,022 -- ( , k ,,)

and the vector k  (bt.k,'.k) by

61' = (vjjj , 77,k),

,r (. , k t,,k). (87)

4.1. Discretization of the Restricted Integral Equations.

Choosing an integer p > 1, we construct the p scaled Chebyshev nodes

b= -bICos [ (2Ij -1)7 rj + (ui+I +:) j = 1,2,...,p (88)
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on each of the intervals B' , i = 1,2.... M. We then discretize the three integral equations
(82). (83) and (84) via a Nystrbm algorithm based on p-point Chebyshev quadrature (see
Appendix A). The resulting approximations to the functions 7?,,k, , , at the nodes 7,'

will be denoted by

(-1 -2
0= .'k = .k)

¢ , = (¢ ,.k, ,. ,. )

respectively.

Remark 4.2. It is well-known that the order of convergence of the approximations
k ',. I, ,to the functions , , ¢rk is p. Since all subsequent steps in the construction

of an approximate solution & to the integral equation (15) are analytic, the convergence rate
of the full algorithm depends entirely on the parameter p. For example, by using 16 scaled
Chebyshev points on each subinterval at the finest level, one obtains a sixteenth order method.

4.2. Informal description of the algorithm.
We begin by directly solving the three integral equations (82), (83) and (84) on each subin-

terval B- at the finest level, as discussed in the preceding subsection. Equation (85) then
shows that a restricted to B"' can be expressed as a linear combination of the three solutions
7
7t, rn 1. , Thus, it remains only to determine the two coefficients

XI'A t' n
1

for each of the M subintervals B1. Fortunately, this can be done recursively. To see this,
suppose that, at some coarse level k < m - 1, we are given the coefficients ,i], ) k for the
subinterval B . Then Corollary 3.4 provides formulas for the calculation of the corresponding
coefficients

,\i-~k l e2i-, an \ 2i,k+ I, 2i,k+ I1 , and 1 2

for the two child intervals Bk+I and Bk+ 1 , respectively. For initialization, observe that

1 0  = 0 (89)

(i.e. the solution of equation (82) on the whole interval [a, c] is simply a).
In order to use the formulas (73 and 75) of Corollary 3.4, however, we need the matrices

C12 t- 1, k+ i '2i k +1 and the vectors 6 2s-,k+I, 6 2t,k+. These quantities are also computed recur-
sively but in the opposite direction, namely, from the finest level to the coarsest. They are
certainly available at level m directly from the definition (86). For the interval B k at any
coarser level k < m - 1, Corollaries 3.2 and 3.3 describe how aik and bi,k are obtained from
the matrices a and vectors 6 of the two child intervals.

To summarize, the algorithm consists of three parts. First, a sufficiently fine subdivision
b1, b2, ... I bM+l of the interval [a, c] is chosen so that, on each of the intervals B,,m, the functions
i7?,m, , and , can be accurately represented by a low order Chebys ..,v expansion. On
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each of the intervals B,., the equations (82) - (84) are solved (approximately) by direct
inversion of the linear system arising from a Nystrbm discretization. Second, the matrices
aik and vectors bik are computed in an upward sweep, beginning at the finest level rn. Finally.
the coefficients A i'k and A' k are computed in a downward sweep, beginning at the coarsest
level. The desired function a is then recovered on each subinterval from equation (85).

The following is a more detailed description of the numerical procedure.

Algorithm

Comment [Define computational grid.]

Create M = 2
' subintervals on [a, c] by choosing a sequence of boundary points b1 , b2,..., bAf. bM +

with b, = a and bM+1 = c. Choose the number p of Chebyshev nodes on each interval B- = [b'. b,+,]
for i = 1. Al. Determine the locations of the scaled Chebyshev nodes ri-, ri ...... r on each interval
B,"

Step 1.

Comment [Construct the approximate solutions 77
1... C .... of equations (82) - (84) on each in-

terval B.]

doi = 1,2,...,Al
(1) Construct the three p x p linear systems on BI obtained through a Nystr6m

discretization of the corresponding integral equation (see Appendix A, Section 3).

(2) Solve the three p x p linear systems on Bk by Gaussian elimination.
obtaining the values ,m , .. .

enddo

Step 2.

Comment [Construct the coefficients aMai'rn ,Oa7 ,na' 1 mm 6 m on each interval B- at the finest
level.]

do i = 1,2.. M
Evaluate the coefficients clM ai'' ,a M ,',m 6,& ,rn by applying the k-point

11 1 1 2
Chebyshev quadrature formula (Appendix A, Section 2) to the inner product integrals (86), (87).

end do

Step 3 (Upward Sweep).

Comment [Construct the matrices ak and the vectors b.k for all intervals at all coarser levels k =
m - 1,m - 2. 0.]

do k= m-1, 0, -1
do i=1, 2 k

Use formulae (67) - (70) and (61) - (62) to compute the matrix a i ,k
and the vector 6

i, from the corresponding data in the two child
intervals (a 2i~1 ,k +

I, a 2
i,k+1, 62-1,k+1, 6 2,k+l).

end do
end do
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Step 4 (Downward Sweep).

Comment (Construct the coefficients A',' , A'm for all intervals at the finest level.)

Set A(" = A" = 0 (see equation (89) above).

do k-O,m-1
do i=1, 2 k

Use Corollary 3.4 to compute the coefficients Ak+ 2 i-i 1 +1,2 i-1, \2ik+l, Ai ' k+ 1

for the child intervals B*+ 1 and B'+1 from the coefficients A"'k, A"'k of the parent interval B,.
end do

end do

Step 5.

Comment [Compute the solution a of equation (15) at the nodes ril, r2, .. , r for each interval BM

at the finest level.]

do i=1, M
do j=1,p

Determine the values of the solution o of equation (15) at the node r/ via formula (85).
end do

end do

Step 6.

Comment [Compute the solution € of equation (1) and its derivative 0' from the values of a.]

Evaluate the integral (7), and its derivative by using composite Chebyshev quadrature
(see Remark 4.4 below).

Remark 4.3. Inspection of the above algorithm shows that the amount of work required is
of the order O(M .p 3 ). Three p x p linear systems have to be solved for each of the Al intervals
B! in Step 1, while Steps 2 -5 reqiiire no more than O(M .p 2) operations. Since N = Al p
is the total number of nodes in the discretizatiop of the interval [a, c), we can write the CPU
time estimate in the form O(N • p2 ). The cost of evaluating the solution € of the differential
equation (1) from the integral representation (7) is O(N logp) (see Remark 4.4 below).

Remark 4.4. The final step in the algorithm involves the evaluation of integrals of the

form (7) at each of the Chebyshev nodes ril on each subinterval Bn, namely

'C

j(ff) Go(r'j, t) .u(f) dt (90)

and

'( j G 1 (r',t).ao(t) di. (91)
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If these integrals were calculated independently for each rj, the amount of work required
would be of the order O(N 2 ), and would dominate the construction of the function a. In fact.
this is unnecessary, for we may write

= •J(7 - ). [I' vj(t) o'(t)dt + vj(t). o'() dt

[+( -j+ ", v (t ) -a(t) dt + v,1() ) a(.) di] (92)

+u0r()). [± j+ v(t) a(t) dt + v(t) (t) d] (93)

(94)

where we have used the representations (11) and (12) and the fact that r2 lies in the interval
B- =--[b,,b1 +j]. Step 6 can then be written in detail as follows:

Step 6 (a).

Comment [Precompute the integrals of vi .o and v, .a on each subinterval B"' by Chebyshev quadrature.
These integrals will be denoted 11 and 1, respectively.]

do i=l. M
11(B'")-- fb+I vi(1) a(t)dt.

I, (B?) = f.'+' v, (1) cr(f) dt.
end do

Step 6 (b).

Comment [March across interval from a to c, computing 0 and 0' at each node in discretization. The
varaibles J and J, will be used to accumulate the integrals f v(t), a(t) dt and f v,(t) a(t) di,
respectively.

Set .. , = r= 2 1,.(B-).
Set J, = 0.

do i=1, M
do j=l,p

For each 7-, compute

=(j Udr2)i , +. vi~ v(1) ao'(t) dt] ,' [ v6+ v(f) a u(t) di + 7,f,+1 v,(f. a(t) dt + J
T

$= ur(Tj). [ + fb v(1)[ () at) d+udt +3 ']

end do
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Ji= J + h (B')
Jr = Jr - I,(B, 1 )

end do

Thus, the amount of work required in Step 6(a) is O(N). The integrals required on each
subinterval in Step 6 (b) can be computed by spectral integration (see Appendix A, Section 2)
using O(plogp) work. The total cost is therefore of the order O(Mplogp) or O(Nlogp).

V. Numerical Results

FORTRAN programs have been written implementing the algorithm described in the pre-
ceding section, for both real and complex valued functions. In this section, we discuss several
details of our implementation, and demonstrate the peformance of the scheme with four nu-
merical examples.

The following technical details of our implementation appear to be worth mentioning.

1. Originally, the algorithm was implemented for a fairly wide choice of background equations
(6), and corresponding Green's functions (11). Our numerical experiments showed that the
advantages of one background Green's function over another tend to be minor, unless the
original equation (1) and the equation (6) from which the background Green's function is
constructed can be chosen to be extremely close. Therefore, all subsequent implementations
and all numerical experiments were performed with equation (6) of the form

41(X) = 0. (95)

2. The algorithm described in the preceding section requires that the number M of elementary
subintervals on the interval [a, c] be a power of 2. Cleary, this is not an essential limitation
and it can be removed by simple bookkeeping changes. In the version of the algorithm used
for numerical experiments, these changes were made.

3. The algorithm depends for its stability on the equations (82) - (84) having unique solutions
for all subintervals B (k = 0,1,...,M, i = 1,...,2k.) It is easy to construct examples for
which this condition is violated, even though equation (15) has a unique solution. In such cases,
a different subdivision of the interval [a, c) can be attempted, such that none of the subintervals
B of the new subdivision coincides with an interval of the original one. This procedure can be
viewed as a form of pivoting, and it is easy to show that it is always possible to make it work.
It has not been implemented at this point, and we have not so far encountered a need for it.
4. We have. however, implemented a crude scheme for detecting high condition numbers in
the algorithm. These can occure in two places: in the solution of the linear systems on each
of the finest level subintervals (Step 1), and while merging the solutions on two consecutive
subintervals via formulae (61)-(62) and (67)- (70) (Step 3). In the first case, the condition
number of the system being solved is estimated in the process of solution (we use a standard
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LINPACK routine), and the largest of these is returned to the user. In the second case, the
immediate reason for the ill-conditioning is the appearance of small values of the coefficient A
in formulae (61)-(62) and (67)-(70). The smallest of these is also returned to the user. When
an extremely large condition number is detected by the LINPACK routine, or an extremely
small A is generated in the merging process, the resulting solution of the original ODE should
be viewed as suspect. It is easy to show that when the differential operator is positive definite.
this cannot happe.i. A more complete treatment of this subject requires further study.

5. In the upward sweep (Step 3), we evaluate the matrices ai,
k for all intervals Bi,k and use

these matrices to evaluate the vectors 6, the coefficients A, and, finally, the solution or of the
integral equation (15). But the matrices i

A.k do not depend on the right-hand side f of equation
(15), and it is easy to see that their evaluation accounts for more than three quarters of the
work. Therefore, whenever the equation (15) has to be solved with multiple right-hand sides,
we precompute the matrices a i,k and store them, saving about 75% of the cost of the evaluation
of subsequent solutions.

The algorithm of this paper has been applied to a variety of problems. Four experiments
are described below, and their results are summarized in Tables 1-10. In each of these tables.
the first column contains the total number N of nodes in the discretization of the interval
[a, cl. The second column contains the relative L 2 error of the numerical solution as compared
with the analytically obtained one, and the third column contains the maximum absolute error
obtained at any node in the discretization. Columns four and five contain the same information
for the derivative of the solution (i.e. its relative L2 and L,, errors respectively). Finally, the
last column contains the CPU time required to solve the problem. In all cases, the times given
are for a SUN 3/60 computer using the 68881 floating point coprocessor.

Example 1. This example is taken from [10], where it is described as a reasonably difficult
one due to the presence of rapidly growing solutions of the corresponding homogenous equation.
The equation to be solved is

0if + 4000 = -400cos 2 (irx) - 27r2cos(2irx) (96)

with the boundary conditions

0(0) = 0(1) = 0. (97)

The algorithm has been applied to this problem with p = 8,16 and 24, and the results of this
experiment are presented in Tables 1-3.
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n E2(o) E(0) E2(01) EO(¢ ' ) I (sec.)
S 0.409 x10-' 0.316 x10-' 0.787 xl0 - 1  0.972 0.400 xl0-'
16 0.302 x10- 2  0.186 x10- 2  0.347 x10- 2  0.371 x10-1 0.140 xI00

32 0.480 x10- 4  0.426 xl0- 4  0.691 x10- 4  0.891 x10- 3  0.220 x10 0

64 0.356 X10- 6  0.513 x10- 6  0.643 x10- 6  0.106 x10- 4  0.400 x 10
128 0.179 x10-8  0.369 x10-" 0.366 x10-8  0.782 xI0 - 7  0.820 x10(
256 0.763 xl0 - 11 0.198 x10- '0  0.162 x10 - 10  0.424 xl0- 9  0.162 x 01

512 0.305 xl0- 13 0.918 x10- 13 0.659 x10 - 13 0.196 x10 - 11  0.318 x10 1

1024 0.136 x10 - 14 0.130 xl0- 14 0.915 x10- 15 0.355 xl0 - 13  0.638 X10'
2048 0.103 x10 - 14 0.171 x10-

1
4 0.117 X10 - 1 4 0.532 xl0 - 13  0.126 x10 2

Table 1: Numerical results for Example 1, p = 8.

n E2(0) E - (0) E2(0') E*(O') t (sec.)
16 0.954 xI0 - S  0.659 xl0 -5  0.959 x10 - 5  0.138 x10 - 3  0.200 x10 0

32 0.457 x10 - 8  0.301 x10- 8  0.545 x10-8  0.602 x10 - 1 0.340 x10(
64 0.401 X10 - 1 2 0.388 x10 - 12 0.581 x10 - 12 0.778 x10 - 11 0.700 x10)

128 0.658 xl0- 15  0.139 x10- 4 0.106 x10- 1 4 0.319 Xlo - 1 3 0.134 x×10'
256 0.626 x10 - 15  0.119 xl0- 4 0.106 xl0 - 14 0.426 X0 - 1 3 0.262 x101
512 0.635 x10- 15  0.149 xl0- 14 0.934 x10- '5  0.426 xlo-13 0.520 xln'

Table 2: Numerical results for Example 1, p = 16.

n E2(0) EOO(O) E 2(01)  EOO(O ' )  t (sec.)

24 0.764 xIO-1 0  0.524 xI0- 1 0  0.539 x10- 1  0.804 x10- 9  0.380 x10I
48 0.970 x10- 15 0.155 x10- 14 0.110 X10 - 14 0.319 X10 - 13 0.720 x10 0

96 0.851 x10- 11 0.175 x10- 1 4 0.124 x10 - 1 4 0.319 xlo - 13 0.144 x10 1

Table 3: Numerical results for Example 1, p = 24.

Example 2. The purpose of this example is to demonstrate the performance of the method
when the coefficients p, q of the equation (6) are singular at the ends its interval of definition.
while the particular solution being sought is smooth. We solve the Bessel equation

X 2 - /.2

¢"() +- 1.'(x) + =0 (98)
z 

2

on the interval [0, 600) with the boundary conditions

4)(0) = 0, (99)

0(600) = 1, (100)
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and v = 100. The difficulty of this problem is due to the fact that the two linearly independent
solutions of equation (98) are J,(x) and Y),(x) (Bessel functions of the first and the second
kinds, respectively). As is well known, J,(z) behaves in the vicinity of zero like --" , while Y.(x)
behaves like zx-; most methods have trouble finding the decaying solution. In addition, this
is a fairly large-scale calculation, since the interval (0, 6001 contains almost 100 wavelengths of
the solution to (98). The algorithm has been applied to this equation with p = 16,20, and 24.
The results are presented in Tables 4-6.

n E 2(o) EOc(O) E 2(0') E°(€') t (sec.)
192 0.945 0.103 0.101 xl0 0.172 x10 1  0.194 xl01
384 0.651 0.901 x10 -1  0.658 0.108 x10 0.394 xlO
768 0.106 x10- 3  0.151 X10 - 4  0.106 x10- 3  0.177 x10 - 3  0.786 xl01

1536 0.284 xl0- 8  0.406 x10 - 9  0.285 x10 - 8  0.478 x10- 8  0.156 x10 2

3072 0.179 x10 --1  0.265 xIO- 11 0.177 x10 - 10 0.310 xl0 - 10 0.314 x10 2

6144 0.100 x10- 10  0.138 x10- 11 0.101 xl0 - 10  0.167 xl0 - 1  0.625 x10 2

Table 4: Numerical results for Example 2, p = 16.

n E2(o) E-(O) EI(O')  Eoc(0 ' )  t (sec.)

240 0.120 x10 1  0.198 0.111 xl01 0.232 x101" 0.300 x10 1

480 0.845 XlO- 2 0.118 xlO- 2  0.851 xl0- 2  0.140 x10 - 1  0.598 xl0
960 0.684 x10 7  0.979 xl0 - 8  0.687 xl 7  0.114 x10 6  0.119 x10 2

1920 0.205 xl0- 1 1 0.302 xI0- 12 0.202 xl0"-  0.355 X10 - 11 0.239 x10 2

3840 0.229 x10 - 10  0.325 x10- " 1 0.231 X10 0 1 0.382 x10- '' 0.480 x10 2

Table 5: Numerical results for Example 2, p = 20.

n E2 (O) EO(O) E2(O ' )  E'O(O') t (sec.)
288 0.889 0.113 0.942 0.155 xl01 0.430 xl1
576 0.765 x10- 4  0.108 xl0- 4  0.770 xl0- 4  0.127 X10 - 3  0.866 x101
1152 0.206 x10 - 1  0.295 x10 - 1' 0.207 x10 - 10 0.346 x10 - 1 0.176 x10 2

2304 0.356 x10 - 1' 0.503 xl0- 1 2 0.356 x10 - 11 0.594 x10 - 1' 0.343 x10 2

4608 0.627 x!0 -lO 0.856 xl0- 1 2 0.644 x10 - 11 0.982 xl0"- 1 0.688 x10 2

Table 6: Numerical results for Example 2, p = 24.

Remark 5.1. Problems like the preceding one are frequently encountered in the modeling
of wave phenomena by means of separation of variables, and were the original motivation for
this work.
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n E2(0) Ecc((0) t (e.
240 0.706 0.913 0.907 0.675 x10 6  0.242 x101
256 0.960 x10- 2  0.468 x10- 1  0.455 x10- 1  0.338 x105  0.256 xl0
272 0.701 x10- 4  0.445 xl0- 3  0.476 x10 - 3  0.265 X10 3  0.278 x1o1
288 0.835 x10 - 7  0.635 x10 - 6  0.761 x10- 6  0.404 0.288 xl01
304 0.198 xI0 - 10 0.141 X10 - 9  0.200 xl0- 9  0.147 X10 - 3 0.308 x101

320 0.378 x10- 1 1 0.233 x10 - 1 ) 0.254 x10 -1 0  0.289 x10- 4  0.320 x101
336 0.610 x10 - 11 0.394 x10 -1 0  0.321 x10 - 10  0.431 xl0- 4 0.338 xl01

Table 7: Numerical results for Example 3, p = 16.

Example 3. We solve a singular perturbation problem of the form

C. 0"(x) - 0'(x) = 0, (101)

= 1, (102)

¢(1) 2, (103)

with c = 10-6. The solution of this problem has an extremely sharp boundary layer near
the right end of the interval [-1, 1], causing severe numerical difficulties when most standard
algorithms are used. In this case, we construct the intervals B- = [b2,b,+ 1] via the formula

b= -1,

bi = -1+ E(fori= 2,...,M, (104)

= 1,
bMf+l =i,

so that they become progressively smaller near the right end of the interval [-1, 1]. The results
of this experiment are presented in Table 7.

Example 4. Here, we solve a problem of the type which arises when dealing with a
frequency domain equation for the vibrating string.

0"(x) + k 2 . O(X) = 5 -sin(k.- x), (105)

with Diricniet boundary conditions

O(c) = sin(k, c), (106)

¢(d) = sin(k- d) . (107)

These boundary conditions correspond to the solution € = sin(k , x). In Tables 8-10, we
present the results obtained by with our algorithm for c = -1,d = 1, and k = 630, in order to
demonstrate the performance of the method on large-scale oscillatory problems (the string is
roughly 200 wavelengths long).
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E___ __ )__(0) E 2(01) E0(W) t (see.)
800 0.314 10' 0.402 10' 0.353 101 0.251 104 0.820 10'
1600 0.782 10- 4  0.101 10 - 3  0.887 10 - 4  0.626 10-' 0.165 102

3200 0.203 10- s  0.281 10- 8 0.242 10- " 0.173 10- s  0.329 102
6400 0.153 10- 8 0.187 10-8 0.158 10-8 0.110 10- ' 0.664 102

Table 8: Numerical results for Example 4. p = 16.

n E2(0) E_0(0) E2 (O' ) Ec*(O') t (sec.)
600 0.218 101 0.379 101 0.215 101 0.241 10)4 0.894 101
1200 0.839 10- 4  0.104 10-3  0.918 10-4  0.697 10- 1 0.179 102
2400 0.206 10- 10 0.361 10- l ) 0.181 10-10 0.153 10- 7  0.360 102
4800 0.411 10- 1) 0.916 10-10 0.353 10-10 0.352 10- 7  0.721 102

Table 9: Numerical results for Example 4, p = 24.

n E 2(Q) E (0) E2(O') ED(, ') t (sec.)
800 0.223 10- 1  0.400 10- 1  0.235 10- 1  0.283 102 0.164 102
1600 0.607 10 - 9  0.837 10- 9  0.664 10- 9  0.522 10-6 0.328 102

3200 0.194 10-10 0.252 10-10 0.168 10- 1( 0.144 10- 7 0.675 102

6400 0.118 10- 9  0.172 10- 9  0.112 10- 9  0.935 10- 7  0.133 103

Table 10: Numerical results for Example 4, p = 32.

The following observations can be made from Tables 1 - 10, and are corroborated by our
more extensive experiments.

1. The practical convergence rate of the method is consistent with the theoretical one. For
larger p, the exact numerical verification of the order of convergence tends to be difficult, since
the precision of calculations is exhausted before the behavior of the scheme becomes asymptotic.
However, this is often encountered when dealing with rapidly convergent algorithms.

2. For small-scale problems (such as in Example 1) and large p, the algorithm produces essen-
tially exact results with a small number of nodes. For large-scale problems, double precision
accuracy is achieved at approximately 20 nodes per wavelength with p = 20, at 12 nodes per
wavelength with p = 24, and at 10 nodes per wavelength with p = 32. The optimal timings are
achieved at p between 24 and 32 (provided that about 10 - 12 digits of accuracy are desired).
There seems to be no reason for using the scheme with p < 16.
3. The scheme is completely indifferent to the extreme stiffness near the left end of the interval
fc, d] of equation (98) in the Example 2.
4. It is easy to use the algorithm in an adaptive manner, as demonstrated in Example 2, where
we resolve a boundary layer of relative thickness 10- 6, without encountering any numerical

22



difficulties. However, a fully adaptive version of the scheme has not been implemented. The
intervals B- in Example 2 were provided by the calling program (as opposed to having been
constructed by the algorithm itseif).
5. The condition number of a Nystrdm discretization of a second kind integral equation is
asymptotically bounded, and our results reflect this fact. The relatively poor accuracy (10 -
11 digits) obtained in Examples 2, 3 and 4 is due to the ill-conditioning of the original ODE.
as opposed to that of the numerical scheme used.

VI. Generalizations and Conclusions

Generalizations: The results of this paper can be generalized in three obvious directions.
L. As described here, the algorithm is only applicable to boundary value problems for a single
second order ODE. It can be generalized to systems of ODEs of arbitrary dimension. This
generalization is quite straightforward, though technically somewhat involved. This work is
currently in progress, and its results will be reported at a later date.
2. The algorithm of this paper can be used as a solver for the linearized problems which
arise in applying Newton-type methods to non-linear boundary value problems of ordinary
differential equations. This would involve converting the differential equation being solved into
a non-linear second kind integral equation, with the subsequent application of an iterative
(Newton) algorithm to the latter. In the context of non-linear problems, second kind integral
equations retain their usual analytical and numerical advantages over the differential equation
formulation. However, our numerical experience with such problems is extremely limited.
3. Attempts have been made to extend the results of this paper to elliptic partial differential
equations. While this direction of research appears to be extremely attractive in principle, we
have not been able to produce a workable algorithm of this type.

Conclusions: An algorithm has been presented for the solution of two-point boundary
value problems of ordinary differential equations. The algorithm is based on reducing the
differential equation to a second kind integral equation, with the subsequent solution of the
latter via a Nystrbm type scheme. It has CPU time requirements proportional to N. p2, where
IV is the number of nodes in the discretization of the interval of definition of the equation, and
p is the desired order of convergence of the scheme. The method does not involve the solution
of linear systems with large condition numbers, permits the use of schemes with extremely high
orders of convergence, and is quite insensitive to boundary layers or to end-point singularities
in the coefficients of the differential equation.

Appendix A.
A High Order Scheme for the Solution of Equations (82) - (84)

In this appendix, we summarize a classical approach to the solution of integral equations
via the Nystr6m algorithm based on Chebyshev quadrature. The facts used in this appendix
are well-known, and can be found, for example, in (4,5,7].
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A.I. Chebyshev approximation.
For any non-negative integer n, the Chebyshev polynomial T, of degree n is defined by the

formula
T,(cosO) = cos(nO). (108)

Clearly, JT,(x) < 1 for x E [-1, 1],

To(X) = 1, Tr(x) = x (109)

and, using elementary trigonometric identities,

T,,+1(x) = 2xT,(x) - T, - (x) for n > 1 . (110)

It is easy to see that, for n > 1, the roots tl, t,'. .. , of T., are real, located on the interval
[-1. 1], and given by the formula

S(2i - 1)7r
In = Cos 2n(1)

The Chebyshev polynomials constitute an orthonormal basis for L2[-i, 1 with respect to the
inner product

(f.g)T= f (t) .g(t). (1 - x2)- dt, (112)

Therefore, any function f E CO[-1, 13 can be represented by an expansion

f(x) = a -T(x), (113)
j=O

with the coefficients ai given by

ai = (f, TOT. (114)

The popularity of Chebvsliev expansions as a numerical tool is largely a consequence of the
following two lemmas. The first demonstrates that the series converges rapidly for sufficiently
smooth functions, while the second shows that numerical evaluation of the coefficients takes a
particularly simple form. Proofs may be found in 171.

Lemma A.1. Suppose that n and k arc natural numbers, and that f E C [-1, 1]. Supposc
further that the coefficientsao. a,, -. , an are defined by formula (114). Then for any x E [-1. 1].

n

If ~~~x ) - a Tj(x)j = O(n-_) I5

i=O

In particular, if f E C- , then the expansion (113) converges to f superatqebraically.
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A well-known property of the coefficients of the Chebyshev series is that they can be ob-
tained from the cosine transform of the function F(O) = f(cosO). More precisely, a simple
change of variables yields the result

a0  = (f.TOT = f(cosO)dO

ak = (fTT= ff(cos) coskd for k > 0. (116)

Lemma A.2. Suppose that n and k arc natural numbers, that f e Ck[-l, 1). and that
the cofficients a, are defined by (114). Suppose further that the vector f_ - (f ,f, .. ,fn)
consists of the function values at the roots of T,,(x), namely

t = f(t ), i= 1,2 .... ,N. (117)

Let o = (OO, 01,"O,_) be given by

a = C,(fn), (118)

where C, denotes the discrete cosine transform of dimension n. Then

ai - oil = 0( 1

A.2. Chebyshev quadrature.
Lemmas A.1 and A.2 provide a tool for the construction of highly accurate interpolation

schemes. The following two lemmas use Chebyshev expansions as an apparatus for the numer-
ical evaluation of indefinite integrals.

Lemma A.3. Suppose that f : [-1,11 -- R is given by the finite Cheby. cL - ,,

n-1
f (x) = E oi .Ti(x) . (119)

i=0

Then the indefinite integral of f has a series expansion of the form

1r i:=O

The coefficients are given by
__1

A = (c - ,. a,_- i - c ,+ *ti+) fori> I1

n-I

00 = 2 (-1) i - 
. (121)

i~:2
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where co = 2, ci = 1 for i > 0, and oi is assumed to be zero outside the range i = 0. 1, ... n - 1.

Definition A.1 Let o = (oo, ak,.,On-1) and let 3 = ( 3o, 3 1,' ,O3n). Then the linear
mapping Sn : Rr -. R n+' defined by the formula

s"(k) =

is referred to as the spectral integration operator.

Lemma A.4. (Clenshaw and Curtis [23) Suppose that f E Ck[-l, 1] for some k > 1, and
that the vector fn = (fn,, f,?,. fn) E R n consists of the function values at the roots of T,,(x),

I A ft"), i= 1,2,...,N.

Suppose further that F : [-1, 1] -- R is the indefinite integral

FI(z) = f(t) dt

and that the vector F n = (F, F,2 ,.. .,F,') E R n is defined by the formula

F' = F1(t ). (122)

Then
lIF' - C-1 o S' oc (fn)IlK = _ (123)

Furthermore, all elements of the matrix C- 1 o Sn o C" are strictly positive.

The following theorem provides a trivial extension of the above lemma to the case of intervals
of length other than 2.

Theorem A.1. Suppose that [a, b] C R is an interval of non-zero length, n, k is a pair of

natural numbers, f E Ck[a, b], and the finite sequence r,2,,. . ., r, is defined by the formula

rn= (b-a) cos [(2i - 1)r] + (b-" ) (124)

Suppose further that the function F: [a, b] - R is defined by the formula

F(x) = j f(t) dt. (12.r,)

Finally, suppose that the vectors ff = f f..,f) and Fn - (F , F2 ,...,F ) ar dEfind

by
f"A f(rn) (126)

and
F= F,(r,). (127)
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Then

- a -- 1 o S' oC,, (f0) =O 1 (128)
2 n

In the solution of the integral equation (8), we will also require the evaluation of indefinite
integrals of the form

F(x) = (t) dt.

For this purpose, we have the following theorem.

Theorem A.2. Suppose that [a, b] C R is an interval of non-zero length, n, k is a pair of
natural numbers, f E Ck[a,b], and the finite sequence r,,r2, .. ,rn is defined by the formula

' =  cos 2-1)] + . (129)

Suppose further that the function F, [a. b] - R is defined by the formula

F,(x) = f(t) dt. (130)

Finally, suppose that the vectors fnl = (f',f,. ff) and F n 
- (F 2 ,.. ., F7 ) are defined

by
A" f (r) (131)

and

= F 7,'). (132)

Then

.C,, (f') = n_ 1 (133)2

where
= T o S' o T (134)

and T R .-. R ' is the transposition operator defined by

in-i+l - 1,

T=-i+i, 1, (135)

T,j= 0 otherwise.

Definition A.2. The matrix

0s, b  a Sn OC, (136)
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is known as the left spectral integration matrix of order n on the interval [a, b). The matrix

-b - a
a,b = - C 0 S 0 C, (137)

is known as the right spectral integration matrix of order n on the interval [a, b].

According to Theorems A.1 and A.2, S , converts the values of a function f : [a, b] - R at
the Chebyshev nodes on the interval [a, b] into (approximate) values of the indefinite integral

jf(t) dt

at these same nodes. Similarly, b converts the values of f into (approximate) values of the
indefinite integral

'bJr f (t) dt.

Furthermore, the order of convergence of the discrete approximations is equal to the number of
continous derivatives f possesses. Finadly, S b and S',b can be applied to an arbitrary vector
for a cost proportional to n • log(n), since it is a product of a diagonal matrix (Sn or S ) and
two cosine transforms. The latter fact, however, is irrelevant for the purposes of this paper.

A.3. The Nystr6m algorithm for the solution of second kind integral equations.

The Nystr6m algorithm associated with a family of n-point quadrature formulae 77k

{z k , w,) replaces the integral equation

O(z) + jK(zt) . 0(t)dt = g(z) (138)

with the system of linear algebraic equations

Oi+ W'-h(i j j= g(zi) i = 1,. .. , n. (139)
j=1

We denote the matrix of the discretized system (139) by B,, and view the solution 0,..,
of (139) as an approximation to the solution € of (138) at the nodes zl,. .. ,z,n. If (139)
has a unique solution, then for a wide class of quadrature formulae 77" and sufficiently large
n, the system (138) also has a unique solution. Furthermore, under fairly broad assumptions,
the convergence rate of the Nystr6m algorithm is the same as the convergence rate of the
quadrature formula it is based on (see, for example, [1)).

A.4. A high order Nystr6m scheme for the solution of equation (8).

In this section, we describe a particular version of the Nystr6m scheme for the solution
of equations of the form (8). The scheme to be described is based on Chebyshev quadrature
and has a convergence rate of the order k - 1, where k is the number of continous derivatives
possessed by the solution a of equation (8).

28



Given an interval [ac] and the Chebyshev nodes r1 ,r 2,. ,- -r, on it, we will define the
diagonal operators P, Q, U1 , Ur, UP', UT, V, 1" , Rn - RI via the formulae

Pi ",i = P(-ri),
Qi,j = 4(7-,),
U ! ' = u l( -r, ) ,

Ut

U!'i = URT(70,
U j',: = , , ( 7 -0 ,

Vi i = V1 (7,),
V = V, (7().

Finally, we will define the operator A" R n -- Rn by the formula

An = I + ioU ' 1 , ,1 / + U r' ' o0 . o V[ )

U1 O ( o S n cl y
+ U r o , n , o v r ) ,  (141)

and the vector fn E Rn by the formula

fi = f((1).42)

Observation A.1. The mapping An defined by the expression (141) can be viewed as an
approximation to the operator Pi,k defined by the expression (81). This is obvious from (11).
(12), Theorem A.1 and Theorem A.2.

The following theorem provides an exact statement of the above observation. It is used
in Section IV of this paper to construct highly accurate approximations to the solutions of
equations (82), (83) and (84) on elementary subintervals B , and is the principal purpose of
this Appendix.

Theorem A.2. Suppose that the equation (7) is chosen in such a manner that vi, t, E
Ck[a, c] for some k > 1. Suppose further that the equation (82) (or (83) or (84)) has a unique
solution a such that a E Ck[a. c]. Then for all sufficiently large n, the equation

An(a) = f (143)

has a unique solution a", and

Ilan - a(77)I. = 0(-_ 1) (144)
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