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Integral Equations

ON A NEW CLASS OF STRUCTURED MATRICES

Y. EIDELMAN? AND I. GOHBERG!

In this paper we continue the study of structured matrices which admit a linear complexity inversion
algorithm. The new class which is studied here appears naturally as the class of matrices of input output
operators for discrete time dependent descriptor linear systems. The algebra of such operators is analyzed.
Multiplication and inversion algorithms of linear complexity are presented and their implementation is
illustrated.

0. Introduction

In this paper we continue the study of structured matrices which admit a linear com-
plexity inversion algorithm. Such algorithms exist for diagonal plus semiseparable matrices
and band matrices. The new class which is studied here appears naturally as the class of
matrices of input output operators for descriptor linear systems and contains both diagonal
plus semiseparable and band matrices.

Let R be a square matrix of size N X N. Let n be a number such that the entries of

lower triangular part of the matrix R have the form

Ri; = pia’-;?(th 1<j<i1<N, (01)

X
ij
i+1, af_H,i = In, a; are n X n matrices. The elements p; (¢ = 2,...,N), ¢; (7 =

where p; are n-dimensional rows, ¢; are n-dimensional columns, a;; = a;_1 -+ aj41, © >
1,...,N—1), a;, (k = 2,...,N — 1) are called lower generators of the matrix R and
the number 7 is called order of lower generators. Let n; be a minimal value of n for
which (0.1) holds. Then the matrix R is called lower quasiseparable of order n;. The
definition of upper quasiseparable matrix and upper generators is similar. If a matrix R
is lower quasiseparable of order n; and upper quasiseparable of order ny then it is called
quasiseparable of order (ny,nz).

It is well known (see for instance [GL, p.92-95]) that for a band matrix R the solution
of the system Rz = y may be computed at the cost O(N) arithmetic operations. As was

shown for instance by Asplund in [A] inverse to a band matrix with nonzero entries on
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external diagonals belongs to the class of diagonal plus semiseparable matrices. Let us
remind that a matrix is said to be semiseparable of order (ny,n2) if it is composed of the
lower triangular part of some matrix of rank n; at most and of the upper triangular part of
another matrix of rank ns at most. Probably the first time the linear complexity algorithm
for inversion of diagonal plus semiseparable matrices was suggested by Gohberg, Kailath,
Koltracht in [GKK1], [GKK2] in assumption that the matrix R is strongly regular, i.e. all
its leading minors are non-vanishing. In [GKK1], [GKK2] it was established that lower
triangular and upper triangular factors of LDU factorization of diagonal plus semiseparable
matrix R are also diagonal plus semiseparable and moreover generators of these factors
may be expressed via generators of original matrix using linear complexity by N algorithm.
Then the solution of every corresponding triangular system may be computed in O(N)
operations. Another approach to inversion of diagonal plus semiseparable matrices was
suggested by Gohberg and Kaashoek in [GK]. In [GK] such matrices arose as input-output
ones for discrete linear systems with boundary conditions. In [GK] under the assumption
that external coefficients of the system are nonvanishing an explicit inversion formula for
the input output matrix was obtained. It was established by the authors in [EG2] that using
the formula from [GK] one can obtain the solution of equation Rz = y for O(N) operations.
This formula was analyzed in detail by the authors in [EG1], [EG2]. It turned out that one
can obtain an equivalent representation of the entries of the inverse matrix which is valid
without any limitations on the matrix except of invertibility, and moreover the relations
obtained are a basis for linear complexity inversion algorithm. Analysis of representations
obtained in [EG1], [EG2] showed that inverse to diagonal plus semiseparable matrix belongs
in general to a wider class. This new class contains both diagonal plus semiseparable
matrices and band matrices and is contained in the class of quasiseparable matrices. This

is a second reason for our interest in this class.

The object of the paper is the detailed study of the properties of quasiseparable matrices.
It turns out that similarly to a diagonal plus semiseparable matrix a quasiseparable matrix
of general form may be treated as an input output one for discrete time varying linear
system with boundary conditions. However it is necessary that a part of state space
equations of the system is a forward recursion and another part is a backward recursion.
Such systems are called descriptor systems. We consider in detail the algebraic properties
of the class of quasiseparable matrices. As one of the results one can mention the property
that the inverse to quasiseparable matrix is again a quasiseparable matrix {a result which
does not hold for diagonal plus semiseparable and band matrices}. Linear complexity by N
multiplication and inversion algorithms are developed in the paper. The implementation

of these algorithms is lllustrated by results of numerical experiments.
The paper consists of 9 sections:
1. Definitions

2. Quasiseparable Matrices and Descriptor Systems
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. Characteristic Properties

. Multiplication

. Inversion

. Inversion Formula and Algorithm in the Strongly Regular Case

. The Case of Diagonal Plus Semiseparable Matrix

. The Case of Band Matrix

. Numerical Experiments

Note that inversion algorithms and their implementation for quasiseparable matrices of

O 0o N D oo W

order (1,1) will be considered in more detail by the authors in a later paper.
1. Definitions

Let {ax},k = 1,...,N be a family of square matrices of the same size. For positive
integers 7, define the operation a;; as follows: aj=aj-1-ap for N2i>j4+12>2,
aj =aiy1-aj1for N>j>i+1 2205, =08, =1forl <kE<N-1l,a7,=0
for1<k<N.

We consider a class of matrices R for which either lower triangular part or upper tri-
angular part or both of them has a special structure. Let R be a square matrix of size
N x N. Let n be a number such that entries of the lower triangular part of matrix R have
the form

Rijzp,-aquj, 1<5<t<N, (1.1)
where p; are n-dimensional rows, g; are n-dimensional columns, a; are n X n matrices.
The elements p; (1 = 2,...,N), ¢; (7 =1,...,N ~1), ay (k= 2,...,N — 1) are called
lower generators of the matrix R and the number n is called order of lower generators.
Let n; be a minimal value of n for which (1.1) holds. Then the matrix R is called lower
quasiseparable of order n;.

Let n be a number such that entries of the upper triangular part of matrix R have the
form

R = g,;bfjhj, 1<1<7 <N, (1.2)
where g; are n-dimensional rows, h; are n-dimensional columns, by are n X n matrices.
The elements g; (i = 1,...,N = 1), h; (j =2,...,N), by (k =2,...,N — 1) are called
upper generators of the matrix R and the number n is called order of upper generators.
Let ny be a minimal value of n for which (1.2) holds. Then the matrix R is called upper
guasiseparable of order n.

If a matrix R of size N x N is lower quasiseparable of order n; and upper quasiseparable
of order n, then it is called gquasiseparable of order (ny,nz). More precisely qua51separable
of order (n;,n3) matrix is a matrix of the form

piag, 1<j<i<N,
Ri; =< 4, 1<i=j <N, (1.3)
g,»b{;-hj, 1<i<j<N,
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The elements p; (1 = 2,...,N), ¢ G =1,...,N—-1), ax (b =2,...,N —1); g; i =
Lo..,N=1), hj (j =2,...,N), by (k =2,...,N —1); dy (k = 1,...,N) are called
generators of the matrix R.

The class under consideration is a generalization of two well-known classes of structured
matrices: band matrices and diagonal plus semiseparable matrices. If in (1.3) ax = a, by =
b(k=2,..,N—1)and a™ = 0, " = 0 then the matrix R is a band matrix. If
ar, = In,, by = In, (k = 2,...,N — 1) then we obtain a diagonal plus semiseparable

matrix.

2. Quasiseparable Matrices and Descriptor Systems

Let us consider discrete time system of the following type:

Xk+1 = GkXk + QpZh, k=1,...,N -1,

Mh—1 = bpne + hrzk, k =N,...,2,

Yk = PkXk +9k77k+dk$k’ k:11N1 (21)

My (X)) + M, (X”> =0.

! N
Here ¢ = (xj)}, is the input of the system, y = (yx)Y_, is the output, xs and 7 are
the state space variables of sizes n; and mn, correspondingly; the coefficients are square
matrices ag, by of sizes n;, ny correspondingly, vector columns gy, hy of sizes ny, ny
respectively, vector rows py, gi of sizes ny, my respectively, numbers diy. The boundary
conditions are determined by two matrices My, M, of size m X m, where m = n; + nj.
The number m is called the order of the system.
In addition to the matrices a* b?;- we use here the matrices afﬁ =ajja; for N > i > 2,

350 Y%

a =L b =05 byfor N 121> 1,65 =1I,,.

The system (2.1) is said to have well posed boundary conditions if the homogeneous

equation
Xk+1 = QrXk, k=1,...,N-1,

Me—1 = bgme, k=N,...,2, (2.2)

(i) ()
i 1N

has the trivial solution only. This happens if and only if det M # 0, where

_ In1 O a% 0
M—M1<0 b;;,a)-l-Mz(O L) (2.3)

Indeed the solution of (2.2) satisfies the relations

xr=alfxi, k=1,....,N; e =bfnn, k=N,...,L (2.4)
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In particular xy = af,xh M= b?"IN~ The boundary conditions yield

#
X1 QX1 X1
M + M. N ):M( ):0. 2.5
1(”#’71\!) 2< N N (2:5)

If det M +# 0 then x; = 0, v = 0 and by virtue of (2.4) the equation (2.2) has the trivial
solution only. If (2.2) has the trivial solution only then (2.5) has the trivial solution only
which implies det M # 0.

In the case of well posed boundary conditions the output ¥ is uniquely determined by
the input z. Hence a linear operator R such that y = Rz is defined. The operator R is
called input output operator of the system (2.2).

Theorem 2.1. The matrix R of input output operator of the system of the form (2.1)
with well posed boundary conditions is quasiseparable of order at most (m,m). Moreover
let M be the matrix given by (2.3) and

- X _ Y;
M lMlz(: X;), -M 1M2=(Yz :), (26)

where matrices X, X2, Y1, Y2 have the sizes ny Xng, nz Xng, n1 Xn1, ng X711 respectively.
Then the elements

ti= [pi(ai#na§,i~1 +In1) +gibi#y'2a1>fj,i_1 Pia?Xl + gib?Xz] , 1= 2, . ,N,
= - -
sJ_[b;‘(th’J’J-—l,-‘-,N 1, (2'7)
_ (e 0 - _1.
lk_<0 Inz),k_z...,N 1

vi = [piaf Y1+ g:b¥Ys  piaf Xo0Y ) + gi(F XobY ) + 1ny) ] =1, N — 1,

ax‘ 7 N
uj:[ JZ;QJ}’]:Z’.“,N,

I, 0
51::(01 bk>’k=2"”’N—1;
Ak =Pkak#(lef,khk + Yiafxr,kqlc) + dg +gkbf(Xzblx’khk + Yzax,’qu), k=1,...,N (2.9

are generators of the matrix R.

Let us remark that gy and k; are not determined from (2.1) and hence they are free.
Since by the definition a), = 0 and by = 0 they may be chosen arbitrarily.

Proof. One can easily prove by induction that the solutions of the first and the second
equations in (2.1) are given by

Xk:ak#)a +fr, k=1,...,N,
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k=1
where f; = ijl a,’:jqj:cj and

77k=bf’i]1v+¢k, k:N,.,.,l,

where ¢ = Ejvz ki1 b;:jhjitj. By virtue of boundary conditions we obtain
#
X1 airxa + v
M M. N =0
l(f’fﬂN+¢1>+ 2< N )

which implies
0y = fn
M[(* ) =-M ( ) - M > :
(nN 1 ¢1 2 0

x1=X1¢1 +Yifn, v =Xadi +Yofn.
Thus for the state space variables we have
Xk =af (Xidy +Yifn)+ for =B} (Xag1 + YVafw) + 6k, k=1,...,N.
Next for the output ¥ we obtain

Yy = Pk[af(X1¢1 +Y11n) + Ful + dizs +gk[bf(X2¢1 + Yo fn) + or) =
k-1

N N
= pila} (X1 ) bhie; + Y1 Y ajigie) + 3 ala52i] + dezrt

j=1 i=1 i=1

N N N
+orlbf (X2 ) bShiei + Y2 Y aRkgie) + Y. bhzs). (2.10)

j=1 j=1 j=k+1

Hence it follows that

Hence follow representations for entries of the input output matrix B. In the case N >

X. we obtain
,J

1> 7 > 1 using the relations al)f,j = a_;\(,’i_la
Rij = pilaf (Xablhj + Yiaj;a5) + ajia;] + gibf (Xabljhs + Yaayq5) =
= [pi(aleal’Q—,i_l +In,) + gib?YWI)fr,i—ﬂ”qua' + (Pia?eXl + gib;#Xz’)bfjhj = tilfjsa‘:
where ;, lp, s; are given by (2.7). Hence the matrix R is lower quasiseparable of order at
most m with lower generators given by (2.7).
For 1 <1 < j £ N using the the relations bfj = bfi +lb;‘j we conclude that
Rij = pia] (X1bJ5h; + Yiak;q5) + gilbf (Xab[hs + Yaa q5) + bkl =
= (pia? V1 + g Ya)aly ;95 + [piad Xubl oy + 9i(BF Xobl sy + T ) ISRy = 06 35u;,
where v;, 8;, u; are given by (2.8). Hence the matrix R is upper quasiseparable of order
at most m with upper generators given by (2.8).
The desired relations (2.9) for diagonal entries Az of the matrix R follow from (2.10)
directly.

Every quasiseparable of order (n;,7n;) matrix R may be treated as an input output one

for descriptor system of the form (2.1) of order m = n; + n,.
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Theorem 2.2. Let R be a quasiseparable of order (ny,ny) matrix with generators p; (i =
2,...,N), q; (_7 = 1,...,N-— 1), ay (k = 2,...,N and 1); g: (Z = 1,...,N— 1), hj (_7 =
2,...,N), by (k=2,...,N~1); dp (k=1,...,N). Let a1, by be arbitrary matrices and
p1, gy be arbitrary vector rows of sizes ny X nj, ny X ngz, n1, nay correspondingly.

Then R is input output matrix of the system

Xk+1 = GeXk + qr2r, k=1,...,N—1,

r—1 = bk + Az, kE=N,...,2

o ’ T (2.11)
Yr = prXk + grme +drzr, k=1,...N,

x1=0, 7y =0

Theorem 2.2 is an inversion of Theorem 2.1 without assumption on order of descriptor

system.

Proof. The system {2.11) is a particular case of the system (2.1) with

I, 0 A
w= (5 0) w-(00)
It is easy to see that in this case all the matrices X1, X», Y3, Y2 in (2.8) are zeroes and

therefore in (2.7)-(2.9) we obtain ¢; = (p; 0), ¢&; = (0 g;), M\ = d;. Hence by Theorem
2.1 it follows that the matrix with entries

Piaqug', 1<j<i<N,
R; =< d;, 1<i=j<N,
g,-b;(jhj, 1<i<j<N

is an input output one for the system (2.11). But these elements are exactly the entries
of the quasiseparable matrix R with generators p; (: = 2,...,N), ¢; (j = 1,...,N —
1), ap (k = 2,...,N— 1); 4q: ('L = 1,.;.,N— 1), h:; (J = 2,...,N), bk (k = 2,...,N—
1);de(k=1,...,N).

One can see that the coefficients of the system (2.11) are exactly the generators of its
input output matrix.
3. Characteristic Properties

In this section we analyze in detail the properties of quasiseparable matrices. At first
we show that quasiseparability is equivalent to some recursive relations for maximal sub-

matrices of lower triangular and upper triangular parts.

Lemma 3.1. Let R be a matrix of size N x N with lower generators p; {t=2,...,N),
g (1 =1...,N -1}, ax (k =2,...,N — 1) of order n. Let us define matrices Qr (k=
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1,...,N — 1) of sizes n x k forward recursively and matrices P, (k = N,...,2) of sizes

(N — k) x n backward recursively as follows:

Qi=q, Qr=(axQr-1 @), k=2,....N-1; (3.1)
Py = pn, Pk:(Pkiﬁak>7 E=N-1,...,2. (3.2)

Then for maximal submatrices of the lower triangular part of the matrix R the following

representations are valid:

R(k+1:N,1:k)=Pk+1Qk, k=1,...,N—1. (33)

Proof. The successive application of (3.1) yields

Qr = (arQir—1 qr) = (arar-1Qr—2 GkGk—1 Gr)=...

= (a:+1,1’11 0w al)c(+1,k—1CIk~1 qr). (3.4)
Similarly using (3.2) we obtain
Pr+1
Pk+1 Ph+2051a 1

Py = (Pkp::j, 1) = Pk+20k+1 = i . (3.5)

+a%kE Ppi30k420k41 "

PNGp L
Moreover the relation (1.1) yields
Pk+1‘1;>:+1,1Q1 e Pk+419k
R(E+1:N,1:k)= : 5 . k=1,...,.N—1.
PNAN G ... DNGx Gk

Then taking into consideration the equalities a,, , = a,, az,, , for m > k > ¢ one can
conclude that
Pkt
X
Pe+20p 1ok
Rk+1:N,1:k)= ) (@419 oo Gyrpe19k-1 G8) = Pri1Qr

x
PNON &
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Lemma 38.2. Let p; (2 = 2,...,N) be n-dimensional rows, g¢; (7 = 1,...,N — 1) n-
dimensional columns, ax (k = 2,...,N — 1) matrices of size n X n. Let us define by the
recursions (3.1), (3.2) the matrices Qi (k= 1,...N — 1) of sizes n X k and the matrices
Py (k= N,...,2) of sizes (N — k) x n. For a matrix R of size N x N let the relations (3.3)
hold.

Thenp; (i=2,...,N), ¢; (§ =1,...,N-1), ax (k= 2,...,N —1) are lower generators
for the matrix R.

Proof. Let us consider an arbitrary element Rij,¢ > j of the lower iriangular part of the
matrix R. This element is the j-th entry in the first row of the submatrix R(i : N,1::—1).
From (3.3) we conclude that R(z : N,1 : i — 1) = PiQ;—1. As was proved above the
recursions (3.1), (3.2) for the matrices Py, Qy imply (3.4), (3.5). Thus we obtain

Di
X
. i Pit1Gi 1y,
R(z:N,1:i-1)= ] . (azlql a:i_zqi_z gio1) =
pNa;\(f,i—I
piajigr ... Pigi-1
PNG @1 ... PNGN;_1Gi-1
In particular we have
R(i,1:i-1)=p(alyq --- @5 ... @i-1).

The j-th entry of this row is pia.quj which means (1.1). Thusp;, g, ax are lower generators
of R.

Similarly one can prove the following assertions concerning the upper triangular part of
the matrix R.

Lemma 3.8. Let R be a matrix of size N X N with upper generators g; (#=1,...,N -
1), hj (7 =2,...,N), b (k =2,...,N —1) of order n. Let us define matrices G} (k =
1,...,N — 1) of sizes k x n forward recursively and matrices H, (k = N,...,2) of sizes
n x (N — k) backward recursively as follows:

G =g1, Gk=(G’°g‘k1b‘°), k=2,...,N—1; (3.6)
Hy = hpy, Hy = (kg kak+1)a k=N-1,...,2 (3.7

Then for maximal submatrices of the upper triangular part of the matrix R the following
representations are valid:

R(1:kk+1:N)=GpHpss, k=1,...,N—1. (3.8)
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Lernma 3.4. Let g; (¢ = 1,...,N — 1) be n-dimensional rows, h; (j = 2,...,N) n-
dimensional columns, by (k = 2,...,N — 1) matrices of size n X n. Let us define by the
recursions (3.6), (3.7) the matrices G (k = 1,...N — 1) of sizes k X n and the matrices
Hy (k= N,...,2) of sizes n x (N — k). For a matrix R of size N x N let the relations
(3.8) hold.

Theng; (1 =1,...,N=-1), h; ( =2,...,N), by (k =2,...,N~1) are upper generators
for the matrix R.

Next we show using Lemmas 1-4 that quasiseparability of a matrix may be expressed

in terms of rank of maximal submatrices of lower triangular and upper triangular parts.

Theorem 3.5. A matrix R is lower quasiseparable of order ny if and only if every sub-
matrix of R entirely located in the lower triangular part of R has rank n, at most and at
least one of such submatrices has rank equal to n;.

A matrix R is upper quasiseparable of order ny if and only if every submatrix of R
entirely located in the upper triangular part of R has rank ny at most and at least one of

such submatrices has rank equal to ns.

Proof. It is sufficient to prove the assertion of the theorem for the lower triangular part of

the matrix R.
Assume that every submatrix of R entirely located in the lower triangular part of R has

rank at most n;. In particular for maximal submatrices we have
rankR(k+1:N,1:k)=rx<my, k=1,...,N-1 (3.9)

Let us show that the matrix R has lower generators of order n;.
The relation (3.9) yields for every matrix R(k+1: N,1: k) of the size (N — k) x k the

representation

R(k+1:N,1:k) = Vip1 Wi, (310)

where Viy1 is a (N — k) X vy matrix, W}, is a rx X k matrix and rank Vi41 = rank Wy = 4.

One can add zero columns to Vi4; and zero rows to Wy in order to obtain (N — k) X nyg
matrices Pgy1 = [Vigr 0] and ny x k matrices Q = {ng} . It easily follows from (3.10)

that Pri1, Qp satisfy (3.3). Let p; be the first row of P and g; be the last column of Q.
We should prove that there exist matrices a; of size n; X n; such that (3.1), (3.2) hold.
Then by Lemma 3.2 it will follow that p; (1 =2,...,N), ¢; ( =1,...,N = 1), a3 (k =
2,...,N — 1) are lower generators of R.

For the previous block R(k: N,1:k — 1) we have

R(k:N,1:k—1)=ViWi_s,

where rank R(k : N,1:k—1) =741 <n1, Vi isa (N — k+ 1) X rg—; matrix, Wi_; is a
rg—1 X (k — 1) matrix and rank V; = rank Wi_1 = 7¢—1.
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Let v be the first row of the matrix Vi, and wy be the last column of the matrix Wj.

Then one can write down V, = (‘UVI:,)’ Wy = (W, w;) and obtain
k

’Uka_.l

R(k:N,1:k-1)= (Vk’Wk—1

), R(k+1N,1k)=(Vk+1Wlé Vk+1wk).

The submatrix R(k +1: N,1:k—1) is a common part of the blocks R(k : N,1: %k — 1)
R(k+1:N,1:k). For this part we have two representations and thus one can conclude
that

V]éWk—l = Vk+1Wlé. (3.11)

Let Vk+1 be such a ry x {N — k) matrix that Vk+1Vk+1 = I,, and Wi_1 be such a
(k —1) x r4—; matrix that Wi Wiy = Ir_,. Multiplying (3.11) by Vi41 from the left
and by Wj_; from the right we obtain

V1 VWi = Wi, Vi = Vi (WiWi-1), Vi Vi = WilWe_.

Set af, = Vier1 Vi = W,:V-Vk_l. The matrix af, here has the sizes rj X 75— and satisfies

the relations
V]; = Vk+1a§c, W;i = G;Wk._l. (312)

Next one can set
aj, 0 x(n—mi) )
ak = .
<0(n—r,¢)xr1._1 O(n—rk)x(n—-r;‘_;,)
Next one can write down P = (gﬁ ), @Qr =(Q}% gqr). From (3.12) we conclude that
k

P}H_l(lk = [Vk-l-l O]Gk = [Vk+1a;: 0] = [V}; O] = Pi,
W._ W w!
@ka—lzak[ SIJI[% {}k 1}:{ Ok}:Q;w

which implies (3.1), (3.2).

Assume that there exists a submatrix R of R entirely located in the lower triangular
part such that rank R = n;. The matrix R° is a part of a certain R(ko +1: N,1: ko)
and using (3.9) we obtain

rank R(ko +1: N,1:kg) = n;. (3.13)

One can conclude from here that n; is the minimal order of generators of the matrix R,
that is R is lower quasiseparable of order n;. Indeed if it is not a case we obtain by Lemma
3.1 that every submatrix R(k+1:N,1:k) (k=1,...,N — 1) may be represented in the
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form (3.3), where Pyy1 and @ has the sizes (N — k) x n’ and n’ X k correspondingly and
n' < ny. Hence follows that rank R(ko +1: N,1: ko) < ny which contradicts (3.13).

Let R be a lower quasiseparable of order n; matrix. Then any submatrix R(k + 1 :
N,1:k), k=1,...,N—1by Lemma 1 has the form R(k+1:N,1:k) = Py.1Qy, where
Py, and @ are matrices with the sizes (N - k) X n; and n; X k correspondingly. Hence
it follows that rank R{k +1 : N,1: k) < n;. Every submatrix R of R entirely located in
the lower triangular part of R is a submatrix of a certain R(ko + 1: V,1: ko). Therefore
rank R < rankR(ko + 1 : N,1 : ko) < ng. Moreover at least one of the submatrices
R(k+1:N,1:k)= Pry1Q has rank n;. Indeed if it is not the case then for every
k=1,...,N—1wehaverank R(k+1:N,1: k) <n' < n; which as has been proved above

implies that the matrix R is lower quasiseparable of order < n’ which is a contradiction.

4. Multiplication

We consider here the properties of the product of quasiseparable matrices and the
product of a quasiseparable matrix by a vector. At first we show that the product of two
lower (upper) quasiseparable matrices is lower (upper) quasiseparable of order the sum of

the orders of the factors at most.

Theorem 4.1. Let Ry, Rz be matrices of sizes N x N which are lower quasiseparable of
orders my, ny correspondingly. Then the product Ry R; is lower quasiseparable of order
at most my + ny.

Let Ry, Ry be matrices of sizes N x N which are upper quasiseparable of orders ma, ny
correspondingly. Then the product Ry R, is upper quasiseparable of order at most my +mns,.

Proof. It 1s sufficient to prove the assertion of the theorem for the case of lower quasisep-
arable matrices.
Forany k=1,...,N —1 one can write down each of the matrices R;, Rz, R; R in the

_ (4 x _ (AL Xy *
Rl—(L}c Bllc+1)’ Rz_—(Li Bizc+1 » BB = Zy x)’

where A}, A%, X, are principal leading matrices of size k x k. From the condition of
the theorem and Theorem 3.5 it follows that rank L}c < my, rank L2 < ny. Moreover the

equality

form

Zy = LiAi +Bllc+1Li
holds and therefore
rank Zy, < rank(L;A2) 4 rank(Bj,;L%) <rank L} + rank L < m; +n;.

Thus the assertion of the theorem follows by Theorem 3.5.

Next we show how generators of the product of two quasiseparable matrices may be

expressed explicitly via generators of the factors.
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Theorem 4.2. Let R;, Ry be matrices of sizes N x N which are quasiseparable of orders
(mi,m3y) (ni,ns) respectively with generators p} (i = 2,...,N), q; (7 =1,...,N -
1), af (k=2,...,N—-1); g} i =1,...,N—1), h; (7 =2,...,N), b (k=2,...,N -
1); d} (k =1,...,N) and p? (i = 2,...,N), qf G=1,...,N—-1), a2 (k=2,...,N ~
16 (=4...,N-1), k2 (j=2,...,N), & (k= 2,...,N~1); &% (k = 1,...,N)

correspondingly. Then the generators t; (i = 2,...,N), s; ( =1,...,N -1}, I {k
2,00 N=1)y % (t=1,...,N~1), u; (j =2,...,N), & (k=2,...,N—-1); A (k

1,...,N) of the matrix Q may be given as follows:

b=lol dipt+luadl, =] PR, (1)
J
al qlp?
li = < 0" q:f;z ) . (42)
BRI + biepg?
vi =g} pie:dl +digl], ur:-[ ’ ’:gﬂﬁ’q’J, (4.3)
2
B Blg?
8 = (6 ;ngt ), (4.4)
Mi = pioih + did? + givigl, (4.5)
where
i—1 N
pi= (ah) gl (B8), = 3 (bh)*hip}(a},)*. (4.6)
k=1

k=i+1

Let us remark that g}, a¥, ai, R%, p!, b2, b}, ¢% are not determined from the
definition of generators and hence they are free. Since by the definition ¢; = 0 and
¥n = 0 mentioned above parameters may be chosen arbitrarily. We assume them to be

Zeroes,

Praof. The entries of matrices Ry, Hy have the form

P%(a}j)xq]l‘i 1 S] <7:_<..N)

Ri;=1d, i = j,
g}, R}, 1<i<j<N
and
pi(ad;)*qf, 1<j<i<N,
R?,j= d?, 1=7,
g (b%)*R:, 1<i<j<N

respectively. For the entries Q;; of the product Q = R; R, we obtain the following relations.
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For i > 7 we have
i-1
ZR kRk] Zp%(aik)xq}cgi(bi ) hz + pi(a} ) ldj

+ Z pi(a %Ph(ak;) q; 2 +d}p} '|‘ Z i (b ipi(aij)xqu'-
k=j+1 k=it1
By the definition of x operation for k£ < j we have
(a%k)x = a%—1 '”a’}c+1 = ‘1%—1 "'“}+1“}“§—1 ""1}:4-1 = (a%j)x“j(“;k)x
and similarly for k > <
x

(aij) = ai—q e '“§+1 = “2—1 T -afﬂafa?_l ' "a§+1 = (aii)xa;‘-’(aij)x.

Thus we obtain

j—-1
Qij = pi(a;)*[a3(D_ (k) * ahai (83;))B + g dil+
k=1
2—1 N
+pi[ Y (ah)*giph(a})¥1g} + [dip} + gi( ) (bh)*Ripk(a}:)*)ad)(aki) q} =
k=j+1 k=i+1

= pial;)*(ado;h? + gbdi) + phAiia} + (dip? + glvpia?)(adi)* ¢}

In the last expression ¢;, 1; are given by (4.6) and

-1
Aij= ) (a})*giph(a};)

k=j+1

1) Ay
a5 =re (9" a5 )

ij
where 7;, 5; are given by (4.1). To obtain desired representation for the lower triangular

part of the matrix @ it remains to check that

<(a%6)x (éi;x) 1%, (4.7)

a"ij

‘We have the relation

where the matrices [, are defined in {4.2). The proofis by induction by 7. The casei = j+1
is trivial. Assume that for k= j+1,...,7 the assertion has been proved. For k =i+ 1 we

have

=LY = (“3 ‘11'11;1"") <(“}j)x Ay > _ ((ahl,y‘)x alhi; + g pia ?j)’()_
it1,j T Yy 0 a? 0 (a,"-’-)x 0 (a 1+1’])><

1 17
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For the right upper element we have

i—1
afhi; + gipt(a}) = af Y (ah)*aiph(ak;)* + (alya,) g ph(dly)* =
k=j+1
= Z 1+1k qllepi(a’?cj)x +(a’%+1,i)xqug(a?j)x =

k=j+1

i
= it1,k) DePr\%k;) = Dit1,5,
Z ((11 ’ ))( 1 Z(aZJ)x A

b=j+1
which completes the proof of {4.7}.
For 1 = 7 we have relations
i—1 N
Xi=Qu = ZR b= PE (al)*ghah(Bh) )2 + didf +gH( > (bh)*hiph(a}i))a?
k=1 =i+1
from which {(4.5) follows.
For 7 < 5 we have
j—1
Qi = > pi(ak) kgl (8h;) b2 + dig (8) h+
k=1
. N
+ Z gil(b-%k) kgk(b ) th + gg(b%j))(@@ + Z QS(bﬁk)xhipi(“ij)qu?-
k=jt1 k=i+1

By the definition of X operation for k < 7 we have
(b ) k+1 'b.?—l = bi+1 ---bf__lbfbf_H b§—1 = (bii)xb?(b?j)x
and similarly for k > j
(b;'lk)x = b%-H "'b}c—l = b;!-{—l * ] 1b]b;+1 b}c—l = (b'l::lj)xb,% (b}k)x-

Thus we obtain

i1

Qs; = [P} Z *“ai93(83:) )8} + di gf](8%;)* h2+

N

i1
+gi [kz (bi) " higi (B55) 1h3 + g3 (03;)*[R3d5 + B3 (Y (5)* hipk(ad;)*)a2].
={41 k=j+1
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Using expressions @, ¥; from (4.6) and denoting I';; = {;J;_H(b%k)xh}cpi(bij)x one can
conclude that

Qij = (Pipib} + d}g?)(83) B3 + giTish} + g} (bl;)* (Rjd2 + blyhq?) =
(b}j}x Lij )
=v; Uj,
( o @)x)”

where v;, u; are given by (4.3). One can check in the same way as in the proof of (4.7)

that
((bf,-)x T'ij ) g%
0 (8%)* N

where § are defined in (4.4). Thus the proof of the theorem is completed.

Based on Theorem 4.2 one can derive the following method for computing the generators
of the product Q@ = R;R,.

Algorithm 4.3.
1. Set aj =0, h2 =0, p! = 0, b? = 0 (as was mentioned above these parameters could

be chosen arbitrarily).
Set 01 = Om,xn, and fork=1,...,N — 1 compute recursively

o = ayprh} + qidy, Ok = prorbl + digl,
Pri1 = aioid} + 619} (4.8)

Set

S = {a;} » ve=[gp ]
9

2. Set gy =0, ak, =0, by =0, ¢k = 0 (as was mentioned above these parameters
could be chosen arbitrarily).
Set N = Om,xn, and for k = N,...,2 compute recursively

Br = dip; + gxtral, Mk = hidi + blvng?,
Yr-1 = byral + hipi. (4.9)

Set

2
b=le ol w= ).

3. Fork=1,...,N compute

Ak = prorhi + did: + givndl.
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4. Fork=2,...,N — 1 compute z; = q}p%, wi = h}g? and set

1 1
_ {9 2k (b wg
n=(% ) o=(% %)
To justify this algorithm one should only check that auxiliary matrices @;, ; satisfy

recursive relations (4.8), (4.9). Indeed it follows directly from (4.6) that

i

p1=0, @i1= Z(“%+1,k)x€111c912c(bi,i+1)x =

k=1
i—1
= a‘z% (Z(a:k)xqiglzc(bi't)x)bf + (a"%—i-l,z) qz g; (bz 1+1)x =
k=1
=ajpibl +qigf, i=1,2,..N~1
and
N
N =0, i1 =3 (bi_1,) hipi(al; 1) =
et
= bl(z k) hkpk a’kt) )a? + (b%,i+1)xh$pz?(ag+l,i)x =
k=1

=biial + Blp}, i=N,N-1,...2.

Algorithm 4.3 does not contain embedding loops and therefore has linear complexity by
N. The exact number of flops in this algorithm may be computed easily. Indeed consider
for instance the computation of the element cz. The operation g;d} is a product of a vector
of size m; by a number and hence requires m; flops. The product ¢;h? as a product of a
matrix of size 1m; X1y by a vector of size ny requires m;n, flops. Next the product ak(gokh )
will take m? flops. Thus the total complexity for computation of ay, is my + ming + m?.
Similarly we obtain that computation of the variables 8k, 2k, Yr+1, Bk, Thy Wky ko1, Ak
requires correspondingly ns + ming + ng, miny, Ming + mlng + mfnz, ny + nimy +
nf, Mg +1N1My —i—mg, maNy, N1y —f-nlm% —l—n?mz, ming +mang +ny+ns+1 ﬂops. Thus
the total complexity of Algorithm 4.3 is (mfnz —I—mlng—}-mgnl +n§m2 —f—mf—!—nf +m§ +n§ +
3myng +3mang +mang +meny+mi +n1+ma+n2)(N —1)+ (myne +mang +ng +ny +1)N
flops.

Let us consider now an algorithm for multiplication of a quasiseparable matrix by a
vector and show that this algorithm has linear complexity by N in contrast to O(N %) in
the case of a matrix of a general form. Let R be a quasiseparable matrix of order (n1,m2)
with generators p; (1 = 2,...,N), ¢ ( =1,...,N—-1), ax (k=2,...,N—1); g; (i =
Lo..,N—=1), hj (j=2,...,N), by (k=2,...,N —1); d (k= 1,...,N). It means that
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entries of the matrix R have the form

Pia;(j‘b': 1<j<i<N,

R,;=( ds 1=7,

gib_;(jhj, 1<i<j<N.
The product y = Rz of the matrix R by the vector z is found as y = y¥ + y? +yY, where
y¥ = Ryz,y” = Rpe, y¥ = Rye and Ry, Rp, Ry are correspondingly lower triangular,
diagonal and upper triangular parts of the matrix R.

For y» we have y* = 0 and for 7 > 2

L
Y = DPizi,
where

-1
—_— X . -
%= E :ai,ﬂamr
j=1

Moreover z; satisfies the recursive relations

i—-1

i
x X — Vo o
Zi+1 = E Cpt1,;95%5 = Qi E 05455 + Qig1,iQi® = @2 + Q4.
=1 j=1

Similar relations hold for the upper triangular part, i.e. for the yY.
Hence for y = Re we have the following algorithm.

Algorithm 4.4.
1. Set a; = 0. Start with yL = 0, 21 = Op, %1 and fori =2,...,N compute recursively

2 = Q5-12i—1 + §i—1%4—1,
y{“ = Pi%i.
2. Computefori=1,...,N
yP = d;z;.

3. Set by = 0. Start with y% =0, wy = Op,x1 and fori = N —1,...,1 compute

recursively

wi = bipawigy + hig1®it,
th = giw;.
4. Compute vector y
y=y" +y7 +4".
Here we used that since 2z; = 0, wy = 0 the parameters a;, by may be chosen arbi-
trarily.

An easy calculation shows that this algorithm requires (n} +2n; +n3+2ny+1)(N—1)+1
flops.
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5. Inversion

In this section we study inversion of quasiseparable matrices. As a basis we use relations
between minors of a matrix and its inverse. From these relations we obtain easily that
inverse to lower (upper) quasiseparable matrix is lower (upper) quasiseparable of the same
order
Lemma 5.1. Let R be invertible matrix of size N. Let for some integers k, m, n such
that 1 <m,k <N —1,n >0, m — k+n > 0 the inequality

rankR(1:k,m+1:N)<n (5.1)

holds.

Then for the inverse matrix the inequality
rank R (1:m,k+1:N)<m—k+n. (5.2)
is valid.
Proof. Let 7 be an integer such that r > m — k 4+ n and R? be arbitrary square submatrix
of the size 7 x r of the matrix R™'(1 : m,k+1: N). The matrix R® may be represented as
R’ = R™(«, ), where a,(3 are sets of indices a = (i1,...,%,), 8 = (j1,..+,jr) such that
a C(l:m), BC(k+1:N). By the well known formula (see for instance [G, p. 17}) we

have

-1 1 v
= 3
et R (0, )] = g det BB ), (5.3
where o' and ' are the complements to @ and § correspondingly in (1,...,N). The

matrix R(A',a’) has the size (N — ) x (N — r). Moreover we have o' D {1,...,k},
B' D (m+1,...,N) from which follows that R(A',a') contains the matrix R(1 : k,m+1: N)
with size k x (N —m) and rank at most n. Since the addition of the column or of the row

to a matrix may increase its rank on one at most we conclude that

rank R(B',a') < n+[(N—r)—k]+[(N 1) = (N —m)] = (N—7r)~[r—(m+n—k)] <N -7
Thus we obtain det R(8’,a') = 0 and by virtue of (5.3) det B® = 0 for any = such that
r > m — k + n. Hence (5.2) follows.

Theorem 5.2. Let R be a lower quasiseparable of order n, invertible matrix. Then the
inverse matrix R~ is lower quasiseparable of order n;.
Let R be an upper quasiseparable of order ny invertible matrix. Then the inverse matrix

R™! is upper quasiseparable of order ng.

Proof. 1t is sufficient to consider the case of an upper quasiseparable matrix. By Theorem
3.5 if a matrix B of size N is upper quasiseparable of order n, then the relations

rankR(1:k,k+1:N)<mnp, k=1,...,N—1
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hold which imply (5.1) withn =ny, k=1,...,N ~1, m = k. For the inverse matrix R~}
the application of Lemma 5.1 yields

rank RY(1:kk+1:N)<n,, k=1,...,N—1.

Hence by Lemma 5.1 the matrix R™! is upper quasiseparable of order n}, where n} < n,.
Applying the same arguments to the matrix R™! we conclude that n, < n} and thus B!

is upper quasiseparable of order ns.

The well known Asplund’s theorem ([A]) concerning band matrices and inverses to
them may be derived easily from Lemma 5.1 for the case of entries from C. In accordance
with Asplund’s terminology a matrix R = {pij}fv:'jzl is called upper band of order n if its
elements satisfy p;; = 0 for j > 7+ n. A matrix B = {p,-j}ffj___l is called Green matrix of
order » if every submatrix of R belonging to the part for which j + n > ¢ has rank n at

most.

Theorem 5.3 (Asplund). An invertible square matrix is an upper band matrix of order
n if and only if its inverse is a Green matrix of order n.

Proof. Let R be an upper band matrix of order n,. It is equivalent to the assumption that

R satisfies the relations
R(l:k,k—l'-’nz-l-l!N):O, k:l,...,N—n2—1

which implies (5.1) with n =0, k=1,...,N —n; — 1, m = k + n,. In other words (5.1)
holds form =ng +1,...,N —1, k =m —ny, n = 0. By virtue of Lemma 5.1 we conclude
that

rankR‘l(l tm,m—nz+1:N)<ny, m=mny+1,...,N—1. (5.4)

Let R° be a submatrix of the matrix R belonging to the part for which j +n > 4. R® is
a submatrix of a certain R™*(1 : m,m —ny + 1 : N) and hence has rank at most n,. Thus
R~! is a Green matrix of order ns.

Let B™* be a Green matrix of order n,. It means that (5.4) holds. In other words the
matrix R™! satisfies (5.1) with m = 1,...,N —ny — 1, k = m +ny, n = n,. Applying
Lemma 5.1 to the matrix R~ we obtain

rank R(1:m,m+n;+1:N)<m—(m+nz)+n;=0, m=1,...,N—ny—1
and thus the matrix R is an upper band of order n3.

6. Inversion Formula and Algorithm in the Strongly Regular Case

We consider here the case when the matrix R is strongly regular, that is all its principal
leading minors are nonvanishing. In this situation the generators of inverse matrix R~}

may be expressed explicitly via generators of the original matrix.



Eidelman and Gohberg 313

Theorem 6.1. Let R be a strongly regular quasiseparable matrix of order (ny,n,) with
generators p; (1 = 2,...,N), ¢; ( = 1,...,N~1), ap (k =2,...,N—-1); ¢i (i =
1,o..,N=1), h; (j =2,...,N), b (k=2,...,N—1); dp (k=1,...,N).

Then generators t; (1 =2,...,N), s; (7 =1,...,N-1), Lk (k=2,..., N=1); v; (i =
1,...,.N =1), u; (j = 2,...,N), 8 (k=2,...,N—1); A (k= 1,...,N) of inverse
matrix R™! one can obtain as follows. The elements s, v, Ik, d; are given via forward

algorithm
v =di, 81 = ql’)’fl, vy = ‘/1_1917 f1 = 8141, (6-1)
Tk = di — pefe-1h,
se = [gx — arfaabilyys Ik = ar — sipw, (6.2)
vk =75 [gk — Pefr—1bk], Ok = b — hgvx, - (6.3)

Fo = aifio1be + g6 — anfo1hi] - 72t -k — Pefe-1bs], k=2,...N-1; (6.4)
v =dn — pNfN-1hN

and the elements Ay, tg,u; are given via backward algorithm

AN =7y IN=—ANPN, un =—hNAN, 2ZN = —hNiNn; (6.5)
Ae =75+ vzit15E, (6.6)

l = VrZp+10r — ARPr, Uk = Dp2pt18k — R, (6.7)

2p = brzpr10r — uppr — hpdepr — hrty, k=N -—1,...2; (6.8)

-1
Al =M + v12281.

Here fi, z are auxiliary matrices of sizes ny X ny and na X n; respectively and v; is an

auxiliary scalar variable.

Proof. For k=1,...,N —11let Ay be the principal leading submatrix of size k x k of the
matrix R. Let us consider corresponding partitions of the matrix R

A A
R= LN
<A5¢ B+ )

From Lemma 3.1 we obtain A} = Piy1Qk, where P;, Q) are yielded recursively by the
relations (3.1), (3.2). From Lemma 3.3 we have A} = GyHpy1, where Gy, Hy are given
by (3.6}, (3.7). Thus we have representations

Ag G'ka+1)
R = . .
(Pk+1Qk By (6:9)

The strong regularity of the matrix R implies that every A4 is invertible. Moreover from

the well known inversion formula (see for instance [H, p. 466-467]) we obtain

P (AZI + (43" G)(Hi1 B Pen)(Qu 477) —(A; Gi)(Hina Bi)

~(Bi1Por1) (@ 4y ) By, ) , (6.10)
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where Ek+1 = Bk+1 - Pk+1(QkA;1Gk)Hk+1.

Let us introduce the notations

Vi = A;IGk, Sk = QkA;c—l, fr = QkA;C_IGk;
U = —Hk.ék_l, T, = —-B;IP},, Zp = HkBI:IPk.

Then (6.10) turns into

ATV + Vezea S, ViU,
-1 _ {4 +15%  VeUksa
N e ) o

Let us consider the matrices Si, Vi, fi of sizes ny X k, k X na, n1 X ny respectively.
Let s, v be the last column and the last row of the matrices Sy, Vi correspondingly.
For k =1 we have §; = s1, V; = v; and moreover 4; = dy, Q1 = ¢1, G1 = g1 from which
(6.1) directly follows. For k > 2 we have the following. Changing k by k — 1 in (6.9) we

obtain
= 41 Gl
PrQr-1 By, '
Hence and from (6.9) it follows that

(A GriHi(1)
A = (Pk(ll)ch—l gk(l,kl) >’

where Py (1) is the first row of the matrix Py, Hg(1) is the first column of the matrix Hy,
By(1,1) is the upper left corner entry of the matrix By. It is obvious that By(1,1) = dj.
Moreover from (3.2) it follows Px(1) = pi and (3.7) implies Hx(1) = ht. Thus we obtain

a representation similar to (6.9)

Ay ___( Ag_s Gk—lhk>
PrQ@r—1 dy, )

Applying (6.11) to A; we obtain

~1 -1 _ ~1
A;l _ (Ak—l + Vk—_ll(h?k Pk)Sk—l Vk—]:—h;k’yk > , (6.12)
Y5 PEOk—1 Yk

where Ye = dk - pkfk_lhk.
Taking into consideration (3.1) and the equality Q4—1Vs—1 = fr—1 we conclude that

Sk =QrA; = (arQr—1 ax) A7 =
= (arSk-1 + akfe-1(hrvy 'Pr)Sk-1 = ahVy 'PRSk—1  —akfr-rhevyt Fa@rvg ) =
= ({ar — [gr — @k fr—1hr)75 ' Pr}Sk-1 [ak — axfr—1hilvy ')
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Similarly from (3.6) and the equality Sy_1Gr—1 = fr—1 we obtain

Vi = A7'Gy = 47! (G’“g-:b") =

_ (A,:il Gr—1br + Vi1 hevy [P fr—1br — gk]) _
B vi gk — Pefr—1b%] B

_ (Vk—l{bk — by gk — Pkfk—lbk]}>
B vi gk — prfr-1bi] '

Finally for the matrix f; we have
Vi—1{bx — Ry lge — Pkfk——lbk]}> _
Ve *lgr — Prfr—1bi]
= apfr-1br — ok fr-1ha vy (9% — Prfr—1be] + ey Mgk — prfr-1bi] =
= ap fr—1br + [gr — ar fr—1helvy  lgr — P Fr—1bk).

fr=QrA;'Ge = @iV = (axQr—1  qx) <

Thus the elements sg, vk, fi satisfy relations (6.1)-(6.4). Moreover for the matrices Sz, Vi

we have recursions

51=81, Sk=(lksk_.1 Sk), k=2,...,N‘~1; (613)
V16

Vi =y, n:( o ) k=2,...,N—1, (6.14)
where Iy, 0 are given in (6.2), (6.3).

Let us consider the matrices Bk_l, Tk, Uk. Let Ay be the left upper corner entry of the
matrix B;l. Notice that Ay is the k-th entry of the main diagonal of the matrix ™. Let
tk, ug be the first row and the first column of the matrices T%, Uy, correspondingly.

The formula (6.11) for k = N — 1 yields B;,l =75 = An. Next from the definition of
Uk, Tk, zx for k = N we obtain (6.5).

By virtue of (6.11) we have
51 (A;l(k,k) + Uk Zk415k vk_uk+1> B ('7;1 + Vg Zht1 5k vk_uk+1)
k tpy18k Bk——il tht18k B]:_fl_l ’

Hence follows the relations (6.6) for the diagonal entries Ay and moreover using the
equality Ugy1Pg41 = —zp11 we obtain

- /\k "-’kUk+1) ( Pk ) (vkzk ar — A
T — _B IP - gy — +1Qk kDK .
b BTk (Tk+15k B}, Priag Tet1(ar — skpr)
Further using Hyy1Tkq1 = —2z5+1 We obtain
5 Ae vl
Up=—HyB;' = — (kg b H, Al UL
k kL ( k k41k+1 ) (Tk+15k Bkil
= (brzer1sk — hade  (br — hrvi)Usy1 ).
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For the matrices z; we have
143

2 = HyB; Py = —Hy T = — (hi  bpHyy: ) (Tk+1lk

> = bpzppily — hity =

= brzk+1(ar — skpr) ~ hrtr = bpzrt1ar — brzrr15k — R Ailpr—

— hiAkpr — hite = bpziy1ag ~ ukpr — hedkpr — hits.

Thus the elements i, uk, i, Ax satisfy relations (6.5)-(6.8). Moreover for the matrices
Ty, U we have recursions

12
I'n =tn, Tp= (Tk-{-llk
Uv=un, Ur=(ur §Upy1), k=N-1...,2. (6.16)
From the relations (6.13), (6.15) by virtue of Lemma 3.2 it follows that the elements
t; (1=2,...,N), s; (§=1,...,N—=1), l; (k=2,...,N — 1) are lower generators of the
inverse matrix R™}. Similarly from the relations (6.14), (6.16) by virtue of Lemma 3.4 it
follows that the elements v; (: = 2,...,N), v; (j =1,...,N—1), & (k= 2,...,N — 1)
are upper generators of the inverse matrix R~!. The diagonal entries of R™* are the
elements Ax which are given in (6.5), (6.6).Thus the elements ¢; (1 = 2,...,N), s; (j =
Lo N—1), e (k=2...,N=1); v (i =1,....,N—1), uj G = 2,...,N), 6 (k =
., N—1); At (k =1,...,N) which are given by {6.1)-(6.8) are generators of the inverse

matrix R™1.

), E=N-1,...,2 (6.15)

Note that in the case of diagonal plus semiseparable matrix the formulas for elements
sp v in Theorem 6.1 coincide with expressions for a part of generators of the factors in
LDU factorization of the matrix R in [GKK1]. Hence one can conclude that in this case
some generators of the factors in LDU factorization and of the inverse matrix R~! are the
same. In the proof of Theorem 6.1 we clarify the meaning of the variable f; which is used
also in [GKK1]. The mentioned problems are related to results by Kailath and Sayed from
[KS]. We intend to discuss them in detail in our next paper.

The computation of generators of the matrix R~! may be performed as follows.

Algorithm 6.2.
1.1.Set 41 = dy and compute
n=n'H s=av, v=vg, hH=sua.

1.2Fork=2,...,N — 1 compute recursively

Py = Prfi-1, By = feorhe, e =dr—Bihe, M= 57,
sk = qx — aghl, sk = 8},
v, = gk — Pibrs VR = ViV,
Iy = ar — sgpr, O = by — hyvy,

fr = apfr—1bk + sivk.
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1.3.Compute
= dN — pNfN-1thn, AN =N

Thus the elements vy, Sk, Ik, 8%, Y& are computed.
2.1.Compute

AN =9N, tn=—-AnpNn, un=—hNANn, 2N = -—hNinN.

22.Fork=N ~1,...,2 compute recursively

! 1"
Uy = VpZh41, Sk = Zk+18k, Ak = Ti T Vi Sk,
1 1"
Py = )\kpk, hk = hkAka
" 1 " Hi
tr =viar — Pr, Uk = bpSy — Ry,

zk = bp2gt1ak — ukPE — hipy — htr.

2.3.Compute
Al = ’)’1 + V12387,

Thus the elements A, ty, ur are computed.

An easy calculation shows that Algorithm 6.2 requires (N —2)(2n?ns +2n;n3 +10n1n, +
2n? + 2n2 + 3n; + 3ng + 1) + 4nyny + 3ny + 3ng + 2 flops.

Consequently using Algorithm 6.2 for generators of quasiseparable matrix ™! and then
applying Algorithm 4.4 to the product z = R~y we obtain an algorithm for solution of
linear equation Rz = y of linear complexity.

7. The Case of Diagonal Plus Semiseparable Matrix

By the definition a matrix R is said to be diagonal plus semiseparable of order (ni,n;)

if its entries are specified as follows:

pig;, 1<j<i<N,
Rij=4di;, 1<i=j<N, (7.1)
gihj, 1<i<j<N.

Here p; (1 = 2,...,N) and g; ( = 1,...,N — 1) are correspondingly rows and columns of
size 3, g; £ = 1,...,N = 1) and k; ( = 2,...,N) are rows and columns of size ny. In
other words the matrix R is composed of the lower triangular part of a matrix of rank n;
at most and from the upper triangular part of another matrix of rank n, at most.

Let us remark that in general the inverse to diagonal plus semiseparable matrix is
not diagonal plus semiseparable of the same order. Indeed the inverse to a band of order
(n1,ng) matrix A with nonzero entries on external diagonals is diagonal plus semiseparable

of order (n1,nz) matrix (see for instance [A]). But it is easy to see that for rather large
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sizes the matrix A cannot be diagonal plus semiseparable of order (n1,n2). However from
the theorem from [GK] it follows that if for a matrix R with entries of the form (7.1) the
numbers Iy = dy — Prgk, 6 = di — grhi, £ =2,...,N — 1 are nonzeros then the inverse
matrix B! is diagonal plus semiseparable of the same order as the matrix R.

Every diagonal plus semiseparable matrix is quasiseparable with generators p; (I =
2,...,.N), ¢ G=1....,N=1), a5 = I, (bk=2,...,.N—-1); g ¢ =1,...,N —
1), hj (j=2,...,N), o = I, (£ =2,...,N~1); dp (k = 1,...,N). Hence all the
algorithms obtained above are applicable here.

Let R be a diagonal plus semiseparable strongly regular matrix. Then taking ax =
In,, by = I, in Algorithm 6.2 we obtain the following method.

Algorithm 7.1.
Let R be a strongly regular matrix of the form (7.1). Then the generators t; (i =

2,..,N), s; (=1,.... N-1), L (k=2,.... N=1); v; t=1,...,N—=1), u; ( =
2,...,N), 6 (k=2,...,N—=1); A (k=1,...,N) of the quasiseparable matrix R~! are
given as follows.

1.1.Set v1 = d; and compute

Y= si=qy, v =791, fi = s101.

1.2 Fork=2,...,N — 1 compute recursively

Pr =prfi-1, By = fao1h, Y =dr —PRhE, Th =i
Sk =qr — hiy 8k = 837k,
Vi =Gk~ Phy Uk = Vilks
Iy =1, — kP, 0% = I, — hivg,

o = fr-1 + shvk.

1.3.Compute
v =dN — pNfN-1AN, YN =N
2.1.Compute
AN =7N> TN =—ANDPN, uN=—hnNAN, 2znv=—hntn.

22 Fork=N -1,...,2 compute recursively

F2 " i o
V) = UpZg+bl, Sk = ZkL15k, AR = Y + Vg Sk,
7t "
Pr = )\kpky hk = hk)\k,
n "

—_ 1t —
e =V —Pg, Uk =S — Ay,

17
2y = 2Zpy1 — uEPk — hipy — hity.
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2.3.Compute
A = 7{ + 12251,

The complexity of this algorithm is (N —2)(10n:1n2+3n;+3n2+1)+-4ninz+3n1 +3ny+2
flops.

8. The Case of Band Matrix

By the definition a matrix R = {"‘ij}f',‘?’:l is said to be band of order (ny,m2) f ri; =0
fori~j>mn; and j ~4 > na.
Every band of order (ni,n2) matrix is quasiseparable of order (n,n;) at most. Its

generators may be defined as follows. Let J,, be the square matrix of the size n of the form

010 ... 0
0 0 1

O~ O

0 0 0

ande, =(1 0 ... 0]be the n-dimensional row. Let us set

i+l
Pi=¢€n,1=2,...,N, ¢;= yj=1,...,N —1,
Ti+ng,j
ar=Jdn,k=2,...N-1;
gi=[Tig1 <o Tigimgl,i=1,...,N-1, hj=¢l j=2,...,N,
bh=JL, k=2,...N-1;

di = kg, k=1,...N.

Here the entries r;; for 1 > N or j > N are assumed to be zeros.

It is easy to check that such defined p; (1 = 2,...,N), ¢; ( = 1,...,N = 1), a), (k =
2, N-1)g(@=1...,N~1}, h; (j =2,...,N), p (k=2,...,N — 1); dp (B =
1,...,N) are generators of the matrix R. Indeed for i > j we have

X . . . yi—j-1
e R S I /A

Hence for § < ¢ — j < n; we obtain
pis
Piaq; = pi [ f] =T

For ¢ — 7 > ny we conclude that piaquj =pi-0-9; = 0. For j > 7 one can proceed similarly.
Let R be a band strongly regular matrix. In this case the following algorithm is obtained
from Algorithm 6.2.
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Algorithm 8.1.

Let R = {rij}f-\’rj=1 be a strongly regular band of order (ny,n;) matrix. Then generators

L(i=2,...,N), s, (1 =1,...,

N——l), lk (k=2,...,N—1); Vi (i:l,.,.,N—l), Uuj (j=

2. N), 6 (E=2,...,N~1); Ay (k=1,...,N) of the quasiseparable matrix R are

given as follows.

21
1.1, Set vy =11, @1 = , g1 =[712 P1,no+1 ) and compute
Tni+1,1
Yi=1" si=@v. vi=791, fi=sig1

1.2. Fork=2,...,N — 1 perform the following operations:
1.2.1. Set

Th+1,k
gk = y Gk = [Tk,k—H Pkk+tna }s
Tk+nq,k
fe-1(2,1)
by = 5 y P = [ fr-1(1,2) fr-1(1,m2) 0]
fr-1(n1,1)
0
and compute
s =qu—hi, vk =gk — P
Yo = ke — fe-1(1,1),
Ve =T8S Sk = SiYh VE = Vivk-
1.2.2. Set
fr-1(2,2) fr-1(2,n2) O
]Ek — : : :
fe-1(n1,2) fr—-1(n1,n2) 0
0 . 0 0
and compute
fe = fu + s}vk.
1.2.3. Set
—sk(l) 1 ... 0 —vk(l) -—’Uk(’rbz - ].)
. : : 1 0 0
L, = . . |, 6= . . . .
~sp{n1—1) 0 1 : :
—si{n1) 0 0 0 1 0

(8.1)
(8.2)
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1.3. Compute
w =rvn— fna(L1), v =8
2.1. Set Ay = '75\7’ tN = —ANEn,, UN = _)‘Nesza ZN = ANEZZS,H.
2.2. Fork= N —1,...,2 perform the following operations:
2.2.1. Compute

i n ! i
vy = VpZkt1, Sp = Zk+15k; Ak = Ti + Vg Sk

2.2.2. Set
_Ak
; " sk(1)
tr = [-—)\k ’Uk(l) e vk(nl — 1)], Up = . (85)
si{ng — 1)
2.2.3. Set
Ak —tx(2) e —itx(ny)
—ug(2 z 1,1 Zp+1(l,mg — 1
2 = k( ) k+1.( ) ° +1( ™ ) ., (86)
—uk(nz) Zk+1(7’l.2 - 1,1) oo 2k+1(n2 d 1,77,1 - 1)
2.3. Compute

t
AL =1 +v12281.

To justify this algorithm notice that data of Algorithm 6.2 in the case under consider-

ation may be expressed as follows. For the variables p}, k) we have

fk—1(171)
A= [fia(L1) oo fimr(Lime)], By = :

Fre-1(nq,1)

Next one can introduce the variables gy = plbs, hy = aghy, fk = arfr—1br and obtain
relations (8.1) and (8.3). From the relations dj = rxx, pihr = pi(1) = fr—1(1,1) the
relation (8.2) follows. The relations (8.4) are obtained directly from py = en,, b =
eZz, ap = Jny, by = Jn,. Next for p}, h{ we obtain pJ = Apen,, kY = )\kezz. Set

B = viax, 3x = bysy, Zx = apzp11b;. We have

0
s (1)
fa=1[0 /(1) ... v'(ng—1)], 5= : :
sp(n2 — 1)
0 0 0
3 0 zk+1(l,1) zk+1(1,n1 - 1)
k= . f R .

0 zk+1(nz—1,1) zk+1(n2—1,n1 ~—1)
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For ty = o — p{, up = 5 — h{ the relations (8.5) are obtained. Finally from

Zk = Zx — UrPk — RrARDr — Rile = Zp — upen, ~ Akemegz — efztk
the relation (8.6) follows,
The complexity of Algorithm 8.1is (N —2)(3nins +2n; +ny+1)+2n1ns +2n9 + 1y +2
flops.

9. Numerical Experiments

As an illustration we present here the results of computer experiments with designed
algorithms. We investigate their behavior in floating point arithmetic and compare them
with other available algorithms. We solved linear systems Rz = y for random values of
input data p, ¢, g, h, d, y, a, b. The following algorithms were used:

(1) GECP Gaussian eliminations with complete pivoting.
2) GEPP Gaussian eliminations with partial pivoting.
3) GE1 Algorithm 6.2, 4.4.
)  GKK Gobhberg-Kailath-Koltracht algorithm from [GKK1]
)
)

Iy

5
6

GK algorithm derived in [EG2] using Gohberg-Kaashoek formula
GE algorithm derived by the authors in [EG2] for diagonal plus
semiseparable matrix of general form
(7 GES Algorithm 7.1, 4.4
All the algorithms {1)-(7) were implemented in the system MATLAB, version 4.2 with
unit round-off error 2.2204 x 1071€, The accuracy of the solutions obtained was estimated

(
(
(
(
(

by the relations

_ llze—=zgmorll . _ IRz —y|
legrorll * 7F lyll

where 2 is the solution obtained by the corresponding algorithm, zggcp is the solution
obtained by the GECP method which we assume to be exact. The values of the input data
we obtained by using the random-function. In each case the condition number x;(R) of
the original matrix was also computed.

In all experiments performed the input data were taken randomly. The values of ele-
ments of p, ¢, g, h, y, were chosen in the range of 0 to 10, the values of a, b were in the
range of 0 to 1 and the values of the diagonal d were taken from the range of 0 to 100.

The data on time required by the above algorithms are also presented here. The authors
have to make a proviso that the test programs were not completely optimized for time
performance. At the same time these data can provide an approximation for the real
complexities of the compared algorithms.

1. The first series of experiments was performed in the general situation. We compare
here GEPP and GE1 algorithms. The results of computations are presented in Table 1.
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Table 1. n; =2, ny = 2

N

Rz(R)

GEPP

£ €y

GE1

> Ey

20
50
100
150
200

4e+3
2e+3
8e+4
Se+5
le+6

le-14 2e-14
2e-14 6e-15
le-14 3e-14
le-15 1le-13
le-14 4e-13

4e-15 3e-14
le-14 3e-14
le-14 2e-13
le-13 3e-13
le-12 8e-12

The data on time required by these algorithms are presented in the following table.

Table 2. Time (seconds)

N GEPP GE1
20 1.32 0.46
50 11.16 0.92
100 97.10 1.92
150 270.92 2.86
200 1812.9 8.93

Thus one can conclude that for approximately the same accuracy the time required for

the algorithm developed is essentially less than for the standard procedure.

2. In the second series we investigated the behavior of algorithms developed for the case

of diagonal plus semiseparable matrix. The results are presented in Table 3.

Table

3.

N

HQ(R)

GEPP
€ Ey

GKK
£ €y

GK
€ €y

GE

€ gy

GES

€ €y

20
50
100
130
200

le+3
4e+3
6e+4
9e+-4
Te+4

8e-15 9e-15
3e-14 8e-15
4e-14 be-14
le-13 le-13
S5e-14 Te-14

Te-15 le-14
le-14 6e-14
2e-14 6e-14
5e-14 2e-13
3e-14 2e-13

le-14 6e-14
be-15 4e-14
Te-10 7e-10
be-14 4e-13
2e-14 3e-13

5e-15 Qe-14
6e-15 Qe-14
3e-14 2e-12
6e-14 le-11
3e-14 6e-13

le-14 6e-14
Se-14 3e-13
3e-13 9e-12
le-13 1le-11
le-14 3e-13

The corresponding data of time required are the following.

Table 4. Time (seconds)

N GECP GKK GK GE GES
20 0.88 0.42 0.50 1.57 0.34
50 28.81 0.32 0.56 5.20 0.78
100 190.06 0.86 2.42 18.00 9.16
150 867.45 1.02 2.79 14.94 3.09
200 1471 1.35 3.31 22.18 4.98
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