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Abstract. For a barycentric Lagrange interpolant p(z), the roots of p(z) are exactly the eigen-
values of a generalized companion matrix pair (A, B). For real interpolation nodes, the matrix pair
(A, B) can be reduced to a pair (H,B), where H has tridiagonal plus rank-one structure. In this
paper we propose two fast algorithms for reducing the pair (A, B) to Hessenberg-triangular form.
The matrix pair (A, B) has two spurious infinite eigenvalues, and if the leading coefficients of the
interpolant are zero, there will also be other infinite eigenvalues. We propose tools for detecting
when the leading coefficients of p(z) are zero, and describe a procedure to deflate all of the infinite
eigenvalues from the reduced matrix pair (H, B), while still maintaining the tridiagonal plus rank-
one structure of the resulting standard eigenvalue problem. Since fast QR algorithms exist for such
structured matrices, the complexity of computing the roots of barycentric Lagrange interpolants
could be significantly reduced.
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1. Introduction. For a polynomial p(z) expressed in the monomial basis, it
is well known that one can find the roots of p(z) by computing the eigenvalues of a
certain companion matrix constructed from its coefficients. For polynomials expressed
in other bases (such as the Chebyshev basis, the Lagrange basis, or other orthogonal
polynomial bases), generalizations of the companion matrix exist, constructed from
the appropriate coefficients; see, for example, [5, 6, 11, 20].

In this paper we consider polynomial interpolants in the Lagrange basis, expressed
in barycentric form. Berrut and Trefethen [3] present a comprehensive review of such
polynomial interpolants.

Given a set of n+ 1 distinct interpolation nodes {xy, ..., 2, }, with corresponding
values { fo, ..., fn}, the barycentric weights w; are defined by

—1
n

(1.1) w; = H(a:j—a:k) , 0<j<n.

k=0
k#j

The unique polynomial of degree less than or equal to n interpolating the data f; at
X is

(1.2) p(z) =[] = —mz(w—j)fj.
=0

Z—x,;
i=0 j J
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Equation (1.2) is known as the “first form of the barycentric interpolation formula”
[19] or the “modified Lagrange formula” [12]. The “second (true) form of the barycen-
tric formula” [19] is

= (- 1)
(1.3) p(z) =

NE

[

wj

(z — ;)

s L

<
Il
o

which is constructed by dividing (1.2) by the interpolant of the constant function 1
at the same nodes, and by canceling the factor []}_ (z — z;).

As was first shown in [5], the roots of the interpolating polynomial p(z), as defined
by (1.2), are exactly the eigenvalues of a generalized companion matrix pair

W we( ][]

where w = [ wo -+ w, }T,fTZ[fo - fu ], and

Zo
(1.5) D=

In

This can be shown by applying Schur’s determinant formula:

(1.6) det (=B — A) = det { 0 ZIf_TD }
(1.7) — det (zI — D) det (0+fT (zI—D)_lw)
(1.8) =H(z—azl)z(zw_]7jz)=p(z)

i=0 §=0 J

Thus, the eigenvalues of the matrix pair (A,B) are exactly the zeros of p(z). Fur-
thermore, computing the roots of polynomial interpolants via the eigenvalues of the
matrix pair (A, B) is numerically stable [13].

Remark 1. While the degree of the polynomial interpolant p(z) is less than or
equal to n, the dimensions of the matrices A and B are n+2 by n+2. This formulation
gives rise to two spurious infinite eigenvalues. We will show how to deflate these
infinite eigenvalues in section 7.

The second form of the barycentric interpolation formula has a remarkable fea-
ture [2]: the interpolating property is satisfied independently of the choice of weights
wy, as long as they are all nonzero. The choice of weights (1.1) forces the second form
of the barycentric interpolation formula to be a polynomial, but for other choices of
weights it is a rational function. For example, for interpolation nodes on the real
line, if we let the barycentric weights be equal to w; = (—1)" for all i, 0 < i < n
(as suggested by Berrut [2]), we obtain a rational interpolant guaranteed to have no
poles in R. The eigenvalues of (A, B) give the roots of the numerator of the rational
interpolant, and letting f; = 1 for all j, 0 < j < n, we may also compute the poles.
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2. Reduction of (A, B) to Hessenberg-triangular form. Through numer-
ical experimentation we found that for real interpolation nodes, the initial reduction
of (A,B) to Hessenberg-triangular form always seemed to reduce A to a symmetric
tridiagonal plus rank-one matrix, and left B unchanged. We will now show that this
is always the case.

THEOREM 2.1. For real interpolation nodes x;, arbitrary barycentric weights
wj, and arbitrary values f;, there exists a unitary matriv Q such that the matriz
pair (Q*AQ,Q*BQ) = (T + e;c?, B) is in Hessenberg-triangular form, and T is a
symmetric tridiagonal matrix.

Proof. Theorem 3.3.1 of [27, p. 138] states that there exists a unitary matrix Q
whose first column is proportional to e; such that H = Q*AQ is upper Hessenberg.
Partition Q as

1
2.1 = .
2.) o= o |
Explicitly, H is

0 —fTQ }
2.2 H=Q'AQ= N y .
(22) QAQ [ Qiw QIDQ,
The interpolation nodes zg,...,z, are all real. Thus, T; = QiDQ; is symmetric

and upper Hessenberg, and therefore symmetric tridiagonal. Furthermore, since H is
upper Hessenberg, then Qiw = fpe;. Let

_ 0 toe,{
(2.3) T = [ fer T ]
and
(2.4) c"=[0 —teel —£7Q; | .

Then we can rewrite (2.2) as
(2.5) Q*AQ =T +ec’.
Multiplying B on the left by Q*, and on the right by Q, yields

v [ 1 0 1 To B
(2:6) QBQ‘{ Q’{H IH Ql]‘[ qul]—B'
Thus, (Q*AQ,Q*BQ) = (T + e;c’, B) is in Hessenberg-triangular form. d

3. A fast reduction to Hessenberg form. We have shown that the matrix
pair (A, B) can be reduced to the matrix pair (T + e;c”,B) via unitary similarity
transformations. However, the cost of the standard reduction algorithm using Givens
rotations to reduce the matrix pair (A, B) to Hessenberg-triangular form is about 5n3
floating point operations [10]. This reduction also introduces nonzero entries, on the
order of machine precision (and polynomial in the size of the matrix), to the upper
triangular part of B, which could, in turn, lead to errors being propagated later on
in the QZ iterations.

We will now show how the reduction might be performed in O(n?) operations, by
making use of the structure of the input matrix A. We wish to construct a unitary
matrix Q of the form in (2.1) such that

(3.1) Q*'AQ=T+eic’.
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To determine such a matrix Q, partition Q; as

(3.2) Q= |9 a1 "+ dn

The first column of (3.1) requires that Qiw = tpe1, and hence we may immediately
identify that

w
(3.3) =
0

The matrix Q; is unitary, so we require that to = ||w||2. Let

do t1
tq d1

(3.4) T

then form DQ; = Q1 T;:
35) [Dqo Dai --- Dq, |

= [ doqo+tiqr tiqo+diqi +t2q2 -+ tnQuo1 + dnqn |,
the first column of which gives the equation
(3.6) Dqo = doqo + t14q1 -
Multiplying on the left by g and using the orthogonality of qp and q; identifies
(3.7) do = qyDqo -

The vector q; is then given by

1
(3.8) qi = o (D —doI)qo,

and has unit length, which requires that ¢t; = || (D — doI) qp||2. The ith column of
(35)for1<i<n-—1is

(3.9) Dq; = t;qi—1 + diq; + tit19i+1 -
Multiplying on the left by q; and using the orthogonality of the q;s identifies
(3.10) d; = a}Da; .

The vector q;41 is given by

(3.11) Qit1 = (D —diI)q; —tiqi—1) ,

tiv1

and has unit length, which requires that ¢;11 = || (D — d;I) q; — t;q;—1|l2- The last
column of (3.5) is

(312) an = tnqn + dnqn .
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Multiplying on the left by q; finally identifies
(313) dy, = q;;an .

Algorithm 1 shows the reduction explicitly. The total cost of the algorithm is ap-
proximately 9n? floating point operations, which is a considerable reduction in cost
compared with the standard Hessenberg-triangular reduction algorithm, or even com-
pared to reducing A to Hessenberg form via elementary reflectors (the cost of which
is still O(n?)).

Algorithm 1. Reduction of A to symmetric tridiagonal plus rank-one form.
qo < W
to = lqoll2
do < do/to
do < qpDqo
a1 < (D —doI)qo
t1 4 [laull2
qi < a1/t
fori=1ton—1do
d; < q;Dq;
qit1 <+ (D —diI)q; —tiqi—1
tiv1 < [|Qit1l2
Qit1 < Qit1/tit1
end for
dn < q;,Dap
cT [ 0 —fTQ1 — toe,{' ]
return t, d, c

Remark 2. Algorithm 1 is equivalent to the symmetric Lanczos process applied to
the matrix D with starting vector w. The reduction process generates an orthonormal
basis qo,...,q, for the Krylov subspace K,1(D,w) = span{w,Dw,...,D"w}.
One of the potential difficulties which can arise when applying the symmetric Lanczos
process [27, p. 372], and hence also when applying the reduction algorithm which we
have described, is that in floating point arithmetic the orthogonality of the vectors q;
is gradually lost. The remedy for this is to reorthogonalize the vector q;41 against

do,---,9; at each step. This reorthogonalization increases the operation count to
O(n?), which defeats the purpose of using this reduction algorithm in the first place.
We will now prove some facts about the vectors qo, ..., q, that are produced by
Algorithm 1.
LEMMA 3.1. The set of vectors {w,Dw,...,D*w} are linearly independent for
all k, 0 < k <n, as long as all of the nodes x; are distinct and no w; is zero.
Proof. Form the matrix V = [ w Dw ... D"w ], which can be written as
(3.14)
wo wWoTo - Wolf ce.gn
wy  wixry - wxy Wo L o
V = = E
: : : PR n
Wy WnpTy o WX Wn Lo Tn
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The determinant of V is

(3.15) detV = lﬁlwZ H (rr —x5),

i=0  0<j<k<n

which is nonzero as long as no w; is equal to zero, and the x;s are distinct. Thus,
the set of vectors {w,Dw,..., D"w} are linearly independent, and consequently
the subsets {w,Dw,...,D*w} for all k, 0 < k < n, are all also linearly indepen-
dent. 0
THEOREM 3.2. Suppose w, Dw, ..., D"w are linearly independent, and the
vectors qo, - - ., Ay are generated by Algorithm 1. Then
1. the vectors qo, . ..,q; span the Krylov subspace Kjy1(D,w), that is,

(316) Span{qﬂv"'vqj} :Kj+1(D7W)a 0 SJ <n;

2. the subdiagonal elements of T are all strictly positive, and hence T is properly
upper Hessenberg or unreduced.

Proof. Lemma 3.1 showed that w,Dw, ..., D"w are linearly independent. The
vectors qo, . .., q, are generated by the symmetric Lanczos process, which is a spe-
cial case of the Arnoldi process. The result follows from Theorem 6.3.9 of [26,
p. 436]. O

4. Alternative reduction via Givens rotations. Since the reduction process
described in section 3 has the potential for losing orthogonality of the transformation
matrix Qq [27, p. 373], we investigate other reduction algorithms that take advantage
of the structure of A.

The standard Hessenberg reduction routines in LAPACK and MATLAB (_GEHRD
and hess, respectively) use a sequence of elementary reflectors to reduce the matrix.
The first elementary reflector in this sequence annihilates the lower n entries of the
first column of A. This elementary reflector will also fill in most of the zero elements
in the trailing submatrix, which must then be annihilated to reduce the matrix to
Hessenberg form.

When we do annihilate elements in the first column of A, the diagonal structure
of the trailing submatrix will be disturbed. If we are to have any hope of reducing
the operation count, then we will need to ensure that the trailing submatrix retains
its symmetric tridiagonal structure.

To achieve this goal, it is clear that we should apply Givens rotations, annihilating
entries of the first column of A one by one, and then returning the trailing submatrix
to tridiagonal form.

Let Gj be a Givens rotation matrix and let A; = G} ---GfAG; --- G; be the
matrix resulting from applying a sequence of ¢ Givens rotations to the matrix A. The
first Givens rotation in the reduction G; should act on the (n + 1,n + 2) plane to
annihilate the (n 4 2,1) element of A, yielding

[0 fo - fa2 x X
wo Zo
(4.1) A, = GIAG, =
Wn—2 Tn—2
X X X
. 0 XX
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The x symbol specifies where elements of the matrix have been modified under this
transformation. After this first Givens rotation, the matrix is still in the form we
desire (the trailing 2 by 2 matrix is symmetric tridiagonal), so we push on. The next
Givens rotation G will act on the (n,n+ 1) plane to annihilate the (n+1,1) element
of Ay, resulting in the matrix

(4.2)

A; = G3GIAG G, =

fo

Lo

fn73

Tn—3

X
X
X

X
X
X

X
X
X

Note again that the trailing 3 by 3 submatrix will be symmetric. Since we are aiming
to reduce the matrix to a symmetric tridiagonal plus rank-one matrix, we should now
apply a Givens rotation acting on the (n + 1,n + 2) plane to eliminate the (n +2,n)
element of Ay. This transformation does not disturb any of the zeros that we have
just created in the first column. The resulting matrix is

(4.3)

0
wo

As =

fo

Lo

fn—B

Tn—3

X X
X X
X X

X

X
X

We can now continue to reduce the first column of As by applying a Givens rotation
G4, acting on the (n — 1,n) plane. This annihilates the (n,1) element of As. The
resulting matrix is now

Applying another Givens rotation acting on the

A, =

(n+1,n— 1) element yields

0
wo

Wpn—4

A=

o o o X

fo

Lo

fo

Lo

fn74

Tn—4

fn—4

Tn—4

X X
X X
X X
X X

X X
X X
X X
X
X

—_

X
X
X
X

X

X
X

X

) plane to annihilate the
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We must now apply another Givens rotation acting on the (n + 1,n + 2) plane in
order to annihilate the (n + 2,n) element of As, reducing the trailing submatrix to
symmetric tridiagonal form:

0 fo -+ faa X X X X
wo Zo
(4 6) Aﬁ = Wpn—4 Tn—4
X X X
0 X X X
0 X X X
. 0 XX

It should now be evident what will happen in the rest of the reduction: when we
annihilate an element of the first column of A;, a bulge will be introduced into the
top of the trailing submatrix. This bulge can then be chased out of the matrix with-
out modifying any elements of the first column. We alternate between annihilating
elements of the first column and chasing bulges out of the matrix until the matrix has
been reduced to symmetric tridiagonal plus rank-one:

0 x x X -+ X X
X X X
X X X
(47) Ay = X X
2
X
X X X
L >< ><_

The cost of this reduction requires n(n + 1)/2 Givens rotations to reduce the
matrix to tridiagonal form, which ordinarily would lead to an O(n?) algorithm for the
reduction. However, because of the structure of the trailing submatrix, we need only
modify nine elements of the matrix when annihilating an element of the first column,
and eight elements when chasing the bulge out of the matrix. Hence, the total cost of
the reduction is still O(n?), giving a considerable reduction in cost compared to the
standard reduction via elementary Householder transformations.

Remark 3. When performing the reduction algorithm described in this section,
we need never actually form the full matrix. The whole algorithm can be implemented
by modifying only four vectors: w, f, the diagonal elements d, and the subdiagonal
elements t.

LeEMMA 4.1. The reduction algorithm described in this section results in essen-
tially the same matriz as Algorithm 1 proposed in section 3. That is, there exists a
unitary diagonal matriz D such that Qr = QgD and Hy, = D"'HgD, where Q.
and Hy, are the unitary matriz and Hessenberg matriz resulting from Algorithm 1,
and Qg and Hg are the unitary matriz and Hessenberg resulting from the Givens
reduction described in this section. R

Proof. Theorem 5.7.24 of [26, p. 382] shows that such a D exists, as the first
columns of Qr, and Qg are both equal to e;. This same theorem also proves that Hg
is also properly upper Hessenberg. O
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5. Complex nodes. The reduction processes proposed in sections 3 and 4 both
require that the interpolation nodes xj, are real. In many applications, this restriction
should not present a significant burden. However, since we would like these methods
to be as general as possible, we will now discuss the changes that need to be made to
the algorithms to extend them to complex interpolation nodes.

For complex interpolation nodes, we cannot find a unitary matrix Q; and a
symmetric tridiagonal matrix T such that DQ; = Q1T; (we would require D = D*).
Thus, we will have to relax the conditions on the transformation matrix Q; if we are
to find a structured Hessenberg matrix in this case. If we specify that Q be complex
orthogonal instead of unitary, the matrix A can still be reduced to a tridiagonal
plus rank-one matrix QTAQ = T + e;c”; however, now T is a complex symmetric
tridiagonal matrix. This use of nonunitary transformations is the price that we will
have to pay in order to reduce A to a structured form.

In light of this, the reduction algorithm presented in section 3 was equivalent to
the symmetric Lanczos process. Thus, for complex interpolation nodes the reduction
transforms to the complex symmetric Lanczos process; see, for example, [9].

To convert the reduction algorithm presented in section 4 to work for complex
interpolation nodes, we need to apply complex orthogonal Givens-like matrices [15]
in place of the unitary Givens rotations to retain the complex symmetric structure of
the trailing submatrix when annihilating elements of the matrix.

6. Zero leading coefficients. Throughout this paper, we have not specified
that the leading coefficients of the polynomial interpolant p(z) are nonzero. If the
exact degree of p(z) is n — m, then the matrix pair (A, B) will have m + 2 infinite
eigenvalues in total. In this section, we will give some tools to determine if the leading
coefficients are indeed zero (or if they are very small).

If the first m leading coefficients of p(z) are all zero, then we may reconstruct the
same unique polynomial interpolant by removing up to m of the interpolation nodes.
Furthermore, when we remove an interpolation node xj, the barycentric weights do
not have to be recomputed: we may simply update the existing barycentric formula
by multiplying each weight w, by (x¢ — x1), and dividing the formula by (z — xy). If
we remove a set of j interpolation nodes {zy|k € K;}, where K; = {k1,...,k;} is a
set of unique integers, then we may restate the barycentric interpolation formula as

(6.1) pe) =] == 3 | II (“_“)(zw—”ze)

i=0 (=0 \kekK;
iE K ¢K;

forall j,0<j<m-—1.

We will now state a theorem which gives a useful formula for the first nonzero
leading coefficient of the polynomial interpolant p(z).

THEOREM 6.1. If the leading coefficients [2"77] (p(z)) = 0 for all j, 0 < j <
m — 1, then [z"~™] (p(2)) = fTD™w. That is, if the first m leading coefficients of
p(2) are all zero, then the (m + 1)th leading coefficient is fTD™w.

Proof. We use induction on m. The barycentric formula (1.2) can be written as

(6.2) p(2) => | [T Gz =) | wefe,
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whose leading coefficient is

(6.3) [="1(p(2) = D Jwefe =£Tw.
£=0
The next leading coefficient is given by
(6.4) EE) = - S wefe >
=0 k=0
ke

(6.5) == wefe (-xé + Zﬂck)
=0 k=0
(6.6) =Y wefere— (D> wify | D wn
=0 k=0

§=0
(6.7) =f"Dw —fTw ) .
k=0

Thus, if the leading coefficient [2"](p(z)) = 0 = fTw, then [z""!|(p(z)) = T Dw,
which will serve as our basis of induction.

Now assume that the theorem is true for all m with 1 < m < M — 1. Thus, if
[z"7](p(2)) = 0 for all j, 0 < j < M —1, then [z"~M](p(z)) = ' DM w. Now suppose
that additionally [z"~](p(z)) = fTDMw = 0. The (M + 2)nd leading coefficient of
p(z) can be obtained from (6.1):

(6.8) [~ 0H] (p(2)) = Y g (@e)wefe
£=0
(6.9) = querl(D)w )

where ¢;(z) is the monic polynomial

(6.10) 02) = JI o).

]CGK]'
Expanding gps+1(D) in the monomial basis yields
(6.11) gu+1(D) =DM 4 by DM 4 4ol

where all of the coefficients b; are expressions in terms of xj, for k € Kps4q. Substi-
tuting this expansion into (6.9) and expanding the resulting expression, we obtain

(6.12) [ZHM“)} (p(2)) = FTDM w4+ by T DM w + - - + bofT'w .

From the induction hypothesis, all of the terms f’D’/w = 0 for all j, 0 < j < M, and
hence (6.12) reduces to

(6.13) [Z’L—<M+1>} (p(2)) = £TDM+1y .
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Thus, we have proved that if [z"77] (p(z)) = 0 for all j, 0 < j <m — 1, then the first
(and only the first) nonzero leading coefficient is [z"~™] (p(z)) = fITD™w. a

We will now show how Theorem 6.1 can be applied to the reduction algorithm
proposed in section 3, so that we may determine some more information about the
vector ¢; produced from the reduction algorithm.

COROLLARY 6.2. For the reduction process described in section 3, if [z”_j]
(p(2)) =0 for all j, 0 <j<m—1, then co = —||wl|| and ¢, =0 for all k, 1 <k <
m— 1.

Proof. If [z”*j] (p(z)) = 0 for all j, 0 < j < m — 1, then Theorem 6.1 implies
that

(6.14) fTDIw =0
for all j, 0 < j < m — 1. The first m columns of ¢! are
(6.15) [co  emar | =—F"[q - am-1 |—|lwle].

Theorem 3.2 established that the vectors qg,...,qmnm—1 span the Krylov subspace
Km(D,w) = span{w,Dw,..., D™ tw}, and the conditions (6.14) imply that the
vector f is contained in the orthogonal complement K,,(D,w)*. Thus, (6.15) re-
duces to

(6.16) [co e - emor | =—|wlel,

and hence ¢g = —||w|| and ¢, =0 for all k, 1 <k <m — 1. O

7. Deflation of infinite eigenvalues. The matrices in the pair (A,B) have
dimension (n + 2) by (n + 2), whereas the degree of the polynomial p(z) is only
n; this formulation necessarily gives rise to two spurious infinite eigenvalues. If the
characteristic polynomial of a matrix pair is not identically zero, infinite eigenvalues
can be deflated from a matrix pair by transforming the pair to the form

(7.1) (g,ﬁ):qR“’ gf}’[t]oo 1>"<fD

where R and J, are both upper triangular. R is nonsingular, and J., has only
zero entries on the diagonal. Hy is upper Hessenberg, and Ty is upper triangular
with nonzero diagonal entries. The matrix pair (./AX, ]AB) is no longer properly upper
Hessenberg-triangular (unreduced), so we may split the eigenvalue problem into two
parts: the infinite eigenvalues are the eigenvalues of the pair (R, Joo ), while the finite
eigenvalues are the eigenvalues of the pair (Hy, Ty). For the matrix pair (A, B), the
dimensions of the matrices Ry, and J, will be m + 2, where m is the number of zero
leading coefficients of the interpolant p(z). Reduction of the matrix pair to the form
(1&, ]§) is usually carried out by first reducing (A, B) to Hessenberg-triangular form,
and then applying QZ iterations to force the subdiagonal elements to zero.

For the reduced matrix pair (H,B) obtained from either of the reduction algo-
rithms proposed in sections 3 and 4, the reduction to the form (K, ]§) can be achieved
by applying m + 2 Givens rotations to the left of the matrix pair (H,B). Further-
more, the matrix Ty in (7.1) is a diagonal matrix. Thus, we may easily convert the
generalized eigenvalue problem for the finite eigenvalues into a standard eigenvalue
problem, provided that T is well conditioned.
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Using either of the reduction algorithms described in sections 3 or 4, we can
reduce the matrix pair (A, B) to the pair

(7.2) (H,B) = (T + eic’,B),
where T is a symmetric tridiagonal matrix. We then partition H as

0 to+co Cg
(7.3) to do  tier |,
0 t1e1 T2

where T, is the trailing n by n submatrix of T and cZ is the vector of the last n
elements of ¢”'. To annihilate the (2,1) entry of H, we apply a permutation matrix
G1 which swaps the first two rows. Applying G} to the left of H and B yields the
equivalent pair

to do tier 0 1
(7.4) (GIH,G'B) = 0 to+co < |, 0
t1e1 TQ I

Now that GTH is no longer properly upper Hessenberg and GB is still upper trian-
gular, we may deflate one of the infinite eigenvalues since the (1, 1) element of GiB is
zero (indicating an infinite eigenvalue). Thus, we can delete the first row and column
of each of these matrices, and operate on the matrix pair

(7.5) (HlaBl):qt%;fO %}[0 ID

Remark 4. 1f the first m leading coefficients of p(z) are zero, Corollary 6.2 implies
that tg +co = 0 and ¢ = 0 for all k, 1 < k < m — 1. Thus, we can apply a series
of permutation matrices, swapping the first two rows and then deflating an infinite
eigenvalue from the matrix pair by deleting the first row and column, until we obtain
the matrix pair (H,,, B,,), where

Cm  Cm4+1 Cm42 - Cpn
thrl dm+1 tm+2
. 0
(76) Hm = tm+2 dm+2 T 5 Bm = l: I :| .
. . t
ty dn

Assuming that to + ¢o # 0 (or ¢, # 0 in light of Remark 4), we can annihilate
the (2,1) element of Hy, by applying a unitary Givens rotation Go that acts on the
first two rows of Hy, where

> Qf

(7.7) Gy=| —g
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and where h and g are suitably chosen to annihilate the (2,1) element of Hy. Applying
G35 to the left of H; yields

(7.8)
[ h(to+co) +Gty  her +gdy hea+Gta  hes - hey
0 —gc1 +hdy  —geg+hta —ges - —gey
tz dQ tg
GiH, = s d ,
g
L tn dn .

and applying G3 to the left of B, yields

>l

(7.9) GiB; =
I

Since G5H; is no longer properly upper Hessenberg and G5B, is upper triangular
with the (1, 1) element being zero, we may deflate the second spurious infinite eigen-
value by deleting the first row and column of these matrices. This yields the matrix
pair (Hz, B2), where

[ —gc1 +hdy  —gea +hty —ges -+ —gey
to do t3
(7.10) H, — ts ds
. .
L tn dn |
and
(7.11) BQZ{" 1} .

As long as h is nonzero (which it will be, since to + ¢o # 0), we can convert this
generalized eigenvalue problem into a standard eigenvalue problem by multiplying on
the left by B3 ! Furthermore, if we define 8 = —g/h, then the standard eigenvalue
problem is

(7.12) H, = T, + feict .

Remark 5. The question arises: what should we do if h is very small but nonzero?
This would be the case if the leading coefficient of the interpolating polynomial is very
close to zero. One possible answer would be to work directly with the generalized
eigenvalue problem (Ha,Bs) and regard the accuracy of the resulting (very large)
eigenvalue as being dubious. Another option would be to monitor the size of ¢y + ¢
or c;, and explicitly set these values to zero, resulting in the deflation of an infinite
eigenvalue.

Remark 6. Here we are concerned primarily with the initial reduction of the
matrix pair (A, B) to a standard eigenvalue problem with tridiagonal plus rank-one
form. Fast algorithms do exist to perform the QR algorithm on such structured
matrices, as shown in [4, 23, 24], and we believe that these methods should be very
competitive once the matrix pair is reduced.
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8. Connection to the Chebyshev colleague matrix. For polynomials ex-
pressed by their values at Chebyshev points of the second kind, one can solve the
rootfinding problem by first converting the polynomial to a Chebyshev series. This
can be done via the discrete cosine transform or the fast Fourier transform [1, 21].
The roots of the polynomial expressed as a finite Chebyshev series

(8.1) p(z) = Z arTy(z)
k=0

can be found by computing the eigenvalues of the colleague matrix, discovered inde-
pendently by Specht [20] and by Good [11]. The colleague matrix is a tridiagonal plus
rank-one matrix C = T + e;c”, where the tridiagonal part T arises from the recur-
rence relation defining the Chebyshev polynomials. The coefficients of the Chebyshev
expansion appear in the rank-one part of C. There are many different forms in which
the colleague matrix can be stated, and here we present one form with symmetric
tridiagonal part:

[N

SIS

1
2 2a,
0

el[anfl o \/ﬁao}'

(SIS

L V3 _

In sections 3, 4, and 7, we were able to construct two nonsingular matrices U and
V such that

(8.3) (UAV, UBV) = ([ Reo I; ] , { Joc . D ,

where the pair (Roo,Jo) is upper triangular, and contains the m + 2 infinite eigen-
values of the pair (A,B). The eigenvalues of the upper Hessenberg matrix Hy are
the finite eigenvalues of the pair (A, B), and hence are both the roots of p(z) and the

eigenvalues of C. Thus, there exists two nonsingular matrices U and V such that

PP R, x Jo X
(8.4) (UAV,UBV) - ([ & ] : [ . D .
For Chebyshev points of the second kind, the barycentric weights w;, are defined
by [18, 28]

on—l 1/2 iff = S
(85) wy = (_1)652 . 6= { / 1 0 or n,

n 1 otherwise.

Owing to their magnitude for large n, there is the risk of overflow in floating point
computations, so usually [3, 12, 28] the weights are multiplied by n/2"~! to give

(8.6) iy = (—1)%6 .

This rescaling is possible because, for the second form of the barycentric interpolation
formula (1.3), w, appears in both the numerator and denominator, so this factor
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cancels. For the companion matrix pair (A, B), rescaling the barycentric weights wy
does not change the eigenvalues. This is because the (1,1) element of matrix B is
zero, so we may rescale the first row or column of A independently.

We would ideally like to find a nonsingular diagonal matrix S such that when we
reduce the matrix pair (S7'AS,S™'BS) to the form (8.3), and deflate the infinite
eigenvalues, we have exactly Hy, = C.

We begin again with the matrix pair (A, B), where

0 —f7 0
o a<[SF] s ].
and the vector of scaled barycentric weights is w = [ Wy - Wy }

We then define the matrix S; = diag ([v/n/V2,v/n, v/, -+ ,v/n,/n/V2]), for

which ||S7'W||2 = 1. Define

(8.8) S - { ! 5. ]

and form
(8.9) A =S"'AS.

Note also that S_lBSA: B. Applying either of the reduction algorithms described
in sections 3 and 4 to A produces a symmetric tridiagonal plus rank-one matrix with
tridiagonal part

> s

S oo -
N[

(8.10) T=

[N

S W=

N
o o
L

1
L V2

After deflating the spurious infinite eigenvalues and reducing the generalized eigen-
value problem to a standard one, we obtain exactly the Chebyshev colleague matrix
H,=C.

9. Balancing. It is standard practice to balance a matrix before reducing it to
Hessenberg form and computing its eigenvalues. For the standard eigenvalue problem,
balancing is the default option in MATLAB’s eig routine, and also in LAPACK’s _GEEV
routine. The balancing strategy used in these routines, as outlined in [16, 17], aims to
improve the norm of the input matrix by applying diagonal similarity transformations,
where the diagonal elements are restricted to exact powers of the radix employed.

For a generalized eigenvalue problem, similar algorithms exist to balance the
matrix pair (A,B); full details of the algorithms can be found in [25] and in [14].
Both of these algorithms determine two diagonal matrices D, and D such that the
condition number of the eigenvalues of the equivalent matrix pair (D, ADg, D;,BDg)
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is improved. However, the algorithms described in sections 3 and 4 rely upon the fact
that Q*BQ = B. So we must have D;BDp = B, requiring that Dy = D;il except
in the first diagonal entry, which can be arbitrary. Hence, we may balance the matrix
pair (A, B) by applying standard balancing to the matrix A.

We are also in a unique situation in that the first row and column of A can
be scaled independently without modifying B, since the (1,1) element is zero. For
example, before finding a diagonal scaling transformation to balance the matrix A,
we could scale the first row and column to have unit norm; this will avoid difficulties
where the first row and column have very different magnitudes.

10. Numerical experiments. In this section, we will investigate the accuracy
and stability of the two reduction algorithms proposed in sections 3 and 4, as well as
that of the deflation procedure proposed in section 7. Furthermore, we will investigate
the application of Theorem 6.1 and Corollary 6.2 numerically.

We also compare the algorithms presented here to the algorithm described in [7].
That algorithm reduces a quasiseparable matrix to Hessenberg form in O(n?)
operations.

10.1. Chebyshev polynomials of the first kind. We will first give an ex-
ample for which the Hessenberg reduction of the matrix pair (A,B) is known. We
interpolate Chebyshev polynomials of the first kind 7,(z) at the roots of Tj,4+1(2).
At these nodes, the reduced matrix Q*AQ = T + e;c’ has tridiagonal part T with
entries d; =0, 0 <i <n, and

[wllz ifi=0,
(10.1) ti=<1/vV2 ifi=n,
1/2  otherwise.

Furthermore, if we interpolate the Chebyshev polynomial T),(z) at these nodes, we
will be able to symmetrize the matrix A by scaling the first column. The Hessenberg
reduction of A will then produce a symmetric tridiagonal matrix, and we will be able
to directly test the accuracy of the two reduction processes described in sections 3
and 4.
The interpolation nodes are taken to be Chebyshev nodes of the first kind, that
is, the roots of T},+1(2), which are given by
25+ 1)m

(102) szcosm, OS]STL

At these nodes, T),(z) takes on the values

2+ D .
(103) .fj = (-1)3 81112,”7_*_2 y 0 < ] < n,
and the barycentric weights are
2" 2+ D .
10.4 ;= —1)7 sin ——— <j<n.
(10-4) bt (n—l—l)( )’ sin 2n+2 Osjsn

Because w; = 2"/(n + 1) f;, we are able to symmetrize A by scaling the barycentric
weights so that w = —f. Thus, the matrix pair

(10.5) (AvB):({_Of _ST}’{O ID
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Maximum error in subdiagonal elements

Fia. 10.1. Distribution of maximum error in the subdiagonal entries of T.

has eigenvalues which are exactly the roots of T),(z), and will reduce to a symmetric
tridiagonal matrix. The characteristic polynomial of the scaled pair (A, B) is now

(n+1)
271

(10.6) det (zB—A) = — T.(z) .

We measured the accuracy of reducing the matrix pair to Hessenberg form by
computing the maximum error in the computed subdiagonal entries, as shown in Fig-
ure 10.1. We also measured the maximum forward error in the computed eigenvalues,
as shown in Figure 10.2. Four reduction algorithms are compared: the standard
Hessenberg-triangular reduction, the Lanczos type reduction of section 3, the Givens
type reduction of section 4, and the quasiseparable matrix algorithm proposed in [7].
The standard reduction algorithm is not able to make use of the symmetry of A. This
leads to rounding errors propagating into the upper triangular part of B. The error
in the computed subdiagonal elements of the Hessenberg matrix and the maximum
forward error are the worst out of the four algorithms.

The Lanczos type reduction is the most accurate, which was somewhat surprising
given that the transformation matrix could lose orthogonality. It seems that for
this particular set of nodes, the method is fairly well behaved. Orthogonality of the
transformation matrix is lost at a linear rate, that is, [|Q*Q — I||2 « n. For n = 100
we have ||Q*Q — I||2 ~ 10714, We do not expect this to be the case for arbitrary
sets of nodes. However, it is surprising that even for equispaced nodes, the loss in
orthogonality appears to be lost at the same rate.

The Givens type reduction performs approximately halfway between the stan-
dard reduction and the Lanczos type reduction. We also compared the Givens type
reduction with LAPACK’s DSYTRD, which uses elementary reflectors to decompose the
matrix and is also able to take advantage of the symmetry of the matrix. The er-
rors in the computed subdiagonal entries are comparable for both reduction methods.
However, DSYTRD uses O(n?®) operations to perform the reduction.
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Fic. 10.2. Mazimum forward error in the computed roots from each of the four reduction
processes.

The quasiseparable matrix algorithm of [7] produced subdiagonal elements of
around the same accuracy as the standard reduction. The computed eigenvalues were
more accurate than the standard reduction, but were about half an order of magnitude
larger, on average, than those of either the Givens type or Lanczos type reductions.
We should note, however, that the algorithm can be applied to a much more general
class of matrices than the one considered here.

10.2. Scaled Wilkinson polynomial. Here we investigate the accuracy of
computing the roots of a poorly conditioned polynomial, investigated by Wilkinson
n [29]. We modify Wilkinson’s polynomial to have roots equispaced in the interval
[0,1]: the polynomial we investigate is defined by

(10.7) p(z) = ﬁ <z - %) .

We sampled this polynomial at a range of interpolation nodes: equispaced nodes,
Chebyshev nodes, and Legendre nodes. Choosing 21 nodes of each distribution on
the interval [1/(2n),1—1/(2n)], we applied diagonal scaling to the matrix A, equaliz-
ing the row and column norms, and then scaled the first row and column to have unit
norm. We reduced the matrix pair using the Lanczos type, Givens type, and quasisep-
arable matrix reductions, and then deflated the spurious infinite eigenvalues to obtain
the matrices Hr,, H¢g, and Hg, respectively. Table 10.1 shows the maximum error
between the true roots of p(z) and the computed eigenvalues of (A,B), Hy,, Hg, and
Hg. We see that equispaced points are well suited for this particular problem, as they
interlace the roots and hence the Hessenberg reduction will give a tridiagonal matrix
which is symmetric except for the first two off-diagonal entries. For all three of the
node distributions, both the Givens type and the quasiseparable matrix reductions
are only a small factor more or less accurate than the original matrix pair.
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The accuracy of the Lanczos type reduction shows some degradation, and this
is due to a slight loss of numerical orthogonality of the vectors qo,...,q, produced
in the reduction process. This loss of orthogonality is due to the initial balancing
performed on the matrix. If balancing is not used, the transformation matrix does
not lose orthogonality. However, the computed eigenvalues are roughly one to two
orders of magnitude less accurate than those computed from the balanced matrix. By
computing [|Q} Qr —1I||2, as shown in Table 10.2, we see that the vectors produced by
the reduction algorithm do not give a numerically orthogonal transformation matrix
Q1. Thus, we would not recommend the use of such an algorithm for arbitrary node
distributions and weights.

TABLE 10.1
Mazimum error in computed eigenvalues for Wilkinson’s polynomial, sampled at different node
distributions.

Point distribution (A,B) H, Hg Hyp
Chebyshev 3.29 x 10714 237x 10712 243 x 107 * 6.25 x 10714
Equispaced 1.78 x 1071 565 x 10713 233 x 1071 1.33x10~1°
Legendre 1.67 x 10714 3.13x 10712 1.05x107'* 1.13x10~14
TABLE 10.2
Measure of loss of orthogonality of vectors qQo, . ..,Qn produced from the Lanczos type reduction

process of section 3.

Point distribution | [|Q} QL —I||2
Chebyshev 3.37 x 10712
Equispaced 1.96 x 10— 11

Legendre 2.75 x 10~12

Both the standard reduction algorithm reducing the pair (A, B) and the Givens
type reduction algorithm produce numerically orthogonal transformation matrices.
This explains the increased accuracy of both of these methods over the Lanczos type
reduction algorithm.

10.3. Polynomials with zero leading coefficients. We will now investigate
the numerical application of Theorem 6.1 to detect when the leading coefficients of
the interpolant are zero. First we give a very simple example: we will interpolate the
polynomial

(10.8) f(z) =2 +42+1

at seven Chebyshev points of the second kind. Because the first four leading coef-
ficients of the interpolant are zero, by Theorem 6.1 we may compute the first five
leading coefficients using fTDFw for 0 < k < 4, as shown in Table 10.3. The first four
leading coefficients are all less than 32 times machine epsilon (), ~ 2.2 x 107'6), and
the first nonzero leading coefficient is less than 16 times machine epsilon different to
the exact value of 1. This example illustrates that for small problems, and polynomi-
als with leading coefficients which are not close to zero, we can accurately determine
the first nonzero leading coefficient.
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TABLE 10.3
Computed leading coefficients of the degree siz interpolant to (10.8).

fTw fTDw fTD2w fTD3w fTD4w

355 x 1071 355 x1071%  1.78 x 107 7.11 x 10~1° 1.00

However, in applications such as the MATLAB package CHEBFUN [22], poly-
nomial interpolants are constructed to approximate functions accurate to machine
precision. To monitor the accuracy of the interpolant, the Chebyshev expansion coef-
ficients are computed from the values of the interpolant via the fast Fourier transform,
and once the magnitude of these coefficients falls below a certain tolerance, the ap-
proximation is deemed to be accurate enough. In this case, detecting the first nonzero
leading coefficient of the interpolant using Theorem 6.1 may be very difficult, since
the magnitude of the nonzero leading coefficient will necessarily be small.

We contrive the following example to illustrate just this point. Define the poly-
nomial

(10.9)  f(2) = 107 2Ty(2) + 107 0Tx(2) + 107 3T%(2) + 107 T5(2) + 10~ *T5(2)
+1072Ty(2) 4 T3(2) 4 3T (2) — 211 (2) — To(2) ,

where Tj(z) is the kth Chebyshev polynomial of the first kind. We then sampled
this polynomial at 12 Chebyshev points of the second kind, and computed f7DFw
for 0 < k < 2 as shown in Table 10.4. The leading coefficients which should be zero
are not very accurate, although in this case the difference between the exact leading
coefficient 2.56 x 107'° and the computed leading coefficient is approximately 10713,
However, using this technique to determine the first nonzero leading coefficient may
be unsuitable for applications where it is known that the first leading coefficient is
very small.

We should note here that although Theorem 6.1 may not give numerically useful
results, Corollary 6.2 may be better suited to numerically determining the first nonzero
leading coefficient of an interpolant. The downside is that we then obtain an O(n?)
algorithm, instead of an O(kn) one from forming fZ D*w. For the previous example,
we reduce the matrix A using the Givens type reduction algorithm, and look at
the first three elements of the output vector c¢; are shown in Table 10.5. The first
coefficient ¢y should be —||w||, and agrees well with this value numerically. The
second coefficient ¢; is indeed very small, as we would hope. The value of the first
nonzero leading coefficient will now not be expressed in the monomial basis, or the
Chebyshev basis, but rather in an orthogonal polynomial basis defined by the three
term recurrence relation derived from the tridiagonal part T of the reduced matrix.
However, one could determine that this is indeed a nonzero value.

What we have illustrated through these examples is that if the first nonzero
leading coefficient of the interpolant is very much different from zero, then computing
it through the formula f”D™w will be fairly effective. However, if the first nonzero

TABLE 10.4
Computed leading coefficients of the degree 11 interpolant to (10.9).

fTw fTDw fTD%w

—4.83x 10718  —483x10713 256 x 10~10
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TABLE 10.5
Elements of c1 from Givens reduction algorithm.

co + ||w]| c1 c2

—5.68x 1071  155x1071% 246 x 10712

leading coefficient is close to zero, then this formula may be inaccurate, and one
should instead use the coefficients ¢; produced by one of the reduction algorithms of
sections 3 or 4 to determine the first nonzero leading coefficient.

10.4. Barycentric rational interpolation. An example of severe loss of or-
thogonality of the vectors qq, ..., q, produced by the Lanczos type reduction of sec-
tion 3 occurs for barycentric rational interpolants described by Floater and Hormann
[8]. In the simplest case, which was previously discovered by Berrut [2], for an arbi-
trary set of nodes one can prescribe the barycentric weights w; to be

(10.10) w; = (-1, 0<j<n.

As discussed in section 1, the second form of the barycentric formula (1.3) interpo-
lates the values f;, as long as the weights w; are not zero. The choice of weights
(10.10) guarantees that the rational interpolant does not have poles in R. The second
barycentric formula is the quotient of two polynomials expressed in the first form of
the barycentric formula. Thus, we can compute the roots and poles of the rational in-
terpolant by forming two matrix pairs: one for the roots, from the barycentric weights
w; and the values f;, and one for the poles, from the barycentric weights w; and the
values f; = 1.
As an example, let us interpolate the function

1 1

(10.11) f(z) = m -5

at equispaced points on the interval [—1, 1], using the weights given in (10.10). We
construct the two matrix pairs corresponding to the numerator and denominator
polynomials of the rational interpolant. We then reduce them to tridiagonal plus rank-
one form using the Givens type reduction of section 4, and deflate the two spurious
infinite eigenvalues. The roots and poles of the rational interpolant are shown in
Figure 10.3. Interestingly, at the extremities of the interval, the roots and poles of
the interpolant become very close, indicating that there are common factors of the
numerator and denominator polynomials.

Table 10.6 shows the interpolation error and the error between the two real roots
of f(z) and the root approximations generated from the eigenvalue computation for
two choices of n. There is good agreement between the computed roots and the roots
of the original function, especially considering the size of the interpolation error.

Next, we decompose the matrix pair (A, B) using the Lanczos type reduction of
section 3. Figure 10.4 illustrates the degradation in the orthogonality of the vector
qr against qo, . . . qx—1 produced by the reduction process. For both values of n, there
is a fairly rapid degradation of the orthogonality after only a small number of steps.
By the time the algorithm has produced q,, all orthogonality of the vectors has been
lost. The transformation matrix Qz, is formed using only the barycentric weights and
the interpolation nodes. Thus, for this particular choice of nodes and weights, the
Lanczos type algorithm is not suitable, and the Givens type reduction should be used
instead.
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TABLE 10.6
Accuracy of interpolant and eigenvalue computation.

n rilaicl] |f(x) —p(x)] Error in root approximation
ze[—1,

56 1.05 x 1073 4.05 x 1074

156 3.86 x 10~* 1.49 x 10~*
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11. Concluding remarks. In this paper, we have described two algorithms to
reduce the matrix pair (A, B) to Hessenberg-triangular form, and to deflate at least
two spurious infinite eigenvalues from the matrix pair so that it can be converted to
a standard eigenvalue problem. The matrix pair is reduced in such a way that the
resulting standard eigenvalue problem has tridiagonal plus rank-one form. In addi-
tion to reducing the number of entries in the matrix being filled in, both reduction
algorithms lower the cost of the Hessenberg-triangular reduction from O(n?) to O(n?).
By numerical experimentation, we have shown that for particular choices of interpo-
lation node distributions, the algorithms are accurate, despite the above-mentioned
limitations of the Lanczos reduction algorithm.
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