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O(n 2) REDUCTION ALGORITHMS FOR THE CONSTRUCTION
OF A BAND MATRIX FROM SPECTRAL DATA*

GREGORY S. AMMARf AND WILLIAM B. GRAGG:I:

Abstract. Efficient rotation patterns are presented that provide stable O(n2) algorithms for the construction
ofa real symmetric band matrix having specified eigenvalues and first p components ofits normalized eigenvectors.
These methods can also be used in the second phase of the construction of a band matrix from the interlacing
eigenvalues as described in Linear Algebra Appl., 40 1981 ), pp. 79-87 ]. Previously presented algorithms for
these reductions that use elementary orthogonal similarity transformations require O(n3) arithmetic operations.
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1. Introduction. Let A be a real symmetric (2p + )-band matrix of order n, and
let Ak denote the trailing principal submatrix ofA A, of order k. It is well known that
the eigenvalues of Ak interlace those ofA+1 for each k < n, and moreover, given real
numbers kj(.k) =< j -< k, n p _-< k =< n) satisfying

there is a (2p + )-band matrix A A, such that the eienvalues ofA are ( ,. )--1
for each k. In eneral, this band matrix is not uniquely determined.

The problem of constructing a band matrix from the interlacing eigenvalues is
considered in [2] and [1]. A survey of this problem and some related inverse eienvalue
problems is iven in [J ]. In [2] the interlacin eienvalues are used to determine the
first p components of the normalized eienvectors ofA, and the remainin components
of the eienvectors (and hence A) are constructed usin a block Lanczos process. In [1]
a matrix of bordered structure (where the trailin principal submatfix of order p is di-
aonal) is constructed that satisfies the required spectral conditions. Householder trans-
formations that preserve the eienvalues of the trailin submatrices are then applied to
reduce this bordered matrix to band fom. This reduction procedure uses O() arithmetic
operations.

In this note we present efficient rotation patterns that provide stable O(:) procedures
that can be used in the second step (the reduction step) of either of the above methods.
These algorithms provide solutions to the open problem posed in [, p. 515 ]. The first
rotation pattern we present can be considered as the eneralization to band matrices of
Rutishauser’s procedure for the construction of Jacobi matrices from spectral data pre-
sented in 4 ].

2. Efficient rduction ulgorithms. The reduction step in [2 can be described as
follows. Given ( h_- and an, p matrix Q with ohonormal columns, construct a
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(2p + )-band matrix A having eigenvalues j such that Q ( forms the first p rows ofthe
(orthogonal) eigenvector matrix for A. This reduction can be performed using a sequence
of orthogonal similarity transformations whose composition results in an orthogonal
transformation Q such that

0 QT Q, 0 Q It’ A
0

is a (2p + )-band matrix of order n + p. The trailing principal submatrix A An then
satisfies the required spectral conditions, and Q comprises the first p columns of Q. (The
matrix X is arbitrary and remains unchanged.)

In the algorithm given in [1 ], an n n matrix of the bordered form

(3) B=
B

where D is a diagonal matrix oforder n p, is constructed such that the trailing principal
submatrices of orders n p through n of B have prescribed eigenvalues. Householder
transformations that do not involve the first p coordinate axes are then used to transform
B to a (2p + )-band matrix A while preserving the eigenvalues of the trailing principal
submatrices. In particular, the composition of these Householder transformations yields
an orthogonal matrix U of order n p such that

(4) A=[ IpO U0:r][ BOBI )] [Iz’0U]0
is a (2p + )-band matrix of order n. Thus, the reduction of the matrices in (2) and (4)
is essentially the same problem. (Observe that the identity matrix in (2) arises because
the columns of Q are orthonormal.) We will describe our efficient rotation patterns in
terms of the reduction of a matrix in the bordered form (3).

The efficient reduction to band form that generalizes the algorithm of 4 is obtained
by performing plane rotations to introduce appropriate zeros in B row-by-row beginning
at row p + 2, in such a way that the intermediate matrices remain sparse. In contrast, a
Householder transformation to introduce zeros in the first column of the matrix will
result in a full matrix, and the subsequent Householder transformations must be per-
formed on full matrices.

Let R(A,j, k, l) GAG T, where G is the elementary Givens rotation in the (j, k)-
plane that annihilates akt. Thus, G is the identity matrix if akt 0. If akt 4: 0, then G is
the identity matrix apart from the 2 2 submatrix formed from rows and columns j
and k, which is given by

G
j, -s c’

where c aj//a + a, and s akff /a + a,. Our algorithm for reducing the bord-
ered matrix to band form is then given as follows.
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FIG. 1. Rotations are performed in coordinate planes 3, 8 ), (4, 8 ), 5, 8 ), (6, 8 ), and 7, 8 to introduce
the appropriate zeros in the eighth row.

ALGORITHM 1.
for k =p+2, n

for j =p+l, ,k-1
L A "=R (A,j,k,j-p)

To see how the sparsity is preserved, consider the example in Fig. 1. There n 8,
p 2, and the necessary zeros have already been introduced in rows 4 through 7. Nonzero
entries are represented by X, a Givens rotation is performed in the indicated planes to
annihilate the circled entry, and the symbol + indicates the "fillin" (i.e., the additional
nonzero entries) introduced by the rotation. The first rotation, in the (3, 8) plane, an-
nihilates a8, and creates p + 3 additional nonzero entries. (We count aij and aji as
one element.) The successive rotations introduce at most one additional nonzero element
each, so there are at most 2p + 5 nonzero entries on the eighth row at any time. We
can therefore perform each elementary similarity transformation on A in O(p) arithmetic
work. Thus the amount of computation required by the reduction is O(pn2).

Below is an explicit description ofAlgorithm that involves only the lower-triangular
part of the symmetric matrix A.

ALGORITHM 1.
Input: a symmetric matrix A [aj,k]jlk=l whose trailing principal submatrix of order

n p is diagonal.
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Output: a symmetric (2p + )-band matrix A whose trailing principal submatrices of
orders n p through n are orthogonally similar with those of the input matrix.

for k=p+2, n
for j-p+ 1, ,k-

if a,9_p 4:0 then
2 2p aj,j_p -1- a k,j-p,

c :=aj,j_p/o; s :=ak,j-p/0
aj,j_p :=p; ak,j_p "=0;
for i=p 1,p-2, ,

ak,j-i --S C ak,j-iJ

fr i=j+l,j+2, min {j+p,k-1}.

ak, -s c

u’=agj; v "=a,; w’=aj;
a, := cu+sv+2csw; a, := cv+su-2csw;
a, :=cs(v-u)+(c-s)w.

%
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FIG. 2. Rotations are performed in coordinate planes 3, 4), (4, 5 ), 5, 6), (6, 7 ), and (7, 8) to introduce
the appropriate zeros.
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Another rotation pattern can be obtained by introducing the zeros in (3) from the
bottom up along downwardly sloping diagonals.

ALGORITHM 2.
for k =n-1,n-2, p +

for j =k+ 1,. .,n
A "=R(A,k-l,k,j-k)

One step of this procedure is illustrated in Fig. 2. Observe that Algorithm 2 creates the
same amount of fillin as Algorithm 1.

In fact, several patterns ofrotations exist that preserve the sparsity ofthe intermediate
matrices. For example, Algorithms and 2 can be combined to build the band matrix
according to any ordering for which the intermediate band (sub)matrices occupy con-
tiguous rows and columns of the work array.

3. Numerical results. Numerical experiments verify that our efficient rotation pat-
tern produces accurate results in lower-order work than the Householder reduction tech-
nique. These experiments were performed on the VAX 11/750 at Northern Illinois
University. We will not attempt to analyze the numerical sensitivity of the inverse ei-
genproblem. Our only aim is to show that an efficient rotation pattern produces errors
comparable with the Householder reduction technique in lower-order work.

The following experiment was performed. The method of was used to create a
bordered matrix whose trailing principal matrices oforder n p through n have specified
eigenvalues. This matrix was then reduced to (2p + )-band form using

I. The Householder reduction procedure of ];
II. The efficient rotation pattern of Algorithm 1.

We calculated the average and maximum error among the assigned eigenvalues of the
trailing principal submatrices of orders n p through n relative to the Frobenius norm
of the band matrix. The results displayed in Table were obtained by assigning the
eigenvalues ofAk, n p _--< k -< n, to be the integers 2j + (n k 1), _-< j _-< k.
Experiments were carried out on a variety of other problems with similar results.

Tables 2 (a) and 2 (b) show average CPU times used by each reduction scheme for
various values of n and p. Table 2 (c) shows the corresponding ratios of the time used
by the Householder reduction to that of our rotation pattern. These ratios represent the
speedup factors of Procedure II relative to Procedure I. Note that for fixed n, the amount

TABLE
Relative errors in eigenvalues.

n p

10
20
50
10
20
50
10
20
50

Average error

II

3.39e-08
3.58e-08
2.40e-08
3.52e-08
2.00e-08
2.71 e-08
2.08e-08
2.73e-08
2.91e-08

1.58e-08
2.16e-08
2.96e-08
1.50e-08
2.86e-08
2.94e-08
1.29e-08
3.18e-08
5.04e-08

Maximum error

2.61 e-07 5.23e-08
2.2 le-07 9.42e-08
1.31e-07 1.12e-07
1.57e-07 5.23e-08
1.10e-07 1.1 le-07
1.12e-07 1.68e-07
7.84e-08 5.23e-08
7.39e-08 1.11 e-07
1.68e-07 1.50e-07

II
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TABLE 2(a)
Average timings for Procedure (CPU seconds).

n 10 20 30 40 50 O0 200

2
5
10
20

0.029
0.023
0.013

0.182 0.550 1.231 2.342 17.858 140.070
0.163 0.534 1.199 2.286 17.632 139.693
0.131 0.456 1.081 2.119 17.127 137.837
0.072 0.327 0.868 1.796 15.852 133.120

0.117 0.476 1.178 13.503 123.227

TABLE 2(b)
Average timings for Procedure II (CPU seconds).

n 10 20 30 40 50 100 200

2
5
10
20

0.022
0.018
0.009

0.087 0.207 0.381 0.596 2.493 10.273
0.099 0.244 0.453 0.734 3.112 13.037
0.103 0.302 0.618 1.044 4.807 20.757
0.063 0.287 0.692 1.275 6.937 32.130

0.104 0.451 1.110 9.250 50.007

TABLE 2(c)
Ratios ofCPU times.

n 10 20 30 40 50 100 200

2
5
10
20

1.346
1.333
1.364

2.096 2.661 3.232 3.931 7.162 13.634
1.639 2.188 2.645 3.114 5.666 10.715
1.266 1.511 1.748 2.030 3.563 6.641
1.147 1.136 1.253 1.408 2.285 4.143

1.128 1.055 1.062 1.460 2.464

of computation required by Procedure I decreases as p increases, while that of Procedure
II is often increasing as a function of p when p is small. These results show that our
rotation pattern is consistently more efficient than the Householder reduction technique.
The relative efficiency of the rotation pattern generally increases as n increases and de-
creases as p increases.
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