

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 30, No. 1, pp. 102–120

THE ARNOLDI PROCESS AND GMRES FOR NEARLY
SYMMETRIC MATRICES∗

BERNHARD BECKERMANN† AND LOTHAR REICHEL‡

Abstract. Matrices with a skew-symmetric part of low rank arise in many applications, including
path following methods and integral equations. This paper explores the properties of the Arnoldi
process when applied to such a matrix. We show that an orthogonal Krylov subspace basis can be
generated with short recursion formulas and that the Hessenberg matrix generated by the Arnoldi
process has a structure, which makes it possible to derive a progressive GMRES method. Eigenvalue
computation is also considered.

Key words. low-rank perturbation, iterative method, solution of linear system, eigenvalue
computation

AMS subject classifications. 65F10, 65F15

DOI. 10.1137/060668274

1. Introduction. This paper discusses the Arnoldi process applied to a large
matrix A ∈ R

n×n with a skew-symmetric part

A−A∗ =

s∑
k=1

fkg
∗
k, fk, gk ∈ R

n,(1.1)

of low rank s. In particular, we assume that s � n. The superscript ∗ denotes
transposition and, when applicable, complex conjugation. We present our results for
matrices A and vectors fk and gk with real entries; however, our algorithms also can
be applied to matrices and vectors with complex entries.

Linear systems of equations

Ax = b(1.2)

with large matrices of this kind arise in path following methods, from integral equa-
tions as well as from certain boundary value problems for partial differential equations.

The generalized minimal residual (GMRES) method is one of the most popular
iterative methods for the solution of large linear systems of equations with a non-
symmetric matrix. The standard implementation of GMRES is based on the Arnoldi
process; see, e.g., Saad [15, section 6.5]. Application of j steps of the Arnoldi process
to the matrix A with initial vector r0 �= 0 yields the decomposition

AVj = VjHj + hje
∗
j ,(1.3)

where Vj = [v1, v2, . . . , vj] ∈ R
n×j and hj ∈ R

n satisfy V ∗
j Vj = Ij , V

∗
j hj = 0, and

v1 = r0/‖r0‖. Moreover, Hj ∈ R
j×j is an upper Hessenberg matrix. Throughout

∗Received by the editors August 24, 2006; accepted for publication (in revised form) by M. Benzi
July 2, 2007; published electronically February 6, 2008.

http://www.siam.org/journals/simax/30-1/66827.html
†Laboratoire Painlevé UMR 8524 (ANO-EDP), UFR Mathématiques – M3, UST Lille, F-59655

Villeneuve d’Ascq CEDEX, France (bbecker@math.univ-lille1.fr). This author’s research was sup-
ported in part by INTAS research network NeCCA 03-51-6637.

‡Department of Mathematical Sciences, Kent State University, Kent, OH 44242 (reichel@math.
kent.edu). This author’s research was supported in part by NSF grant DMS-0107858 and an OBR
Research Challenge Grant.

102

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ARNOLDI PROCESS AND GMRES 103

this paper Ij denotes the identity matrix of order j, ek denotes the kth column of an
identity matrix of appropriate order, and ‖ ·‖ denotes the Euclidean vector norm. For
ease of discussion, we will assume that j is small enough so that the decomposition
(1.3) with the stated properties exists.

When hj �= 0, we can express (1.3) in the form

AVj = Vj+1H̄j ,(1.4)

where vj+1 = hj/‖hj‖ and

Vj+1 = [Vj , vj+1] ∈ R
n×(j+1), H̄j =

[
Hj

‖hj‖e∗j

]
∈ R

(j+1)×j .

The computation of the Arnoldi decompositions (1.3) or (1.4) of a general n× n
matrix A requires the evaluation of j matrix-vector products with A and of about
j2/2 inner products with n-vectors. The latter demands O(nj2) arithmetic floating
point operations (flops) and may dominate the computational work. The Arnoldi
process determines the columns of Vj in order and requires access to all the previ-
ously generated columns to compute the next one; in particular, all the columns of
Vj have to be stored; see, e.g., Saad [15, section 6.3] for a thorough treatment of
the Arnoldi process. Computation of the jth iterate by GMRES also requires the
whole matrix Vj to be available. To limit the demand of computer memory, GMRES
is often restarted periodically, say, every m steps. This restarted GMRES method
is denoted by GMRES(m). Restarting may reduce the rate of convergence of GM-
RES significantly.

In section 2, we show that the property (1.1) of A makes it possible to determine
the columns vk of Vj with a short recursion formula, the number of terms of which
depends on s in (1.1) but can be bounded independently of k. The recursion formula
allows the computation of all the columns of Vj in only O(nj) flops. Moreover, the
computation of vk for large k does not require access to all the previously computed
columns of Vj . Section 3 discusses the structure of the Hessenberg matrix Hj in
(1.3) when A satisfies (1.1) and presents a fast algorithm for determining the Arnoldi
decomposition (1.4).

The short recursion formula for the columns of Vj and the structure of Hj make
it possible to derive a progressive GMRES method for the solution of linear systems
(1.2) with a matrix that satisfies (1.1). Such a method is described in section 4. The
storage requirement of the method, as well as the computational effort per iteration,
are bounded independently of the number of iterations j. This makes it possible to
apply the method without periodic restarts. Computed examples are presented in
section 5 and concluding remarks can be found in section 6.

Recently, Barth and Manteuffel [4] presented iterative methods of conjugate gra-
dient type for linear systems of equations of the kind considered in the present
paper. Specifically, they considered linear systems of equations with a generalized
B-normal(�,m) matrix. This type of matrix is characterized by the existence of poly-
nomials p� and qm of degrees � and m, respectively, such that the matrix

A†qm(A) − p�(A)

is of low rank, where A† = B−1A∗B and B is a Hermitian positive definite matrix.
The matrix A† is the adjoint of A with respect to the B-inner product

〈u, v〉B = u∗Bv.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

104 BERNHARD BECKERMANN AND LOTHAR REICHEL

In the terminology of Barth and Manteuffel [4] matrices A that satisfy (1.1) are
generalized I-normal(1, 0) matrices.

Barth and Manteuffel [4] derived their methods by generalizing the recurrence
relations for orthogonal polynomials on the unit circle. The latter type of recurrence
relations had previously been applied to iterative methods in [11, 12]; see also Arnold
et al. [2] for a recent application to QCD computations. The derivation of our it-
erative methods for (1.2) differs from the derivation by Barth and Manteuffel [4] of
their schemes in that we do not apply properties of orthogonal polynomials on the
unit circle. Iterative methods for linear systems of equations with a matrix, whose
symmetric part is positive definite and easily invertible, are described by Concus and
Golub [7] and Widlund [18].

2. Generation of an orthogonal Krylov subspace basis. Introduce the
Krylov subspace

Kj(A, b) = span{b, Ab,A2b, . . . , Aj−1b},(2.1)

which we assume to be of dimension j. The columns of the matrix Vj in (1.3) form
an orthonormal basis of Kj(A, b).

Let fk and gk be the vectors in (1.1) and define the matrices

F = [f1, f2, . . . , fs], G = [g1, g2, . . . , gs],(2.2)

which we may assume to be of full rank; otherwise we can reduce s. We express (1.1)
as

A−A∗ = FG∗(2.3)

and note that

FG∗ = −GF ∗.(2.4)

It follows from (2.4) and the fact that F and G are of full rank that s is even and
that there is a unique matrix C ∈ R

s×s, such that

G = FC.(2.5)

The fact that s is even can be seen by substituting (2.5) into (2.4). This yields
C∗ = −C. Therefore, when s is odd, C is singular and G is not of full rank. Use
of the representation (2.5) of G reduces the computational work in the algorithms
presented in sections 3 and 4.

Example 2.1. In many applications that involve a matrix A with a skew-symmetric
part of low rank, the matrix is given in the form

A = M +

s/2∑
k=1

fkg
∗
k

with M ∈ R
n×n symmetric. Then (1.1) can be expressed as

A−A∗ =

s/2∑
k=1

fkg
∗
k −

s/2∑
k=1

gkf
∗
k

and we may choose

F = [f1, f2, . . . , fs/2, g1, g2, . . . , gs/2], C =

[
0 −Is/2

Is/2 0

]
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ARNOLDI PROCESS AND GMRES 105

Introduce the vectors

f�,k = VkV
∗
k f�, 1 ≤ � ≤ s, 1 ≤ k ≤ j.(2.6)

Then

f�,k ∈ Kk(A, r0), f�,k − f� ⊥ Kk(A, r0).(2.7)

Moreover, for each �, the f�,k satisfy the recursion{
f�,k = f�,k−1 + vkv

∗
kf�, k = 2, 3, . . . , j,

f�,1 = v1v
∗
1f�.

(2.8)

Let

v′k = A∗vk +

s∑
�=1

g∗� vk(f� − f�,k).(2.9)

Then (1.1) gives

v′k −Avk =

s∑
�=1

g∗� vk(f� − f�,k) − (A−A∗)vk = −
s∑

�=1

g∗� vkf�,k.(2.10)

We may assume that Avk �∈ Kk(A, r0), because otherwise range(Vk) is an invariant
subspace of A, which contains the solution of the linear system (1.2); see, e.g., Saad
[15, section 6.5.4] for details. The following properties of v′k are a consequence of the
above discussion.

Proposition 2.2. Let v′k be defined by (2.9) and assume that dimKk+1(A, r0) =
k + 1. Then

v′k ∈ Kk+1(A, r0) \ Kk(A, r0), v′k ⊥ Kk−2(A, r0).(2.11)

Proof. The requirement that Kk+1(A, r0) be of dimension k + 1 secures that
Avk �∈ Kk(A, r0). Equation (2.7) yields that v′k−Avk ∈ Kk(A, r0), and this establishes
the left-hand side of (2.11).

It follows from the Arnoldi decomposition (1.3) that vk ⊥ Av� for 1 ≤ � ≤ k − 2,
or, equivalently, that A∗vk ⊥ v� for 1 ≤ � ≤ k−2. The latter property, in combination
with (2.7) and (2.9), shows the orthogonality relation (2.11).

Equation (2.10) yields the expression

v′k = Avk −
s∑

�=1

g∗� vkf�,k,(2.12)

which we use to evaluate v′k. Orthogonalization against the vectors vk−1 and vk, and
normalization of the resulting vector, gives the Arnoldi vector vk+1. In what follows
we will write this operation more explicitly as

v′k = tk+1,kvk+1 + tk,kvk + tk−1,kvk−1, k ≥ 1,(2.13)

where

tk−1,k = v∗k−1v
′
k, tk,k = v∗kv

′
k, tk+1,k = v∗k+1v

′
k,(2.14)

with v0 = 0 and tk+1,k = ‖v′k − tk,kvk − tk,k−1vk−1‖ > 0. The computations for
generating the orthogonal Krylov subspace basis, and for determining the matrix H̄j

in (1.4), are summarized in Algorithm 3.2 of the following section.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

106 BERNHARD BECKERMANN AND LOTHAR REICHEL

3. Structure of the Hessenberg matrices. This section discusses the struc-
ture of the matrices Hj = [hk,�] and H̄j = [hk,�] in the Arnoldi decompositions (1.3)
and (1.4), respectively. It is convenient to introduce the following terminology. For
an integer m, the m-diagonal of a matrix B = [bk,�] consists of all entries of the form
bk,k+m. The m-upper (m-lower) triangular part of B is the submatrix comprising all
entries on and above (below) the m-diagonal. For instance, the upper Hessenberg
matrices Hj and H̄j have vanishing (−2)-lower triangular parts. Note that the (−2)-
upper triangular part is not triangular.

Proposition 3.1. Let F̂j = V ∗
j F and Ĝj = V ∗

j G, where F and G are the
matrices in (2.3) and j ≥ s. Then the upper Hessenberg matrix Hj in the Arnoldi
decomposition (1.3) satisfies

Hj −H∗
j = F̂jĜ

∗
j , ĜjF̂

∗
j = −F̂jĜ

∗
j ,(3.1)

i.e., Hj has a skew-symmetric part of rank s. Moreover, Hj and F̂jĜ
∗
j have the same

2-upper triangular parts.
Proof. It follows from (1.3) and (2.3) that

Hj = V ∗
j AVj = V ∗

j (A∗ + FG∗)Vj = H∗
j + F̂jĜ

∗
j ,

which shows (3.1). Since the (−2)-lower triangular part of Hj vanishes, (3.1) yields
the 2-upper triangular part of Hj .

The proposition shows that Hj is an order-(1, s + 1) quasi-separable matrix; see,
e.g., Eidelman, Gohberg, and Olshevsky [9] for a recent discussion on this kind of
matrix.

We turn to the entries in the tridiagonal part of H̄j . In accordance with (2.14),
we define the matrix T̄j = [tm,k] ∈ R

(j+1)×j with entries tm,k = v∗mv′k. Notice that T̄j

is tridiagonal by Proposition 2.2. Substitution of (2.6) into (2.12) gives

v′k = Avk −
s∑

�=1

(g∗� vk)VkV
∗
k f� = Avk − VkV

∗
k FG∗vk = Avk − VkF̂kĜ

∗
kek,

and, taking into account that e∗mF̂kĜ
∗
kek = e∗mF̂jĜ

∗
jek for m ≤ k ≤ j, we get for the

entries hm,k = v∗mAvk of H̄j the formula

hm,k =

⎧⎪⎨
⎪⎩

tk+1,k, m = k + 1,

tm,k + e∗mF̂jĜ
∗
jek, k − 1 ≤ m ≤ k,

e∗mF̂jĜ
∗
jek, 1 ≤ m < k − 1.

(3.2)

Thus, the matrix F̂jĜ
∗
j contributes to the upper triangular part of H̄j , and the ma-

trix T̄j , which expresses the orthogonalization of the vectors v′k, contributes to the
tridiagonal part; in MATLAB notation, we have

H̄j = T̄j + triu(F̂jĜ
∗
j , 0).

Combining (2.9) with (2.7) yields

v∗mv′k = v∗mA∗vk = (v∗kAvm)∗, 1 ≤ m ≤ k,

and comparison with (2.14) gives

tk−1,k = tk,k−1 > 0, tk,k = h∗
k,k.(3.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ARNOLDI PROCESS AND GMRES 107

We describe an algorithm for the computation of the matrices H̄j and Vj+1 in
the decomposition (1.4), assuming that the decomposition exists. The matrix H̄j is

represented in decomposed form (3.2) by the matrices F̂j , Ĝj , and T̄j , which in the
algorithm are represented without subscript j. The subscripts used in the algorithm
denote row and column indices. Thus, F̂k,: denotes the kth row of the matrix F̂j . At

iteration k, we let F̃ = [f1,k, f2,k, . . . , fs,k].
Algorithm 3.2. Generation of the matrices H̄j and Vj+1.
Input: A ∈ R

n×n, F = [f1, f2, . . . , fs], G = [g1, g2, . . . , gs] ∈ R
n×s, r0 ∈ R

n, j;
Output: T̄ = [t�,k] ∈ R

(j+1)×j, F̂ , Ĝ ∈ R
(j+1)×s, Vj+1 = [v1, v2, . . . , vj+1] ∈

R
n×(j+1);

1. F̃ := 0;
2. v1 := r0/‖r0‖;
3. for k = 1 : j

4. F̂k,: := v∗kF ; Ĝk,: := v∗kG;

5. F̃ := F̃ + vkF̂k,:;

6. v′ := Avk − F̃ Ĝ∗
k,:;

7. if k > 1 then
8. tk−1,k := v∗k−1v

′; v′ := v′ − tk−1,kvk−1;
9. endif
10. tk,k := v∗kv

′; v′ := v′ − tk,kvk; tk+1,k := ‖v′‖; vk+1 := v′/tk+1,k;
11. endfor
We note that the computational effort of line 4 of the algorithm can be essentially

halved by using the representation (2.5) of G.
Algorithm 3.2 can be applied to compute approximations of a few extreme eigen-

values and associated eigenvectors of A similarly to the standard implementation of
the Arnoldi process. Certain eigenvalues of Hj are used to approximate selected
eigenvalues of A. The structure of Hj therefore is of interest.

Remark 3.3. Given a unitary matrix Q ∈ C
j×j , it follows from Proposition 3.1

that for the matrix

S = Q∗HjQ,

we have Σ := S − S∗ = Q∗F̂jĜ
∗
jQ, i.e., S has a skew-symmetric part of rank s.

If S has an additional sparsity structure, then we may derive results similarly to
Proposition 3.1. For instance, the matrix S in the Schur normal form of Hj is upper
triangular, and thus S may be written as a diagonal matrix plus the 1-upper tri-
angular part of the matrix Σ. Similarly, the matrix S obtained after one step of
the QR-algorithm is upper Hessenberg and therefore may be written as a tridiagonal
matrix plus the 2-upper triangular part of the matrix Σ.

We recall that in the QR-algorithm for eigenvalue computations the unitary factor
Q is chosen such that R = Q∗Hj is upper triangular.

Remark 3.4. Consider the QR-decomposition Hj = QR with orthogonal Q and
upper triangular R. Here also the matrix R has a structure: since Q∗ is known to
be of lower Hessenberg form (see, e.g., the considerations of the next section), we
see from Proposition 3.1 that the 3-upper triangular part of Q∗(Hj − F̂jĜj) contains
only zeros, or, in other words, the 3-upper triangular parts of Rj and of the matrix

Q∗F̂jĜj of rank s coincide.
The structure makes it possible to compute the matrix R in O(j) flops, by repre-

senting Hj in terms of the tridiagonal part of Hj and the matrices F̂j and Ĝj , and by

representing R in terms of its 0-, 1-, and 2-diagonals and the matrices Q∗F̂j and Ĝj .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

108 BERNHARD BECKERMANN AND LOTHAR REICHEL

Since the computation of R does not play a role in subsequent considerations, we omit
the details.

4. A progressive GMRES algorithm. Let x0 ∈ R
n be an approximate so-

lution of (1.2). GMRES determines a new approximate solution xj of (1.2), such
that

‖Axj − b‖ = min
x∈x0+Kj(A,r0)

‖Ax− b‖, xj ∈ x0 + Kj(A, r0).(4.1)

The standard implementation of GMRES determines a correction of x0, i.e., xj =
x0 + Vjxj , by substituting the decomposition (1.4) with r0 = b−Ax0 into (4.1); see,
e.g., Saad [15, section 6.5] for details. This gives the equivalent minimization problem

min
y∈Rj

‖H̄jy − e1‖r0‖ ‖,(4.2)

with solution yj ∈ R
j .

We solve the least-squares problem (4.2) by using the QR-factorization H̄j =
Qj+1R̄j , where Qj+1 ∈ R

(j+1)×(j+1) is orthogonal (or unitary in the case of complex
A, b) and

R̄j =

[
Rj

0

]
∈ R

(j+1)×j ,(4.3)

with Rj ∈ R
j×j upper triangular. Let us first recall in the following paragraph

and Proposition 4.1 the well-known construction of a QR-decomposition of the upper
Hessenberg matrix H̄j for a general matrix A. Subsequently, we explain in Proposi-
tion 4.2 how the structure of the matrix A helps us to derive a progressive form of
GMRES.

Following Saad [15, Chapter 6.5.3], we determine the matrix Qj+1 by applying a
product of Givens rotations to H̄j . Let Q1 = [1] and define, for k = 1, 2, . . . , j,

Q∗
k+1 = Ωk+1

[
Q∗

k 0

0 1

]
, Ωk+1 =

⎡
⎢⎣

Ik−1 0 0

0 c∗k sk

0 −sk ck

⎤
⎥⎦ ,(4.4)

with sk ≥ 0 and s2
k + |ck|2 = 1 such that Ωk+1 is unitary (and reduces to a classical

Givens rotation in the case of real data). Using the nested structure of H̄j = [hk,�],
i.e., the fact that H̄j−1 is the leading j × (j − 1) principal submatrix of H̄j , yields

Q∗
j+1H̄j = Ωj+1

[
Q∗

j H̄j−1 Q∗
jHjej

0 hj+1,j

]
= Ωj+1

⎡
⎢⎣

Rj−1 ∗
0 τj

0 hj+1,j

⎤
⎥⎦ ,

with

τj = e∗jQ
∗
jHjej .(4.5)

Since multiplication by Ωj+1 affects only the last two rows, the matrices Rj and R̄j

also have a nested substructure:

R̄j =

[
R̄j−1 ∗

0 0

]
, Rj =

[
Rj−1 ∗

0 ∗

]
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ARNOLDI PROCESS AND GMRES 109

We have the following formulas for the coefficients cj , sj of Ωj+1 and for the entries
of Q∗

j+1.
Proposition 4.1. There holds

sj =
tj+1,j√

t2j+1,j + |τj |2
≥ 0, cj =

τj√
t2j+1,j + |τj |2

,(4.6)

where tj+1,j = hj+1,j is the last subdiagonal entry of H̄j and τj is given by (4.5).
The first j rows of Q∗

j+1 are obtained by padding a zero on the right-hand side of the
corresponding rows of Q∗

j . In particular, Q∗
j+1 is of lower Hessenberg form, with its

lower triangular part coinciding with the lower triangular part of a rank-one matrix.
Moreover, for j ≥ 3,

e∗j+1Q
∗
j+1 = [−sje

∗
jQ

∗
j , cj] = [∗ , sjsj−1cj−2 , −sjcj−1 , cj].(4.7)

Proof. The proof is obtained by direct calculations.
We are in a position to describe a progressive recurrence relation for the GMRES

residual rj , a simplified recurrence for its norm, as well as a simplified expression for
the quantity τj defined by (4.5). In particular, the progressive GMRES algorithm
does not require the entries of the matrices Rj , H̄j , and Qj+1. Only the ck, sk of the
Givens rotations (4.4) and the quantities occurring in the recurrence relation for the
Arnoldi vectors vk are needed.

Proposition 4.2. Let rj denote the residual vector associated with xj, i.e.,

rj = b−Axj ,(4.8)

and define recursively

γj = −sjγj−1, j ≥ 1,(4.9)

where γ0 = ‖r0‖. Then γj = (−1)j ‖rj‖. Moreover,

rj = s2
jrj−1 + γjc

∗
jvj+1, j ≥ 1.(4.10)

Finally, define the vectors pj ∈ R
s recursively by

p∗j = −sj−1p
∗
j−1 + cj−1e

∗
j F̂j , j ≥ 2,(4.11)

and p∗1 = F̂1. Then we get for the scalar τj defined by (4.5) the expression

τj = cj−1tj,j − sj−1cj−2tj−1,j + p∗j Ĝ
∗
jej , j ≥ 2,(4.12)

with c0 = 1 and τ1 = t∗1,1.
Proof. We start by establishing the formula

rj = γjVj+1Qj+1ej+1.(4.13)

A different proof is presented by Saad [15, Proposition 6.9]. From the definition
of GMRES, we have that rj = P⊥

AKj(A,r0)
r0, where PAKj(A,r0) denotes the orthog-

onal projector onto AKj(A, r0) and P⊥
AKj(A,r0)

= I − PAKj(A,r0) denotes the or-

thogonal projector onto the complement. Denote by Q̄j ∈ R
(j+1)×j the matrix

made up of the first j columns of Qj+1. From (1.4) and (4.3), we obtain that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

110 BERNHARD BECKERMANN AND LOTHAR REICHEL

AVj = Vj+1Qj+1R̄j = Vj+1Q̄jRj . Since Rj is invertible, we see that an orthonormal
basis of AKj(A, r0) is given by the columns of Vj+1Q̄j , implying that

rj = r0 − PAKj(A,r0)r0 = Vj+1Qj+1Q
∗
j+1V

∗
j+1r0 − Vj+1Q̄jQ̄

∗
jV

∗
j+1r0

= Vj+1(Qj+1Q
∗
j+1 − Q̄jQ̄

∗
j)e1‖r0‖ = Vj+1Qj+1ej+1e

∗
j+1Q

∗
j+1e1‖r0‖.

It follows from (4.7) and (4.9) that

γ0 e
∗
j+1Q

∗
j+1e1 = γ0(−sj) e

∗
jQ

∗
je1 = · · · = γ0(−sj)(−sj−1) . . . (−s1) = γj .

This establishes (4.13). Since Vj+1Qj+1 has orthonormal columns and sk ≥ 0 by
Proposition 4.1, we may conclude by taking norms in (4.13) that |γj | = ‖rj‖ = (−1)jγj .

The updating formula (4.10) is now an immediate consequence of (4.13): by (4.7),

rj = γjVj+1[−sje
∗
jQ

∗
j , cj]

∗ = −sj
γj

γj−1
rj−1 + γjc

∗
jvj+1.

It remains to show (4.12). From (4.7) and (4.11) we conclude by recurrence on j that

p∗j = e∗jQ
∗
j F̂j , j ≥ 1.

The structure of Hj , together with (4.7) and (4.13), yields for j ≥ 2 that

τj = e∗jQ
∗
jHjej

= e∗jQ
∗
j

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

tj−1,j

tj,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ F̂jĜ
∗
jej

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= [−sj−1cj−2, cj−1]

[
tj−1,j

tj,j

]
+ p∗j Ĝ

∗
jej .

When j = 1, we get by using Q1 = [1] and (3.3) that τ1 = h1,1 = t∗1,1.
By applying a suitable linear operator L, such that Lrk = xk for 0 ≤ k ≤ j + 1,

to the recurrence relation (4.10) of the residuals, we obtain an updating formula for
the GMRES iterates in terms of the auxiliary vectors zk = Lvk and w�,k = Lf�,k,
which together with the recursive computation of these new vectors is described in
the following proposition.

Proposition 4.3. Let dimKj+1(A, r0) = j + 1 and define recursively

w�,k = w�,k−1 + v∗kf�zk, 0 < k ≤ j,(4.14)

zk+1 = − 1

tk+1,k

(
vk + tk,kzk + tk−1,kzk−1 +

s∑
�=1

g∗� vkw�,k

)
, 1 < k ≤ j,(4.15)

together with the initializations

w�,0 = 0, z1 =
x0

γ0
, z2 = − 1

t2,1
(v1 + t∗1,1z1).(4.16)

Then we have for 0 < k ≤ j the updating formula

xk = s2
kxk−1 + γkc

∗
kzk+1.(4.17)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ARNOLDI PROCESS AND GMRES 111

Proof. Consider the QR-factorization

[r0, Ar0, . . . , A
jr0] = Vj+1Sj+1,

i.e., Sj+1 ∈ R
(j+1)×(j+1) is upper triangular and invertible by assumption on j. The

projector

P = Vj+1Sj+1(Ij+1 − e1e
∗
1)S

−1
j+1V

∗
j+1

satisfies

P

(
j∑

k=0

αkA
kr0

)
=

j∑
k=1

αkA
kr0, (I − P)

(
j∑

k=0

αkA
kr0

)
= α0r0.

As a consequence, defining the linear operator L by

Lv =
r∗0(I − P)v

r∗0r0
x0 −A−1Pv,

we get for any u ∈ Kj(A, r0) that

L(b−A(x0 + u)) = x0 + u.

In particular, we obtain Lrk = xk for 0 ≤ k ≤ j, as claimed above. In order to see
that the vectors zk+1 and w�,k defined by

zk+1 = Lvk+1, w�,k = Lf�,k, 0 ≤ k ≤ j,

can be computed via the relations (4.14)–(4.16), we argue by recurrence on k: applying
L to the relations f�,0 = 0, v1 = r0/γ0 = (b− Ax0)/γ0, and Av1 = h2,1v2 + h1,1v1 =
t2,1v2 + t∗1,1v1, respectively, leads to the initializations (4.16). Similarly, for (4.14)
we apply L to (2.8), and (4.15) is obtained by applying L both to (2.12) and (2.13),
where we notice that L(Avk) = −vk. Finally, the recurrence relation (4.17) for the
GMRES iterates follows by applying L to (4.10).

Let Wj = [w1,j , w2,j , . . . , ws,j] ∈ R
n×s. Then (4.14) can be written as

Wj = Wj−1 + zje
∗
j F̂j , W1 =

x0

γ0
F̂1,

and

s∑
�=1

g∗� vj w�,j = WjĜ
∗
jej .

Algorithm 4.4 below works with the matrices Wj rather than with their columns indi-
vidually. The notation of Algorithm 4.4 follows that of Algorithm 3.2. In particular,
the matrices Wj are stored in W .

Algorithm 4.4. Progressive GMRES.
Input: A ∈ R

n×n, F = [f1, f2, . . . , fs], G = [g1, g2, . . . , gs] ∈ R
n×s, b, x0 ∈ R

n;
Output: GMRES iterates xj ∈ R

n;
% initialization
1. r0 := b−Ax0; γ0 := ‖r0‖;
2. v1 := r0/γ0; z1 := x0/γ0;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

112 BERNHARD BECKERMANN AND LOTHAR REICHEL

% j = 1
3. F̂1,: := v∗1F ; Ĝ1,: := v∗1G;

4. p∗1 := F̂1,:; F̃ := v1F̂1,:; W := x0F̂1/γ0;

5. v′ := Av1 − F̃ Ĝ∗
1,:;

6. t1,1 := v∗1v
′; v′ := v′ − t1,1v1;

7. t2,1 := ‖v′‖; v2 := v′/t2,1;
8. τ1 := t∗1,1;

9. c1 := τ1/(|τ1|2 + t22,1)
1/2; s1 := t2,1/(|τ1|2 + t22,1)

1/2; γ1 := −s1γ0;
10. z2 := −(v1 + t∗1,1z1)/t2,1; x1 := s2

1x0 + γ1c
∗
1z2;

% j > 1
11. for j = 2, 3, . . . until convergence

12. F̂j,: := v∗jF ; Ĝj,: := v∗jG;

13. p∗j := −sj−1p
∗
j−1 + cj−1F̂j,:; F̃ := F̃ + vjF̂j,:; W := W + zjF̂j,:;

14. v′ := Avj − F̃ Ĝ∗
j,:;

15. tj−1,j := v∗j−1v
′; v′ := v′ − tj−1,jvj−1;

16. tj,j := v∗j v
′; v′ := v′ − tj,jvj; tj+1,j := ‖v′‖; vj+1 := v′/tj+1,j;

17. τj := cj−1tj,j − sj−1cj−2tj−1,j + p∗j Ĝ
∗
j,:;

18. cj := τj/(|τj |2 + t2j+1,j)
1/2; sj := tj+1,j/(|τj |2 + t2j+1,j)

1/2; γj := −sjγj−1;

19. zj+1 := −(vj + tj,jzj + tj−1,jzj−1 + WĜ∗
j,:)/tj+1,j;

20. xj := s2
jxj−1 + γjc

∗
jzj+1;

21. endfor
Iterations with GMRES are typically terminated when the residual vector (4.8)

is sufficiently small, e.g., when

‖rj‖/‖r0‖ ≤ ε(4.18)

for a user-specified value of ε. This stopping criterion can be easily evaluated, since
Algorithm 4.4 computes γj , with |γj | = ‖rj‖, in each iteration. If the residual vectors
are desired in each iteration, then one can add the relation (4.10) on line 10 (for j = 1)
and on line 20 of the algorithm. Stopping criteria of the type (4.18) have recently
been discussed by Paige et al. [13, 14]. In particular, the initial vector x0 should be
chosen so that ‖r0‖ ≤ ‖b‖ and preferably as the zero-vector.

In order to make the connection between Algorithm 4.4 and the preceding dis-
cussion clearer, vectors are equipped with subscripts in the algorithm. However, only
the most recently generated vectors p∗j and xj have to be stored simultaneously, and
only the two most recently generated vectors vj , vj−1 and zj , zj−1 have to be stored

at any given time. Only the jth rows of the matrices F̂ and Ĝ have to be stored
simultaneously. The matrices F̃ and W have to be stored and require n × s storage
locations each. Moreover, representations of the matrices A, F , and G have to be
stored. Ignoring the storage for the latter, the storage requirement for Algorithm 4.4
is bounded by (2s+ 6)n+O(sj) storage locations. The computational work per iter-
ation is bounded independent of j; it is O(n) flops in addition to the arithmetic work
required for the evaluation of Avj . In the special case when s = 0, Algorithm 4.4
simplifies to a minimal residual method for the solution of linear systems of equations
with a symmetric, possibly indefinite, matrix.

We conclude this section with a comment on FOM, an iterative method that is
closely related to GMRES; see Saad [15, section 6.4]. The jth iterate determined by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ARNOLDI PROCESS AND GMRES 113

FOM, xFOM
j ∈ x0 + Kj(A, r0), satisfies

b−AxFOM
j ⊥ Kj(A, r0).

From, e.g., [15, section 6.5.5] we know that the iterate xFOM
j exists if and only if

|sj | = ‖rj−1‖/‖rj‖ < 1, which is equivalent to cj �= 0, where sj and cj are entries of
the Givens rotation Ωj+1; see (4.4). In this case, the relation between xFOM

j and the
GMRES iterate xj is given by

xj = s2
j xj−1 + (1 − s2

j)x
FOM
j ;

see Saad [15, section 6.5.5] for details. A comparison with (4.10) shows that

xFOM
j =

γj
cj

zj+1,

i.e., the vectors zj+1 are FOM iterates up to normalization.

5. Computed examples. Linear systems of equations (1.2) with matrices of
the form

A =

[
A1,1 A1,2

A2,1 A2,2

]
∈ R

n×n,

with a symmetric leading principal submatrix A1,1 ∈ R
(n−�)×(n−�) and A1,2, A

∗
2,1 ∈

R
(n−�)×�, A2,2 ∈ R

�×�, arise in many applications. Example 5.1 outlines a path
following method that gives rise to matrices of this kind, and Examples 5.2–5.4 discuss
the solution of integral equations. All computations were carried out in MATLAB
with machine epsilon about 2 · 10−16.

Example 5.1. We are interested in computing the solution u of the nonlinear
boundary value problem

−Δu− λ exp(u) = 0 in S,(5.1)

u = 0 on ∂S(5.2)

as a function of the parameter λ, where Δ denotes the Laplacian, S the unit square,
and ∂S its boundary. This problem is known as the Bratu problem and is a common
test problem for path following methods. We discretize S by a uniform grid with
(�−1)2 interior grid points (sk, tk), where tk = sk = k/�, 1 ≤ k < �, and approximate
the Laplacian by the standard five-point stencil. This yields a system of (� − 1)2

nonlinear equations

G(w, λ) = 0,(5.3)

where the entries of the vector w ∈ R
(�−1)2 are approximations of the function u at

the grid points. Numerous techniques for computing w(λ) as λ is increased from, say,
λ0 to λ1 are available; see, e.g., [1, 5, 6] and the references therein.

The matrix ∂G/∂w is singular at turning points (w, λ) of the path λ → (w(λ), λ),
and one often introduces an auxiliary parameter η in order to be able to traverse
these points. Thus, let λ = λ(η) and assume that w(λ(η̂)) is available, where

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

114 BERNHARD BECKERMANN AND LOTHAR REICHEL

λ0 ≤ λ(η̂) ≤ λ1. We would like to determine λ(η̂ + δη) and w(λ(η̂ + δη)). Intro-
duce the function

L(w, λ, δη) = d∗(w − w(λ(η̂))) + c(λ− λ(η̂)) − δη(5.4)

for some d ∈ R
(�−1)2 and c ∈ R. The choice of d and c will be commented on below.

Let (w(j), λ(j)) be an available approximation of the solution of

G(w, λ) = 0,

L(w, λ, δη) = 0.
(5.5)

Newton’s method can be used to determine an improved approximation

(w(j+1), λ(j+1)) = (w(j) + δw, λ(j) + δλ)

of the solution (w(λ(η̂ + δη)), λ(η̂ + δη)) of (5.5), where δw and δλ satisfy[
G

(j)
w G

(j)
λ

d∗ c

][
δw

δλ

]
=

[
−G(j)

−L(j)

]
,(5.6)

with

G(j) = G(w(j), λ(j)), L(j) = L(w(j), λ(j), δη),

G
(j)
w = ∂

∂wG(w(j), λ(j)), G
(j)
λ = ∂

∂λG(w(j), λ(j)).

The vector d should be chosen to make the matrix in (5.6) nonsingular even when Gw is
singular. This allows simple turning points to be traversed. The parameter η is some-
times chosen to be arc length or pseudo–arc length of the curve λ → (w(λ), λ). The
quantities d, c in (5.4) then may be defined by, e.g., d = dw(λ(η̂))/dη, c = dλ(η̂)/dη.

To illustrate the performance of Algorithm 4.4, we discretize (5.1) on a uniform
grid with � = 26. The matrix in (5.6) then is of size 626×626. We choose λ = exp(η)−1
and seek to determine the solution of (5.5) with δη = 10, starting with w(0) = 0 and

λ(0) = 0, i.e., x0 = 0 in Algorithm 4.4. Then G
(0)
w is the negative discrete Laplacian,

G
(0)
λ = −[1, 1, . . . , 1]∗, G(0) = 0, and L(0) = −δη. We let c = 1 and, since ∂w/∂η

is the largest at the center of the unit square, we choose d = e(�−1)2/2. This defines
the matrix in (5.6), which we will refer to as A. It has skew-symmetric part of rank
s = 2; cf. (1.1). We choose

f1 = [1, 1, . . . , 1, 0]∗ − e(�−1)2/2, f2 = e(�−1)2+1, g1 = f2, g2 = −f1

in the computations.
Algorithm 4.4 reduces the residual error from 10 (= |δη|) to 1.84 · 10−7 in 50

iterations. In the present example, the numerical values of ‖b − Ax50‖, ‖r50‖ as
computed by (4.10), and |γ50| agree to at least five significant digits. Solution of (5.6)
by a direct method gave xdirect with ‖xdirect − x50‖ = 1.42 · 10−10. Let x′

50 denote
the approximate solution determined by standard GMRES,1 and let r′50 = b− Ax′

50.
Then ‖r′50‖ = 1.84 ·10−7, ‖xdirect−x′

50‖ = 1.42 ·10−10, and ‖x′
50−x50‖ = 4.90 ·10−12.

1Standard GMRES refers to the commonly used GMRES implementation based on the Arnoldi
process with orthogonalization of the Arnoldi vectors by the modified Gram–Schmidt method.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ARNOLDI PROCESS AND GMRES 115

0 5 10 15 20 25 30 35 40 45 50
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

GMRES
GMRES(10)
fast GMRES (exact)
fast GMRES (recursive)

Fig. 5.1. Residual norms for Algorithm 4.4 applied to the data of Example 5.1. For comparison,
we show both the norm of the exact residuals ‖b − Axk‖ (symbol �) and the recursively computed
residual norms |γk| (symbol �), as well as the norm of the residuals r′k (symbol ◦) obtained by
standard GMRES, which are all of the same size. In contrast, restarted GMRES(10) (symbol ×)
fails to converge.

Figure 5.1 shows the residual errors for standard GMRES and Algorithm 4.4.
Let xk denote the iterates computed by Algorithm 4.4 and let γk be the recursively
evaluated quantities in the algorithm, such that (in exact arithmetic) |γk| = ‖b−Axk‖.
Figure 5.1 displays |γk|, referred to as fast GMRES (recursive), as well as the evaluated
norms ‖b − Axk‖, referred to as fast GMRES (exact), for 0 ≤ k ≤ 50. The |γk| are
seen to be accurate approximations of ‖b−Axk‖. Moreover, the latter quantities are
of the same size as the residual norms produced by standard GMRES.

Convergence is slow during the first 15 iterations and can be sped up by the use
of a preconditioner. Note that a symmetric positive definite preconditioner would not
change the rank of the skew-symmetric part.

Algorithm 4.4 requires about the same computer storage as GMRES restarted
every 2s+6 iterations. The latter method is referred to as restarted GMRES(2s+6).
We also compare Algorithm 4.4 to restarted GMRES(2s+6). For the present example
restarted GMRES(2s + 6) with s = 2 fails to converge; see Figure 5.1.

Both standard and restarted GMRES are implemented using modified Gram–
Schmidt orthogonalization of the Arnoldi vectors. Algorithm 4.4 explicitly orthog-
onalizes each new Arnoldi vector vk+1 only against the two most recently gener-
ated vectors, vk and vk−1. Therefore, the orthogonality properties of the matrices
Vk = [v1, v2, . . . , vk] determined by standard GMRES and Algorithm 4.4 in finite
precision arithmetic may differ. Figure 5.2 displays the quantities ‖Ik − V ∗

k Vk‖2, for
1 ≤ k ≤ 50, for matrices Vk determined by standard GMRES and Algorithm 4.4. In
this example, the columns of the matrices Vk determined by Algorithm 4.4 are closer
to orthonormal than those determined by standard GMRES.

Example 5.2. The integral equation

γ u(α) +
1

π

∫ 1

−1

d

d2 + (α− β)2
u(β)dβ = f(α), −1 ≤ α ≤ 1,(5.7)

with γ = 1 and d a positive constant, is known as Love’s integral equation. It arises
in electrostatics; see, e.g., Baker [3, p. 258]. Let f(α) = (1 + α)1/2, let d = 1/10, and
discretize (5.7) by a Nyström method based on the composite trapezoidal rule with

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

116 BERNHARD BECKERMANN AND LOTHAR REICHEL

0 5 10 15 20 25 30 35 40 45 50
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

GMRES
fast GMRES

Fig. 5.2. Orthonormality of the Arnoldi vectors for Example 5.1: ‖Ik − V ∗
k Vk‖2 as a function

of k for Algorithm 4.4 (symbol �) and standard GMRES (symbol ◦).

0 2 4 6 8 10 12
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

GMRES
GMRES(14)
fast GMRES (exact)
fast GMRES (recursive)

Fig. 5.3. Residual norms for Algorithm 4.4 applied to the data of Example 5.2. For comparison,
we show both the norm of the exact residuals ‖b−Axk‖ (symbol �) and the recursive residual norms
|γk| (symbol �), which are of the same size. The norm of the residuals r′k obtained by standard
GMRES (symbol ◦) and by restarted GMRES(14) (symbol ×) are also displayed.

equidistant nodes αk = βk = (k− 1)/(n− 1), 1 ≤ k ≤ n, n = 300. This gives a linear
system of equations with a matrix of the form

A = γI + KD,(5.8)

where K is a symmetric Toeplitz matrix and D = diag[1/2, 1, 1, . . . , 1, 1/2]. The
skew-symmetric part of A therefore is of rank s = 4. The memory requirement of
Algorithm 4.4 is about the same as for restarted GMRES(14).

Figure 5.3 shows the residual errors for Algorithm 4.4 as given by |γk| and
‖b−Axk‖ for 0 ≤ k ≤ 12, as well as the corresponding residual errors for standard
GMRES. The initial approximate solution is x0 = 0. The iterations are terminated as
soon as the residual error for standard GMRES is of norm smaller than 1 · 10−12.
Convergence is rapid both for Algorithm 4.4 and standard GMRES, and the methods
produce iterates with residual errors of nearly the same size.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ARNOLDI PROCESS AND GMRES 117

0 2 4 6 8 10 12
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

GMRES
fast GMRES

Fig. 5.4. Orthonormality of the Arnoldi vectors for Example 5.2: ‖Ik − V ∗
k Vk‖2 as a function

of k for Algorithm 4.4 (symbol �) and standard GMRES (symbol ◦).

Figure 5.4 is analogous to Figure 5.2 and shows that the Arnoldi vectors generated
by Algorithm 4.4 are slightly closer to being orthonormal than the Arnoldi vectors
determined by standard GMRES.

The nonsymmetric matrix KD in (5.8) is the discretization of a compact integral
operator. It has many eigenvalues close to the origin. Therefore the matrix (5.8)
has many eigenvalues close to γ, which has the value one in Example 5.2. In the
following examples, we will reduce γ. This reduces the rate of convergence and illus-
trates that, differently from Examples 5.1 and 5.2, the Arnoldi vectors determined by
Algorithm 4.4 may be less close to orthonormal than the Arnoldi vectors determined
by the Arnoldi process in the standard GMRES implementation.

Example 5.3. We modify the integral equation (5.7) of Example 5.2 by setting
γ = 0.1. This change of γ reduces the rate of convergence. Discretization is carried
out in the same manner as in Example 5.2. We use the same initial approximate
solution and stopping criterion as in Example 5.2.

Figure 5.5 displays the norm of the residual errors for Algorithm 4.4, standard
GMRES, and restarted GMRES(14) and is analogous to Figure 5.3. Figure 5.5 shows
the residual errors r21 and r22 determined by Algorithm 4.4 to be of slightly larger
norm than the corresponding residual errors determined by standard GMRES. The
cause for this can be found in Figure 5.6(a), which shows the quantities ‖Ik −V ∗

k Vk‖2

for 1 ≤ k ≤ 22. The figure shows the Arnoldi vectors computed by Algorithm 4.4
to be slightly less close to orthonormal than are the Arnoldi vectors determined by
standard GMRES.

Figure 5.6(b) displays ‖Im+1 − V ∗
m−k:kVm−k:k‖2 as a function of k for m =

1, 2, . . . , 5, thus measuring the orthonormality between the last m+1 Arnoldi vectors
computed by Algorithm 4.4. Orthonormality is lost fairly rapidly for m ≥ 3.

Example 5.4. We modify the integral equation (5.7) of Examples 5.2 and 5.3 by
setting γ = 0.01. This change of γ reduces the rate of convergence compared with
Example 5.3. Discretization is carried out in the same manner as in Examples 5.2
and 5.3, and we use the same initial approximate solution and stopping criterion as
in those examples.

Figure 5.7 displays the norm of the residual errors for Algorithm 4.4, standard
GMRES, and restarted GMRES(14) and is analogous to Figure 5.5. Figure 5.7 shows

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

118 BERNHARD BECKERMANN AND LOTHAR REICHEL

0 2 4 6 8 10 12 14 16 18 20 22
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

GMRES
GMRES(14)
fast GMRES (exact)
fast GMRES (recursive)

Fig. 5.5. Residual norms for Algorithm 4.4 applied to the data of Example 5.3. For comparison,
we display both the norm of the exact residuals ‖b − Axk‖ (symbol �) and the recursive residual
norms |γk| (symbol �), which are of the same size, and slightly smaller than those obtained for
restarted GMRES(14) (symbol ×). The norms of the residuals r′k determined by standard GMRES
(symbol ◦) are somewhat smaller for k ≥ 21.

0 2 4 6 8 10 12 14 16 18 20 22
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

GMRES
fast GMRES

0 2 4 6 8 10 12 14 16 18 20 22
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

1
2
3
4
5

(a) (b)

Fig. 5.6. Orthonormality of the Arnoldi vectors for Example 5.3: (a) ‖Ik − V ∗
k Vk‖2 as a

function of k for Algorithm 4.4 (symbol �) and standard GMRES (symbol ◦). (b) From bottom to
top, ‖Im+1 − V ∗

m−k:kVm−k:k‖2 as a function of k for m= 1, 2, . . . , 5 for Algorithm 4.4.

Algorithm 4.4 to reduce the norm of the residual error slower than standard GMRES,
but faster than restarted GMRES(14).

The reason for the slower convergence of Algorithm 4.4 is the loss of orthonor-
mality of the Arnoldi vectors generated by the algorithm. The latter is illustrated by
Figures 5.8.

Examples 5.3 and 5.4 illustrate that the iterates determined by Algorithm 4.4 may
converge slower to the solution than the iterates determined by standard GMRES.
A reason for this appears to be that the Arnoldi vectors generated by Algorithm 4.4
may be far from orthonormal; see Example 5.4. The loss of orthogonality and its effect
on the convergence of GMRES has received considerable attention in the literature;
see, e.g., [8, 10, 13, 14, 16, 17]. For instance, Simoncini and Szyld [16] recently pointed
out that loss of orthogonality does not prevent a near-optimal rate of convergence,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ARNOLDI PROCESS AND GMRES 119

0 5 10 15 20 25 30 35
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

GMRES
GMRES(14)
fast GMRES (exact)
fast GMRES (recursive)

Fig. 5.7. Residual norms for Algorithm 4.4 applied to the data of Example 5.3. For comparison,
we show both the norm of the exact residuals ‖b−Axk‖ (symbol �) and the recursive residual norms
|γk| (symbol �), which are of the same size, and smaller than those obtained by restarted GMRES(14)
(symbol ×). The norms of the residuals r′k obtained by the standard GMRES (symbol ◦) are much
smaller for k ≥ 30.

0 5 10 15 20 25 30 35
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

GMRES
fast GMRES

0 5 10 15 20 25 30 35
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

1
2
3
4
5

(a) (b)

Fig. 5.8. Orthonormality of the Arnoldi vectors for Example 5.3: (a) ‖Ik − V ∗
k Vk‖2 as a

function of k for Algorithm 4.4 (symbol �) and standard GMRES (symbol ◦). (b) From bottom to
top, ‖Im+1 − V ∗

m−k:kVm−k:k‖2 as a function of k for m= 1, 2, . . . , 5 for Algorithm 4.4.

provided that each new Arnoldi vector generated has a sufficiently large angle with
the space spanned by the already available Arnoldi vectors. Example 5.4 suggests
that the loss of orthogonality also may reduce this angle.

6. Conclusion. Linear systems of equations with a matrix that satisfies (1.1)
with a small value of s arise in a variety of applications. For many, but not all, linear
systems of equations of this kind, Algorithm 4.4 converges like standard GMRES,
but requires less computer storage and arithmetic work. In all our experiments,
Algorithm 4.4 converges faster than restarted GMRES(2s+6), which demands roughly
the same amount of computer storage as Algorithm 4.4.

Acknowledgment. We would like to thank a referee for comments.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

120 BERNHARD BECKERMANN AND LOTHAR REICHEL

REFERENCES

[1] E. L. Allgower and K. Georg, Numerical Continuation Methods, Springer, Berlin, 1990.
[2] G. Arnold, N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, Th. Lippert, and

K. Schäfer, Numerical methods for the QCD overlap operator II: Optimal Krylov sub-
space methods, in QCD and Numerical Analysis III, A. Boricci, A. Frommer, B. Joó,
A. Kennedy, and B. Pendleton, eds., Lect. Notes Comput. Sci. Eng. 47, Springer, Berlin,
2005, pp. 153–167.

[3] C. T. H. Baker, Numerical Treatment of Integral Equations, Clarendon Press, Oxford, 1977.
[4] T. Barth and T. Manteuffel, Multiple recursion conjugate gradient algorithms, part I: Suf-

ficient conditions, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 768–796.
[5] D. Calvetti and L. Reichel, Iterative methods for large continuation problems, J. Comput.

Appl. Math., 123 (2001), pp. 217–240.
[6] C.-S. Chen, N.-H. Lu, and Z.-L. Weng, Conjugate gradient methods for continuation prob-

lems II, J. Comput. Appl. Math., 62 (1995), pp. 197–216.
[7] P. Concus and G. H. Golub, A generalized conjugate gradient method for nonsymmetric

systems of linear equations, in Computing Methods in Applied Science and Engineering,
R. Glowinski and J. L. Lions, eds., Springer, New York, 1976, pp. 56–65.

[8] J. Drkosova, A. Greenbaum, M. Rozloznik, and Z. Strakos, Numerical stability of GM-
RES, BIT, 35 (1995), pp. 309–330.

[9] Yu. Eidelman, I. Gohberg, and V. Olshevsky, The QR iteration method for Hermitian qua-
siseparable matrices of an arbitrary order, Linear Algebra Appl., 404 (2005), pp. 305–324.

[10] A. Greenbaum, M. Rozloznik, and Z. Strakos, Numerical behavior of the modified Gram-
Schmidt GMRES implementation, BIT, 37 (1997), pp. 706–719.

[11] C. Jagels and L. Reichel, The isometric Arnoldi process and an application to iterative
solution of large linear systems, in Iterative Methods in Linear Algebra, R. Beauwens and
P. de Groen, eds., Elsevier, Amsterdam, 1992, pp. 361–369.

[12] C. Jagels and L. Reichel, A fast minimal residual algorithm for shifted unitary matrices,
Numer. Linear Algebra Appl., 1 (1994), pp. 555–570.

[13] C. C. Paige, M. Rozložńik, and Z. Strakoš, Modified Gram–Schmidt (MGS), least
squares, and backward stability of MGS-GMRES, SIAM J. Matrix Anal. Appl., 28 (2006),
pp. 264–284.

[14] C. C. Paige and Z. Strakoš, Residual and backward error bounds in minimum residual Krylov
subspace methods, SIAM J. Sci. Comput., 23 (2002), pp. 1898–1923.

[15] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[16] V. Simoncini and D. B. Szyld, The effect of non-optimal bases on the convergence of Krylov

subspace methods, Numer. Math., 100 (2005), pp. 711–733.
[17] Z. Strakoš and J. Liesen, On numerical stability in large scale linear algebraic computations,

Z. Angew. Math. Mech., 85 (2005), pp. 307–325.
[18] O. Widlund, A Lanczos method for a class of nonsymmetric systems of linear equations, SIAM

J. Numer. Anal., 15 (1978), pp. 801–812.

