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 SIAM REVIEW

 Vol. 15, No. 2, April 1973

 SOME MODIFIED MATRIX EIGENVALUE PROBLEMS*

 GENE H. GOLUBt

 Dedicated to the memory of Professor H. Rutishauser

 Abstract. We consider the numerical calculation of several matrix eigenvalue problems which

 require some manipulation before the standard algorithms may be used. This includes finding the
 stationary values of a quadratic form subject to linear constraints and determining the eigenvalues of a
 matrix which is modified by a matrix of rank one. We also consider several inverse eigenvalue problems.
 This includes the problem of determining the coefficients for the Gauss-Radau and Gauss-Lobatto

 quadrature rules. In addition, we study several eigenvalue problems which arise in least squares.

 Introduction and notation. In the last several years, there has been a great
 development in devising and analyzing algorithms for computing eigensystems
 of matrix equations. In particular, the works of H. Rutishauser and J. H. Wilkinson
 have had great influence on the development of this subject. It often happens in
 applied situations that one wishes to compute the eigensystem of a slightly
 modified system or one wishes to specify some of the eigenvalues and then compute
 an associated matrix. In this paper we shall consider some of these problems and
 also some statistical problems which lead to interesting eigenvalue problems.
 In general, we show how to reduce the modified problems to standard eigenvalue
 problems so that the standard algorithms may be used. We assume that the reader
 has some familiarity with some of the standard techniques for computing eigen-
 systems.

 We ordinarily indicate matrices by capital letters such as A, B, X; vectors by
 boldface lower-case letters such as x, y, a, and scalars by lower-case letters. We
 indicate the eigenvalues of a matrix as A(X) where X may be an expression, e.g.,
 A(A2 + I) indicates the eigenvalues of A2 + I, and in a similar fashion we indicate
 the singular values of a matrix by v(X). We assume that the reader has some

 familiarity with singular values (cf. [9]). Usually we order the singular values
 5(A) = [,'(ATA)]1/2 of a matrix A so that a1(A) ? a2(A) ? ... < a(A) and if A
 is symmetric, the eigenvalues so that 21(A) < 22(A) ? ... ? n(A).

 1. Stationary values of a quadratic form subject to linear constraints. Let A
 be a real symmetric matrix of order n, and c a given vector with cTc = 1.

 In many applications (cf. [10]) it is desirable to find the stationary values of

 (1.1) xTAx

 subject to the constraints

 (1.2) xTx = 1,

 (1.3) cTx = 0.

 * Received by the editors September 8, 1971.
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 MODIFIED MATRIX EIGENVALUE PROBLEMS 319

 Let

 (1.4) (p(x, A, u) = xTAx - A(xTx - 1) + 2xTc,

 where A, p are Lagrange multipliers. Differentiating (1.4), we are led to the equation

 (1.5) Ax- Ax + c = O.

 Multiplying (1.5) on the left by CT and using the condition that 11c 12 = 1, we have

 (1.6) It = -cTAx.

 Then substituting (1.6) into (1.5), we obtain

 (1.7) PAx = Ax,

 where P = I -ccT. Although P and A are symmetric, PA is not necessarily so.

 Note that p2 = p, so that P is a projection matrix.

 It is well known (cf. [14, p. 54]) that for two arbitrary square matrices G and H,
 the eigenvalues of GH equal the eigenvalues of HG. Thus,

 A(PA) = A(P2A) = A(PAP).

 The matrix PAP is symmetric and hence one can use one of the standard algorithms
 for finding its eigenvalues. Then if

 K = PAP

 and if

 Kzi =Azi

 it follows that

 xi =Pzj, i = 1, 2, n,

 where xi is the eigenvector which satisfies (1.7). At least one eigenvalue of K will
 be equal to zero, and c will be an eigenvector associated with a zero eigenvalue.

 Now suppose we replace the constraint (1.3) by the set of constraints

 (1.8) CTx = 0,

 where C is an n x p matrix of rank r. It can be verified that if

 (1.9) P = I - CC-,

 where C- is a generalized inverse which satisfies

 (1.10) cc-C = C, CC = (CC )T,

 then the stationary values of XTAx subject to (1.2) and (1.8) are eigenvalues of
 K = PAP. At least r of the eigenvalues of K will be equal to zero, and hence it

 would be desirable to deflate the matrix K so that these eigenvalues are eliminated.
 By permuting the columns of C, we may compute the orthogonal decomposi-

 tion

 R S

 (1.1 l) ~~~~C = QT O O II
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 320 GENE H. GOLUB

 where R is an upper triangular matrix of order r, S is r x (p - r), QTQ = I,, and
 171 is a permutation matrix. The matrix Q may be constructed as the product of r

 Householder transformations (cf. [8]). A simple calculation shows

 (1.12) p = QTL In-r]Q QTJQ

 and thus

 A(PAP) = A(QTJQAQTJQ) = (JQAQTj).

 Then if

 (1.13) G = QAQT G FGT G ] LG2 G22j

 where G11 is an r x r matrix and G22 is an (n - r) x (n - r) matrix,

 JQAQT J= 0 G221

 Hence the stationary values of xTAx subject to (1.2) and (1.8) are simply the eigen-
 values of the (n - r) x (n - r) matrix G22. Finally, if

 G22Zi = AiZi, i = 1,2, , n -r

 then

 Xi = QT In-r Zi.

 The details of the algorithm are given in [10].

 From (1.13) we see that A(G) = A(A). Then by the Courant-Fischer theorem
 (cf. [14, p. 101]),

 (1.14) Aj(A) < Aj(G22) <_ Ar+j(A), j = 1, 2, , n-

 when

 (A) < j+ 1(A) and Lj(G22) ? Aj+ (G22)

 Furthermore, if the columns of the matrix C span the same space as the r eigen-
 vectors associated with the r smallest eigenvalues of A,

 (1.15) Aj(G22) = ALr+j(A).

 Thus, we see that there is a strong relationship between the eigenvalues of A and
 the stationary values of the function

 (1.16) (p(x, A, j) = xT Ax - X(XTX - 1) + 2 tTCTX,

 where it is a vector of Lagrange multipliers.

 2. Stationary values of a bilinear form subject to linear constraints. Now let us
 consider the problem of determining the nonnegative stationary values of

 (2.1) (XTAy)/(IIx11211Y112)
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 MODIFIED MATRIX EIGENVALUE PROBLEMS 321

 where A is an m x n matrix, subject to the constraints

 (2.2) CTx = O, D Ty = O.

 The nonnegative stationary values of (2.1) are the singular values of A (i.e., v(A)
 = [A(ATA)] 1/2). It is easy to verify that the nonnegative stationary values of (2.1)
 subject to (2.2) are the singular values of

 (2.3) PCAPD,
 where

 PC = I-CC, PD= I-DD-.

 The singular values of PcAPD can be computed using the algorithm given in [9].
 Again it is not necessary to compute the matrices PC and PD explicitly. If,

 as in (1.1 1),

 C QTC c ] fc D = QT RD SD>

 then

 PC = QC 0 I QC C

 PD= QDLo I lQD QDJDQD,
 [ In-s]

 where r is the rank of C and s is the rank of D. Then

 a(PCAPD) = a(QCJCQCAQ DJDQD)

 = a(JCQCAQTJD).

 Hence if

 G =QcAQT= L Gll Gl2] G21 G22j

 where G1, is r x sand G22 is (m- r) x (n - s), then

 JcQcA QDJD LO G22

 Thus the desired stationary values are the singular values of G22.

 3. Some inverse eigenvalue problems. Suppose we are given a symmetric

 matrix A with eigenvalues {k}i.=1 ((i < ki+,) and we are given a set of values
 {n}i-1 (ki < ki+1) with

 (3.1) Ai < Ri < Ai+
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 322 GENE H. GOLUB

 We wish to determine the linear constraint cTx = 0 so that the stationary values
 of xTAx subject to xTx = 1 and cTx = 0 (CTC = 1) are the set of{ti}i'j. From (1.5)
 we have

 x= -,u(A -I)-'c,

 and hence,

 (3.2) CTX = -,icT(A - AI) c = 0.

 Assuming ,u : 0, and given A = QAQT where A is the diagonal matrix of eigen-
 values of A and Q is the matrix of orthonormalized eigenvectors, substitution into
 (3.2) gives

 (3.3a) , dA =0

 with
 n

 (3.3b) d = 1

 where Qd = c. Setting A = Xj, j = 1, 2, , n - 1, then leads to a system of
 linear equations defining the di. We shall, however, give an explicit solution to
 this system.

 Let the characteristic polynomial be

 n-1

 (3.4) (P(A) = l (2i - A)
 j=l

 We convert the rational form (3.3a) to a polynomial,

 n n d2

 (AGj) H 1k (Ai- A)))
 (3.5) n)J

 = di2 H (Aj A).
 i=1 j=1

 j#i

 We wish to compute d (dTd = 1) so that #(i) -({). Then let us equate the
 two polynomials at n points. Now

 n-1

 9P(Ak) = H) (X -
 j= 1

 n

 0I(4k) = dk H1 ( -ik)
 j=1
 jik

 Hence (P(9k) = A V(k) for k = 1, 2, , n, if

 (3.6) d 2 ,i H k (kj -k)
 H> 1,J k (Ai - Ak)

 The condition (3.1) guarantees that the right-hand side of (3.6) will be positive.
 Note that we may assign dk a positive or negative value so that there are 2n different
 solutions. Once the vector d has been computed, it is an easy matter to compute c.
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 MODIFIED MATRIX EIGENVALUE PROBLEMS 323

 We have seen in ? 1 that the stationary values of (1. 16) interlace the eigenvalues

 of A. In certain statistical applications [4] the following problem arises. Given a
 matrix A and an n x p matrix C, we wish to find an orthogonal matrix H so that

 the stationary values of

 (3.7) (p(x, A, Ft) = xTAx - A(XTX - 1) + itT(HC)Tx

 are equal to the n - r largest eigenvalues of A.

 As was pointed out in the last paragraph of ? 1, the stationary values of (3.7)

 will be equal to the n - r largest eigenvalues of A providing the columns of HC

 span the space associated with the r smallest eigenvalues of A. For simplicity,

 we assume that rank (C) = p. From (1.11), we see that we may write

 C=Q QT].

 Let us assume that the columns of some n x p matrix V span the same space as

 eigenvectors associated with the p smallest eigenvalues. We can construct the

 decomposition

 where WTW _ In and S is upper triangular. Then the constraints

 (HC)TX = 0

 are equivalent to

 [RT .O]QH x = 0,

 and thus if H is chosen to be

 H = WTQ,

 the stationary values of (3.7) will be equal to the n - p largest eigenvalues of A.

 4. Intersection of spaces. Suppose we are given two symmetric n x n matrices
 A and B with B positive definite and we wish to compute the eigensystem for

 (4.1) Ax = ABx.

 One ordinarily avoids computing C = B-'A since the matrix C is usually not
 symmetric. Since B is positive definite, it is possible to compute a matrix F such
 that

 FTBF = I

 and we can verify from the determinantal equation that

 A(FTAF) = A(B -1A).

 The matrix FTAF is symmetric and hence one of the standard algorithms may be
 used for computing its eigenvalues.
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 324 GENE H. GOLUB

 Now let us consider the following example. Suppose

 F 0 0 1 10 0
 A= 0 1 0 , B= 0 E 0

 L_?ol L0 0 01
 where E is a small positive value. Note B is no longer positive definite. When

 x= [1, 0, 0], then Ax = Bx and hence A = 1. When xT [0, 1, 0], then
 Ax = P-'Bx. Here A = -' and hence as E gets arbitrarily small, A(E) becomes
 arbitrarily large. This eigenvalue is unstable; such problems have been carefully

 studied by Fix and Heiberger [5]. Finally for xT = [0, 0, 1], Ax = ABx for all
 values of A. Thus we have the situation of continuous eigenvalues. We shall now
 examine ways of eliminating the problem of continuous eigenvalues.

 The eigenvalue problem Ax = ABx can have continuous eigenvalues if the
 null space associated with A and the null space associated with B intersect. There-
 fore we wish to determine a basis for the intersection of these two null spaces.
 Let us assume we have determined X and Y so that

 AX = 0, BY= 0

 with

 (4.2) XTX = I , and yTy= Iq.

 Let

 (4.3) Z = [X Y].

 Suppose H is an n x v basis for the null space of Z with

 E
 H = .. F

 where E is p x v and F is q x v. Then

 ZH = XE + YF = O.

 Hence the nullity of Z determines the rank of the basis for the intersection of the
 two spaces.

 Consider the matrix

 L = ZTZ.

 Note nullity(L) = nullity(Z). From (4.3), we see that

 (4.4) L= LyTX Xp] -Ip+q + KT ] p+q+ W.

 Since A(L) = A(I + W) = 1 + A(W),

 (4.5) A(L) = 1 ? a(T).

 Therefore, if aj(T) = 1 for j = 1, 2, . , t, from (4.5) we see that the nullity (L) = t.
 Consider the singular value decomposition of the matrix

 T = XTY = UEVT,
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 MODIFIED MATRIX EIGENVALUE PROBLEMS 325

 where

 U = [u1, , up], V = [V1, * X Vq]-

 The matrices X = XU and Y= Y V yield orthonormal bases for the null space

 of the matrices A and B, respectively. Since v(T) = 1 for j = 1, ... t,

 xj = Xui = Yvi = yi for j = 1, , t,

 and thus the vectors {i}Rj= 1 yield a basis for the intersection of the two spaces.
 The singular values of XTY can be thought of as the cosines between the

 spaces generated by X and Y. An analysis of the numerical methods for computing
 angles between linear subspaces is given in [2]. There are other techniques for

 computing a basis for the intersection of the subspaces, but the advantage of this
 method is that it also gives a way of finding vectors which are almost in the inter-

 section of the subspaces.

 5. Eigenvalues of a matrix modified by a rank one matrix. It is sometimes

 desirable to determine some eigenvalues of a diagonal matrix which is modified
 by a matrix of rank one. In this section, we give an algorithm for determining in
 0(n2) numerical operations some or all of the eigenvalues and eigenvectors of
 D + CUUT, where D = diag (di) is a diagonal matrix of order n.

 Let C = D + oUUT; we denote the eigenvalues of C by X1,A2, ... *, An and
 we assume i <Ai+ 1 and di ? di+ 1. It can be shown (cf. [14]) that

 (i) if a ? 0,

 di. < Ai)di+19 <192, n

 dn _ n d + ?auTu;

 (ii) if a 0 O,

 di-_ <i <di i=2, = 2 n,

 d, + auTu ? Al ? dl.

 Thus, we have precise bounds on each of the eigenvalues of C.
 The eigenvalues of the matrix C satisfy the equation

 det (D + 6UUT - I) = 0,

 which after some manipulation can be shown to be equivalent to the characteristic

 equation

 n n n

 (5.1) (Pn(lW=I (di -A) + af E ui2 Fl (dj - A) = O.
 i=1 i=1 j=1

 jWi

 Now if we write

 k k k

 Pk('i) = H (di - A) + a E u0 H (dj -A)
 i=l i=l j=l

 j#i
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 326 GENE H. GOLUB

 then it is easy to verify that

 (Pk+ l(A) = (dk+ - A)(Pk(A) + UUk2+ lk(.) k = 0, 1, , n - 1,
 (5.2)k1k J) n-

 Qk() = (dk - A*k-l(A) k = 1, 2, n -
 with

 Vo(A) = 90() = 1.
 Thus it is a simple matter to evaluate the characteristic equation for any value of A.

 Several well-known methods may be used for computing the eigenvalues of C.

 For instance, it is a simple matter to differentiate the expressions (5.2) with respect

 to A and hence determine p(At) for any value of A. Thus Newton's method can be
 used in an effective manner for computing the eigenvalues.

 An alternative method has been given in [1] and we shall describe that tech-

 nique. Let K be a bidiagonal matrix of the form

 1 r1

 1 r2 0

 K~~

 O rn-1

 and let M = diag (i). Then KMKT is a symmetric tridiagonal matrix with elements
 {Ikrk - 1 , (Ik + tk + 1 rk2),k+ 1rn= r

 kjkik=1, ro = rn= Yn1= 0.
 Consider the matrix equation

 (5.3) (D + auuT)x = Ax.

 Multiplying (5.3) on the left by K and letting x = KTy, we have

 K(D + auuT)K Ty = AKK Ty

 or

 (KDKT + aKuuTKT)y = AKKTy.

 Let us assume that we have reordered the elements of u (and hence of D, also) so

 that

 u1 = u2 = =uP = 0 and 0 < lupl < jup+11 < <u.I.

 Now it is possible to determine the elements of K so that

 0

 (5.4) Ku =

 0

 Un
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 MODIFIED MATRIX EIGENVALUE PROBLEMS 327

 Specifically,

 f0 for i < p,

 i -uilui + 1for i > p,

 and we note Iril ? 1. Therefore, if Ku satisfies (5.4), we see that KDKT + UKuuTKT
 is a symmetric tridiagonal matrix and so is KKT. Thus we have a problem of the

 form Ay = ABy, where A and B are symmetric, tridiagonal matrices and B is
 positive definite.

 Peters and Wilkinson [13] have shown how linear interpolation may be used

 effectively for computing the eigenvalues of such matrices when the eigenvalues

 are isolated. The algorithm makes use of det (A - AB) which is quite simple
 to compute when A and B are tridiagonal. Once the eigenvalues have been com-

 puted it is easy to compute the eigenvectors by inverse iteration. Even if several

 of the eigenvalues are equal, it is often possible to compute accurate eigenvectors.

 This can be accomplished by choosing the initial vector in the inverse iteration
 process to be orthogonal to all the previously computed eigenvectors and by

 forcing the computed vector after the inverse iteration to be orthogonal to the
 previously computed eigenvectors. In some unusual situations, however, this

 procedure may fail.

 Another technique which is useful for finding the eigenvalues of (5.3) is to

 note that if ui # 0 for i = 1, 2, * , n, then

 det (D + UUUT - AI) = det (D - AI) det (I + o(D -I- -IuuT)

 = Hl (di-X)(1+ aZ . E (d - )

 Thus, the eigenvalues of (5.3) can be computed by finding the zeros of the secular

 equation

 w)(X)=1 + aI (di - )

 6. Least squares problems. In this section we shall show how eigenvalue
 problems arise in linear least squares problems. The first problem we shall con-

 sider is that of performing a fit when there is error in the observations and in the

 data. The approach we take here is a generalization of the one in [9]. Let A be a

 given m x n matrix and let b be a given vector with m components. We wish to

 construct a vector x which satisfies the constraints

 (6.1) (A + E)x= b + 6

 and for which

 (6.2) IIP[E S]Qll = minimum,

 where P is a given diagonal matrix with pi > 0, Q is a given diagonal matrix with
 qj > 0, and 11 indicates the Euclidean norm of the matrix. We rewrite (6.1)
 as

 [A b] + [E.6]L =O,
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 328 GENE H. GOLUB

 or equivalently as

 (6.3) By + Fy = 0,

 where

 x
 (6.4) B= [A.b]Q, F= [E.S]Q, y = QL _

 Our problem now is to determine y so that (6.3) is satisfied, and

 IIPF 11= minimum.

 Again we use Lagrange multipliers as a device for minimizing IIPFII subject
 to (6.3).

 Consider the function

 m n+ 1 m n+ 1

 (6.5) (pF, y, k) = E pifi2- -2 E Ai E y i+tiY
 i=1 j=1 i=1 j=1

 Then

 8fr. = 2P frs - 2,rYs

 so that we have a stationary point of (6.5) when

 (6.6) P2F = kyT.

 Note that the matrix F must be of rank one. Substituting (6.6) into (6.3) we have

 k =P2B y/(yTy),

 and hence,

 PF = -PByyT/(yTy).

 Thus,

 || PF ||= yTBTp2By/(yTy)

 and hence 11PF 1 = minimum when A is the eigenvector associated with the smallest
 eigenvalue of BTP2B. Of course a more accurate procedure is to compute the
 smallest singular value of PB.

 Then, in order to compute x, we perform the following calculations:

 (a) Form the singular value decomposition of PB, viz.,

 PB = UXVT.

 (It is generally not necessary to compute U.)
 (b) Let v be the column vector of V associated with umin(PB) so that v = 5.

 Compute

 z= Qv.

 (c) From (6.4),
 x- 1

 [-] = - zn+ 1
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 MODIFIED MATRIX EIGENVALUE PROBLEMS 329

 Note that minm PF = amin(PB), and that

 [E . 6] = - [A:. b]vv'Q-

 The solution will not be unique if the smallest singular value is multiple.

 Furthermore, it will not be possible to compute the solution if z,, + 1 = 0. This will

 occur, for example, if P = I,, Q = I,,, 1, ATb = 0 and amin(A) < 11b112 .
 Another problem which arises frequently is that of finding a least squares

 solution with a quadratic constraint; we have considered this problem previously
 in [1]. We seek a vector x such that

 (6.7) Ilb - AxI2 = minimum

 with the constraint that

 (6.8) lIX112 = Lo

 The condition (6.8) is frequently imposed when the matrix A is ill-conditioned.
 Now let

 (6.9) q(x, oc) = (b - Ax)T(b - Ax) + A(xTx _ -2)

 where A is a Lagrange multiplier. Differentiating (6.9), we are led to the equation

 (6.10) ATAx - ATb + Ax = 0

 or

 (6.11) (ATA + XI)x = ATb.

 Note that (6.10) represents the usual normal equations that arise in the linear least
 squares problem, with the diagonal elements of ATA shifted by A. The parameter A
 will be positive when

 ac < 11A+b112,

 and we assume that this condition is satisfied.

 Since x = (ATA + AI)- 1ATb, we have from (6.8) that

 (6.12) bTA(ATA + AI)-2ATb _ 2- = 0.

 By repeated use of the identity

 detLz Wj = det (X) det (W - ZX Y) if det (X) = 0,

 we can show that (6.12) is equivalent to the equation

 (6.13) det ((ATA + XJ)2- c2ATbbTA) = 0.

 Finally if A = US VT, the singular value decomposition of A, then

 (6.14) ATA= VDVT, VTV= I,

 where D = ITE and (6.13) becomes

 (6.15) det ((D + AI)2 - uuT) = 0,
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 330 GENE H. GOLUB

 where u = c l-ETUTb. Equation (6.15) has 2n roots; it can be shown (cf. [6]) that
 we need the largest real root of (6.15) which we denote by A*. By a simple argument,

 it can be shown that A* is the unique root in the interval [0, uTu]. Thus we have the
 problem of determining an eigenvalue of a diagonal matrix which is modified by a
 matrix of rank one.

 As in ? 5, we can determine a matrix K so that Ku satisfies (5.4), and hence
 (6.15) is equivalent to

 (6.16) det (K(D + ,t)2KT - KuuTKT) = 0.

 The matrix G(A) = K(D + MI)2KT - KuUTKT is tridiagonal so that it is easy to
 evaluate G(A) and det G(A). Since we have an upper and lower bound on A*, it is
 possible to use linear interpolation to find A*, even though G(A) is quadratic in A.
 Numerical experiments have indicated it is best to compute G(A) = K(D + MI)2KT
 - KuuTKT for each approximate value of A* rather than computing

 G(A) = (KD2KT - KuuTKT) + 2)KDKT + A2 KKT.

 Another approach for determining A* is the following: we substitute the
 decomposition (6.14) into (6.12) and are led to the equation

 n 2~

 (6.17) -P(I 0 (d, + A)2

 with u = - 1ET UTb. It is easy to verify that if

 'k('i) = H (di ? ?)2I Zd i) ] Li= a+ A)j2
 (6.18) Qk'k+1(A) = (dk+l + i)/2k(i) U2+lXk) k = 0, 1, *, n - 1,

 k(A) = (dk + i)2 k-1(A) k = 1, 2, , n - 1,

 with

 Qoi= do(i)= 1.

 Then using (6.18) we can easily evaluate VJn(A) and l/i) and hence use one of the
 standard root finding techniques for determining A*. It is easy to verify that
 x = V(D + ,*I)l1UTb.

 A similar problem arises when it is required to make

 lIx112 = minimum
 when

 Ilb -AX2 = /A,
 where

 /B> min lb - Axll.

 Again the Lagrange multiplier A satisfies a quadratic equation which is similar to
 the equation given by (6.14).

 7. Gauss-type quadrature rules with preassigned nodes. In many applications
 it is desirable to generate Gauss-type quadrature rules with preassigned nodes. This
 is particularly true for numerical methods which depend on the theory of moments
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 MODIFIED MATRIX EIGENVALUE PROBLEMS 331

 for determining bounds (cf. [3]), and for solving boundary value problems [12].
 We shall show that it is possible to generate these quadrature rules as a modified
 eigenvalue problem.

 Let o(x) ? 0 be a fixed weight function defined on the interval [a, b]. For

 w(x) it is possible to define a sequence of polynomials po(x), p1(z), . which are
 orthonormal with respect to o(x) and in which pn(x) is of exact degree n so that

 b I ~~whe m = n.

 { Pn(X)P(X)@)(X) = { when m =n.

 The polynomial pn(x) = k n1=>1 (x -tn)), k, > 0, has n distinct real roots
 a < t() < t(n) < ... < t(") < b. The roots of the orthogonal polynomials play an
 important role in Gauss-type quadrature.

 THEOREM. Let f(x) E C2N[a, b]; then it is possible to determine positive wj
 so that

 rb N

 J f(x)ow)(x) dx = E wjf(t7Y))= R=[f
 a ~~~j=l

 where

 R[f] = f(2N)(J L, tiN))j (x) dx, a < i < b.

 Thus, the Gauss-type quadrature rule is exact for all polynomials of degree less than
 or equal to 2N - 1.

 Any set of orthonormal polynomials satisfies a three-term recurrence relation-
 ship:

 (7.1) #jpj(x) = (x - Oj)pj1(x)-fl -?1pi-2(x) forj = 1,2, , N;

 P- l(X)--?, PO p()1.

 We may identify (7.1) with the matrix equation

 (7.2) xp(x) = JNP(X) + f3NPN(X)eN,

 where

 [p(X)]T [P0(X), P 1(X), ... , PN -1(X)],

 eT = [0, O, .., 1],

 and

 f3, /3 20

 JN=

 AN-1

 o

 AN- 1 (N
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 332 GENE H. GOLUB

 Suppose that the eigenvalues of JN are computed so that

 JNqj =:-Jqj, II 2, , Ng

 with

 q Tqj

 and

 qf = [qlj, q2j, *qNj].

 Then it is shown in [11] that

 (7.3) tj) - j wj = (q lj)2
 (From here on in, we drop the superscripts on the t7)'s.)

 A very effective way to compute the eigenvalues of JN and the first component
 of the orthonormalized eigenvectors is to use the QR method of Francis (cf. [14]).

 Now let us consider the problem of determining the quadrature rule so that

 rb N M

 J f(x)ow(x) dx E Wif(t1) + E Vkf (Zk), a ~~~ ~~j=l k=lI
 where the nodes {Zk}k 1 are prescribed. It is possible to determine {wj, tj}7N,
 {Vk}k=l so that we have for the remainder

 f (2N + M)( ) (b M N 2
 R[f] = (2N+MJa klH (X - VkH (x - t) (x)dx, a < < b.

 For M = 1 and z1 = a or z1 = b, we have the Gauss-Radau-type formula, and
 for M = 2 with z1 = a and z2 = b, we have the Gauss-Lobatto-type formula.

 First we shall show how the Gauss-Radau-type rule may be computed. For
 convenience, we assume that z1 = a. Now we wish to determine the polynomial

 PN+ 1(x) so that

 PN+1(a) = 0.

 From (7.1) we see that this implies that

 0 = PN+ l(a) = (a - aN+ )PN(a) - /NpN -(a)

 or

 N+ 1= a_ pPN 1(a) (7.4) ~1a -/3N P- a
 pN(a)

 From equation (7.2) we have

 (JN - aI)p(a) - /3NPN(a)eN,

 or equivalently,

 (7.5) (JN- aI)6(a) = peN,
 where

 bj(a) = -(BNPj -l(a))/PN(a), j 1,2, , N.

This content downloaded from 131.114.2.137 on Thu, 14 Apr 2016 12:47:19 UTC
All use subject to http://about.jstor.org/terms



 MODIFIED MATRIX EIGENVALUE PROBLEMS 333

 Thus,

 (7.6) -N+1 = a + 6N(a).

 Hence, in order to compute the Gauss-Radau-type rule, we do the following:

 (a) Generate the matrix JN and the element,BN.
 (b) Solve the system of equations (7.5) for 6N(a).

 (c) Compute (2N+1 by (7.6) and use it to replace the (N + 1, N + 1) element

 of JN+1-
 (d) Use the QR algorithm to compute the eigenvalues and first element of the

 eigenvector of the tridiagonal matrix

 FJN f3NeN1
 JN+1 = A < T

 L/NC (N+lj

 Of course, one of the eigenvalues of the matrix JN+ lmust be equal to a.
 Since a < Amin(JN), the matrix JN- aI will be positive definite and hence

 Gaussian elimination without pivoting may be used to solve (7.5). It is not even
 necessary to solve the complete system since it is only necessary to compute the
 element 6N(a). However, one may wish to use iterative refinement to compute

 6N(a) very precisely since for N large, Amin(J) may be close to a, and hence the
 system of equations (7.5) may be quite ill-conditioned. When z1 = b, the calcula-
 tion of jN+l is identical except with b replacing a in equations (7.5) and (7.6).
 The matrix JN - bI will be negative definite since b > Amax(J).

 To compute the Gauss-Lobatto quadrature rule, we need to compute a

 matrix JN+ 1 such that

 Amin(JN+ 1) = a and Amax(jN+ 1) = b.

 Thus, we wish to determine PN + 1(X) SO that

 (7.7) PN+l(a) = PN+ l(b) = 0.

 Now from (7.1) we have

 INN+1PN+1(X) = (X - aN+1)PN(X) - fNPNN-1(X),

 so that (7.7) implies that

 (7.8) C-N+1PN(a) + fNPNN-1(a) = aPN(a),
 -N+ lPN(b) + /NPN- 1(b) = bpN(b).

 Using the relationship (7.2), if

 (7.9) (JN - al) y = eN and (JN - bI)p = eN,

 then

 1j p~(a) 1 pj- (b)
 (7.10) -fN pN(a) 'j - fiN PN(b) j= 1, 2, ,N.

 Thus, (7.8) is equivalent to the system of equations

 (7.11) aN+1 YN/N = a, 2N+1 - [NN = b.
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 334 GENE H. GOLUB

 Hence, in order to compute the Gauss-Lobatto-type rule, we perform the following
 calculations:

 (a) Generate the matrix JN.
 (b) Solve the systems of equations (7.9) for YN and AN.

 (c) Solve (7.11) for ocN +1 and f1li.
 (d) Use the QR algorithm to compute the eigenvalues and first element of the

 eigenvectors of the tridiagonal matrix

 JN+1 = [e ].

 Galant [7] has given an algorithm for computing the Gaussian-type quadrature
 rules with preassigned nodes which is based on a theorem of Christoffel. His
 method constructs the orthogonal polynomials with respect to a modified weight
 function.

 Acknowledgments. The author wishes to thank Mr. Michael Saunders for
 making several helpful suggestions for improving the presentation, Mrs. Erin
 Brent for performing so carefully some of the calculations indicated in ?? 5 and 6,
 Miss Linda Kaufman for expertly performing numerical experiments associated
 with ? 7. Special thanks to Dr. C. Paige for his careful reading of this manuscript
 and his many excellent suggestions. The referees also made several beneficial
 comments.

 REFERENCES

 [1] R. H. BARTELS, G. H. GOLUB AND M. A. SAUNDERS, Numerical techniques in mathematical pro-
 gramming, Nonlinear Programming, J. B. Rosen, 0. L. Mangasarian and K. Ritter, eds.,
 Academic Press, New York, 1970, pp. 123-176.

 [2] A. BJORCK AND G. H. GOLUB, Numerical methods for computing angles between linear subspaces,
 Math. Comp., to appear.

 [3] G. DAHLQUIST, S. EISENSTAT AND G. H. GOLUB, Boundsfor the error of linear systems of equations
 using the theory of moments, J. Math. Anal. Appl., 37 (1972), pp. 151-166.

 [4] J. DURBIN, An alternative to the bounds test for testing for serial correlation in least squares
 regression, Econometrica, 38 (1970), pp. 422-429.

 [5] G. FIX AND R. HEIBERGER, An algorithm for the ill-conditioned generalized eigenvalue problem,
 Numer. Math., to appear.

 [6] G. E. FORSYTHE AND G. H. GOLUB, On the stationary values of a second degree polynomial on the
 unit sphere, SIAM J. Appl. Math., 13 (1965), pp. 1050-1068.

 [7] D. GALANT, An implementation of Christoffel's theorem in the theory of orthogonal polynomials,
 Math. Comp., 24 (1971), pp. 111 -113.

 [8] G. H. GOLUB, Numerical methods for solving linear least squares problems, Numer. Math., 7
 (1965), pp. 206-216.

 [9] G. H. GOLUB AND C. REINSCH, Singular value decomposition and least squares solutions, Ibid., 14
 (1970), pp. 403-420.

 [10] G. H. GOLUB AND R. UNDERWOOD, Stationary values of the ratio of quadratic forms subject to
 linear constraints, Z. Angew. Math. Phys., 21 (1970), pp. 318-326.

 [1 1] G. H. GOLUB AND J. H. WELSCH, Calculation of Gauss quadrature rules, Math. Comp., 23 (1969),
 pp.221-230.

 [12] V. I. KRYLOV, Approximate Calculation of Integrals, Macmillan, New York, 1962.
 [13] G. PETERS AND J. H. WILKINSON, Eigenvalues of Ax = ABx with band symmetric A and B, Comput.

 J., 12 (1969), pp. 398-404.

 [14] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

This content downloaded from 131.114.2.137 on Thu, 14 Apr 2016 12:47:19 UTC
All use subject to http://about.jstor.org/terms


	Contents
	p. 318
	p. 319
	p. 320
	p. 321
	p. 322
	p. 323
	p. 324
	p. 325
	p. 326
	p. 327
	p. 328
	p. 329
	p. 330
	p. 331
	p. 332
	p. 333
	p. 334

	Issue Table of Contents
	SIAM Review, Vol. 15, No. 2 (Apr., 1973) pp. 275-446
	Front Matter [pp. ]
	Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors [pp. 275-282]
	State in Hilbert Space [pp. 283-308]
	Algorithms for Obtaining Shortest Paths Visiting Specified Nodes [pp. 309-317]
	Some Modified Matrix Eigenvalue Problems [pp. 318-334]
	Computation with Three-Term, Linear, Nonhomogeneous Recursion Relations [pp. 335-351]
	Matrix Calculus Operations and Taylor Expansions [pp. 352-369]
	Mathematics and Population [pp. 370-375]
	Problems
	Problem 73-9, An Integral Identity. [pp. 376]
	Problem 73-10, A Summation Identity. [pp. 376]
	Problem 73-11, On Hadamard Matrices [pp. 377]
	Problem 73-12, A Nonlinear Differential Equation [pp. 377]
	Problem 73-13, An Integral Inequality [pp. 377]

	Solutions
	Problem 72-6 [pp. 377-380]
	Problem 72-7 [pp. 381-384]
	Problem 72-8 [pp. 384-386]
	Problem 72-9 [pp. 386-387]
	Problem 72-10 [pp. 387-390]
	Problem 72-11 [pp. 390-391]
	Problem 72-12 [pp. 391]

	Erratum for January 1973 Problem Section [pp. 391]
	Book Reviews
	Review: untitled [pp. 392-393]
	Review: untitled [pp. 393-395]
	Review: untitled [pp. 395-396]
	Review: untitled [pp. 396-397]
	Review: untitled [pp. 397-400]
	Review: untitled [pp. 400-401]
	Review: untitled [pp. 401]
	Review: untitled [pp. 401-403]
	Review: untitled [pp. 403-404]
	Review: untitled [pp. 404-405]
	Review: untitled [pp. 405-406]
	Other Books Received [pp. 407-408]

	Chronicle [pp. 409-446]
	Back Matter [pp. ]



