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Abstract

Hermitian plus possibly unhermitian low rank matrices can be efficiently reduced into
Hessenberg form. The resulting Hessenberg matrix can still be written as the sum of a
Hermitian plus low rank matrix.

In this paper we develop a new implicit multishift QR-algorithm for Hessenberg matrices,
which are the sum of a Hermitian plus a possibly non-Hermitian low rank correction.

The proposed algorithm exploits both the symmetry and low rank structure to obtain a
QR-step involving only O(n) floating point operations instead of the standard O(n2) opera-
tions needed for performing a QR-step on a Hessenberg matrix. The algorithm is based on a
suitable O(n) representation of the Hessenberg matrix. The low rank parts present in both
the Hermitian and low rank part of the sum are compactly stored by a sequence of Givens
transformations and few vectors.

Due to the new representation, we cannot apply classical deflation techniques for Hessen-
berg matrices. A new, efficient technique is developed to overcome this problem.

Some numerical experiments based on matrices arising in applications are performed. The
experiments illustrate effectiveness and accuracy of both the QR-algorithm and the newly
developed deflation technique.

1 Introduction

In the last few years many numerical techniques for computing eigenvalues of structured rank
matrices have been proposed (e.g. [23, 3, 6] and the references therein). In particular the QR-
algorithm received a great deal of this attention. Suitable representations such as quasiseparable,
diagonal-subdiagonal or Givens-weight to represent the structured rank matrix are essential for
the development of effective and efficient algorithms. A representation of the structured rank
Hessenberg matrix in terms of O(n) parameters makes it possible to perform QR-steps in O(n)
operations instead of O(n2) operations required by standard methods.

This paper is concerned with the efficient computation of all the eigenvalues of an n × n
Hermitian matrix perturbed by a possibly non-Hermitian low rank correction. This problem
arises in different situations, for example when a perfectly Hermitian structure is corrupted by
errors in only few rows or columns. Another typical situation in which this problem occurs is the
eigenvalue computation of matrices with the sizes of the off-diagonal elements decaying rapidly
away from the main diagonal. In this case, it can be computationally convenient to approximate,
up to a desired accuracy, the original matrix by the sum of a Hermitian and a low rank matrix.
In many other cases the problem to be solved is modeled naturally in this form (see the numerical
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experiments). A typical example is the computation of roots of a polynomial expressed in a basis
satisfying a three terms recurrence giving rise to a Hermitian tridiagonal matrix plus a rank-one
correction. These matrices are referred to in the literature as comrade matrices [1].

More precisely, let A = S+UV H , A ∈ Cn×n, where S is Hermitian S = SH and U, V ∈ Cn×m,
with m� n. A standard approach to compute the eigenvalues of A consists in a preliminary re-
duction to Hessenberg form followed by the standard QR-algorithm. The reduction to Hessenberg
form takes O(n3) operations in general, but often one can take advantage of the rank structure
present in the original matrix and reduce the cost to O(n2) [10, 11, 16]. It can be easily seen that
the resulting Hessenberg matrix H can still be expressed as the sum of a Hermitian and a low
rank perturbation matrix.

In this article a new suitable O(n) representation based on Givens transformations of the
Hessenberg matrix is first proposed. This representation allows performing implicit multishift
QR-steps involving only O(n) operations for each iteration. Since the new representation makes
deflation in the classical sense impossible a solution to this problem is also proposed.

In [9] also QR-algorithms for Hessenberg matrices which are the sum of symmetric plus low
rank matrices were presented. Our article differs significantly from theirs. The authors in [9] use
the quasiseparable representation, i.e. they store the low rank part by means of few vectors. This
articles uses unitary 2×2 transformations for storing the low rank part. Since both representations
are different the resulting QR-steps and implementations are also completely different. In [9] the
standard deflation technique as present in Lapack is used. Using, however, the representation
presented here, this is not possible and both the deflation technique as the successive QR-steps
on submatrices need to be adapted. Similar numerical experiments were performed, making it
possible to compare the two approaches.

The paper is organized as follows. Section 2 discusses some essential preliminary results such
as the Givens-weight representation, the graphical schemes, similarity transforms exploiting the
rank structure and information on the QR-algorithm. Section 3 introduces the structured rank
representation for the Hessenberg matrix. Section 4 and 5 discuss respectively an implicit single
shifted and multishifted QR-step. The modifications introduced in the algorithm for incorporating
deflation are discussed in Section 6. Numerical experiments are given in Section 7.2. Finally some
conclusions are presented.

2 Preliminary results

In this section we discuss preliminary results, essential for understanding this article and in partic-
ular we present the graphical schemes used for representing the QR-factorization of a Hessenberg
matrix. Secondly, we discuss a similarity transformation of a Hermitian plus low rank matrix to
a Hessenberg matrix, which is the sum of a Hermitian plus low rank matrix. It is shown in the
next section that the number of parameters for representing this Hessenberg matrix is linear. For
developing an implicit QR-algorithm, preservation of the structure is essential, this is discussed in
Subsection 2.3, where the general scheme of implicit QR-iterations is given.

2.1 Working with Givens transformations

The algorithm presented in this paper involves matrices with a rank structure. These matrices
can be represented with an adapted form of the Givens-weight representation [7, 20, 22].

Sequences of Givens transformations admit an easy understandable graphical representation.
This representation will be used throughout the paper to show how the algorithm works. For effi-
cient use of this representation, some extra tools are necessary such as the shift-through operation
and the fusion. Let us first explain the Givens-weight representation by an example.

The following graphical scheme represents the QR-factorization of a 6× 6 Hessenberg matrix
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H, based on Givens transformations.

Ê � ××××××
Ë

�
� ×××××

Ì
�

� ××××
Í

�
� ×××

Î
�

� ××
Ï

�
×

5 4 3 2 1

The scheme corresponds to the factorization H = G1G2 . . . G5R. The matrix R is shown on
the right by the × (assume them all different from zero) and is clearly upper triangular. The
numbers on the vertical axis indicate the different rows of the matrix. The brackets with arrows
depict Givens transformations. The arrows point to the rows the Givens transformations act on.
The numbers on the bottom line represent a sort of timeline, describing the temporal order of
application of each Givens transformation. In particular, the Givens transformation G5 is located
above 1 because is the first one to be applied to reproduce the Hessenberg matrix H. Applying G5

on R results in a matrix having a nonzero element in position (5, 4). Applying the transformations
Gi gradually reestablishes the subdiagonal of the matrix H. This scheme is useful to represent the
factorization of H as G1G2 . . . G5R, because we can understand the precise action of the Givens
transformations on R. Rewriting the formula H = G1G2 . . . G5R we have GH

5 . . . GH
1 H = R.

Hence GH
1 was constructed such to annihilate the first subdiagonal element, GH

2 the second one
and so forth.

Givens transformations can also interact with each other.

Lemma 1 (Fusion) Suppose two Givens transformations1 G1 and G2 are given:

G1 =
[
c1 −s̄1
s1 c̄1

]
and G2 =

[
c2 −s̄2
s2 c̄2

]
.

Then we have that G1G2 = G3 is again a Givens transformation. We will call this operation the
fusion of Givens transformations in the remainder of the text.

The proof is trivial. In our graphical schemes, we will depict this as follows:

Ê �↪→�
Ë

� �

2 1
resulting in

Ê �
Ë

�

1
.

The following lemma is very powerful and will give the possibility to interchange the order of
Givens transformations and to obtain different patterns. Often Givens transformations of higher
dimensions, say n, are considered. This means that the corresponding 2×2 Givens transformation
is embedded in the identity matrix of dimension n, still acting only on two rows when applied to
the left.

Lemma 2 (Shift-through) Suppose three 3×3 Givens transformations Ǧ1, Ǧ2 and Ǧ3 are given,
such that the Givens transformations Ǧ1 and Ǧ3 act on the first two rows of a matrix, and Ǧ2

acts on the second and third row (when applied on the left to a matrix).
Then there exist three Givens transformations Ĝ1, Ĝ2 and Ĝ3 such that

Ǧ1Ǧ2Ǧ3 = Ĝ1Ĝ2Ĝ3,

where Ĝ1 and Ĝ3 work on the second and third row and Ĝ2, works on the first two rows.
1In fact these transformations are rotations. More information on Givens rotations can be found in [2]. Through-

out the entire manuscript we will assume to be working with Givens rotations. Nevertheless all results remain true
when one considers 2× 2 unitary transformations.
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This result is well-known. The proof can be found in [21] and is based on the fact that one can
factorize a 3 × 3 unitary matrix in different ways. Graphically we will depict this rearrangement
of Givens transformations as follows.

Ê � y �
Ë

�
�

�

Ì
�

3 2 1

resulting in

Ê �
Ë �

�
�

Ì
� �

3 2 1

.

There is also a variant in the other direction (from the right to the left scheme depicted by x).
Important to remark is that the fusion of Givens transformations can be considered as a special
case of the shift-through lemma.

The shift-through operation can also be applied repeatedly. This results in shift-through
sequences. This is referred to as the shift-through operation of length `.

Lemma 3 Suppose we have the following matrix product GWX, in which G denotes a Givens
transformation acting on row 1 and 2. The matrices W and X are both unitary matrices consisting
of a descending sequence of ` Givens transformations. This means that both W and X consist of
` successive Givens transformations. The i-th Givens transformation GW

i of W acts on row i+ 1
and i+ 2. The i-th Givens transformation GX

i of X acts on row i and i+ 1.
The matrix product GWX can then be rewritten as

GWX = Ŵ X̂Ĝ,

where Ĝ is now a Givens transformation acting on row `+ 1 and `+ 2. The unitary matrices Ŵ
and X̂ are again descending sequences of ` Givens transformations.

Graphically, the situation described in the previous lemma is the following
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�
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resulting in

Ê �
Ë �

�
�

Ì
�

�
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�
�

�×
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where G is the first Givens acting on rows 1 and 2 in the first picture (marked with ×), W
the leftmost chain of descending Givens, and X the rightmost chain of Givens. The symbol y`

represents that after this operation, we will have a Givens transformation that will act on ` rows
below the place where the initial Givens was acting. In this example, Ĝ will act on rows 5 and 6,
because ` = 4.

The operation depicted in the lemma is an operation “moving” a Givens rotation from top-left
to the bottom-right. Similarly one can have shift-through operations of length ` going to the
top right, top left and the bottom left. To clearly indicate where the Givens is going to and the
number of single shift-trough operations, we use the symbols y` ,

x

` ,
x
` and y`

.

2.2 Similarity transform to Hessenberg form

Applying a QR-method directly to a Hermitian plus rank m matrix is possible, but especially for
large values of m, it is more efficient to first reduce the problem to Hessenberg form [8, 10, 4].

Suppose the initial matrix A is written as the sum of a Hermitian plus a rank m matrix, that is
A = S+UV H , where U and V ∈ Cn×m. A standard reduction of the matrix A to Hessenberg form
costs O(n3) operations, when one does not exploit the available low rank structure. In particular,
if S is a band matrix with bandwidth b, the cost reduces to O((b+m)n2) [8, 4], for transforming
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the involved matrix A to Hessenberg form (see also [10, 11, 16]). The reduction to Hessenberg
form preserves the eigenvalues since it is a unitary similarity transformation. This gives

H = QHAQ=QHSQ+QHUV HQ

= Ŝ + Û V̂ H .

Hence, the Hessenberg matrix H can be written as the sum of a Hermitian matrix Ŝ plus a rank
m correction matrix Û V̂ H . Note that, even if S was banded, Ŝ is a dense Hermitian matrix in
general, but we will see that this matrix still admits an O(n) representation.

2.3 On the QR-algorithm

Let us denote the Hessenberg matrix we are working with as follows

H = S + UV H , (1)

with H Hessenberg, S Hermitian and U and V , two n × m matrices. We will denote by Fn,m

(see [9]) the class of upper Hessenberg matrices in Equation 1, obtained as the sum of a n × n
Hermitian matrix and a rank m perturbation.

As it is shown in [9] the class Fn,m is closed under QR-steps. This fact is essential for developing
an efficient implicit QR-method exploiting the matrix structure. The multishift QR-algorithm,
applied to matrix H = H(0) ∈ Fn,m generates a sequence of unitarily similar matrices {H(k)}k
converging to the real canonical Schur form of H.

The multishift QR-method proceeds iteratively as follows2, let H(0) = H:

p
(k)
d (H(k)) = Q(k)R(k) (2)

H(k+1) = Q(k)H
H(k)Q(k),

where, for every k, p(k)
d (x) is a monic polynomial of degree d. For example, for d = 1 we have

the single shift case and p
(k)
1 (H(k)) = H(k) − µ(k)I and for d = 2 we have the double-shift

case, with p
(k)
2 (H(k)) = (H(k) − µ

(k)
1 I)(H(k) − µ

(k)
2 I). The parameter µ(k) for the single shift

case, and parameters µ(k)
1 and µ

(k)
2 for the double-shift are chosen in accordance with some shift

strategy [24, 26, 17] to accelerate convergence.
Usually, instead of computing explicitly the factorization QR of the polynomial in (2), we

proceed implicitly performing the transition H(k) → H(k+1) without even computing the products
between the shifted matrices in (2) (see also [25]). The possibility of computing the iterations
implicitly was firstly proposed in [13, 12]. Based on e.g. the Implicit Q-theorem [14] essential
uniqueness of the matrix obtained is guaranteed at each step, once the first column of Q(k) has
been formed.

The global flow of an implicit method is hence of the following form.

1. Initialization step: Determine the orthogonal transformation Q̂I (the subscript I refers
to the initial step), such that

Q̂H
I pd(H) e1 = β e1, β = ‖pd(H)e1‖2,

where pd(H) is a monic polynomial of degree d, as described in (2) with suitable shifts
chosen. Let HI = Q̂H

I HQ̂I , note that HI is not in upper Hessenberg form since a bulge is
created with the tip in position (d+ 2, 1).

2. Chasing steps: Perform a unitary similarity reduction on HI to bring it back to Hessenberg
form (not altering the first column and row). Let Q̂C (the subscript C refers to the chasing
procedure) be such that Ĥ = Q̂H

C HIQ̂C = Q̂H
C Q̂

H
I HQ̂IQ̂C is in Hessenberg form. Set

Q̂ = Q̂IQ̂C .
2The superscript notation ·(i) will be used only for depicting QR-steps performed on matrices. We will omit

this superscript as much as possible, not to overload the notation.
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It can be proved easily that Q̂ and Ĥ are essentially identical to the matrices obtained by
performing the explicit QR-algorithm. In this paper, for the sake of readability, we will consider
only the single and double shift cases, that is d = 1 or d = 2, but the proposed algorithm works
similarly for the general case with d > 2. In the single shift case, QI will consist of a single
Givens rotation, because p1(H) = H − µI is still Hessenberg, while in the double shift case
p2(H) = (H − µ1 I)(H − µ2 I) is a generalized Hessenberg and QI is obtained as the product
of two Givens transformations. The size of the bulge created depends on the degree d and has
d(d + 1)/2 undesired elements. Finally, the orthogonal matrix QC in the chasing step is the
cumulative product of d (n− 2) Givens factors.

3 A suitable O(n) representation

In [9] the matrices belonging to Fn,m are represented by using the diagonal and subdiagonal of H
plus the two skinny matrices U and V . In this section we will deduce a representation of H based
on Givens transformations similar to the one introduced for m = 1 in [19]. This representation
allows us to store still O(n) elements, an has the advantage of being intuitive and stable as usual
for representations based on Givens rotations (see for example [7, 18]).

Since matrix H in (1) is the sum of a Hermitian and a low rank matrix, we know that the
Hermitian matrix S has quite a large part of low rank structure. Consider S = H − UV H . The
Hessenberg matrix H has zeros below the subdiagonal. Hence, the matrix S needs to be of rank
m below the subdiagonal. The matrix S has the following form, where the part marked with the
� is coming form a rank m part.

S =


× · · · · ·
× × · · · ·
�×× · · ·
� �×× · ·
� � �×× ·
� � � �××


The elements of the upper triangular part are denoted by dots. Since the matrix is Hermitian
these entries are known once the lower triangular part of S is specified. We will immediately use
the graphical representation. The matrix we start with is the matrix S. All subsequent graphical
schemes represent factorizations of this matrix S.

3.1 A rank−1 perturbation

We consider the case, m = 1, hence, as we can see in the first scheme below, three elements
(coming from a rank 1 part) in the last row of the matrix S are annihilated by a single Givens
transformation acting on row 5 and 6.

Ê × · · · · ·
Ë ×× · · · ·
Ì �×× · · ·
Í � �×× · ·
Î � ⊗⊗�×× ·
Ï

�
×××

1

Mathematically, the scheme depicts S = G1S1, where G1 corresponds to the Givens transformation
at time stamp 1, and S1 is the matrix on the right having extra zeros in the last row. The scheme
here presents a sort of factorization of the original Hermitian matrix S. In fact S1 and G1 are
computed similarly as one computes a QR-factorization: GH

1 S = S1, where GH
1 acts on S to create

zeros, resulting in a matrix S1.
The elements to be annihilated by the second Givens transformation are marked in the scheme

with ⊗. In fact G2 is computed to obtain GH
2 G

H
1 S = S2, where S2 has n− 4 zeros in row n− 1.

Rewriting GH
2 G

H
1 S = S2 gives us S = G1G2S2 depicted in the following scheme. We see S2 on
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the right, Givens transformation G1 above 2 and G2 above 1. Considering S = G1G2S2 we see
that first G2 needs to be re-applied to S2 followed by G1 to retrieve the original matrix S.

Ê × · · · · ·
Ë ×× · · · ·
Ì �×× · · ·
Í � ⊗�×× · ·
Î �

�
××× ·

Ï
�

×××
2 1

After the Givens transformation acting on row three and four is performed we have completely
removed the low rank part. Removing the structured rank part introduces, however, a new
subdiagonal. The matrix remaining on the right side is now a generalized Hessenberg matrix
having two subdiagonals.

Ê × · · · · ·
Ë ×× · · · ·
Ì � ××× · · ·
Í �

�
××× · ·

Î �
�

××× ·
Ï

�
×××

3 2 1

Let us write this factorization as S = Ṽ B̃, in which Ṽ represents the Givens transformations on
the left and the matrix B̃ represents the generalized Hessenberg matrix on the right. Reconsider
now the original matrix H. Due to the equality between the low rank parts in the matrices uvH

and S, we can factorize the vector u as Ṽ ũ where the vector ũ has only the first three elements
different from zero. This means that we get:

H = S + uvH = Ṽ
(
B̃ + ũvH

)
(3)

= �
�

�

�
�

�



× · · · · ·
× × · · · ·
× ×× · · ·
× ×× · ·
××× ·
×××

+


×
×
×

vH

 .

This representation was used in [19]. The disadvantage of this form is that it requires a quite
complicated initial step. To simplify the QR-procedure we enlarge our matrix Ṽ by adding two
more Givens transformations to it, these transformations are constructed in such a way that they
annihilate the second and third nonzero element in ũ, hence u = V û. The following scheme depicts
the representation we will use. Since there is no correspondence between the rank structure of B̃
and ũ anymore, no additional zeros will be created in the matrix B̃.

H = V
(
B + ûvH

)

=

�
�

�

�
�

�
�

�
�

�



× · · · · ·
× × · · · ·
× ×× · · ·
× ×× · ·
××× ·
×××

+


×
vH


For the ease of notation we will reuse the symbol u, this means that in Section 4 and 5 we start
from a factorization H = V (B + uvH) assuming u has only one element different from zero.

3.2 A rank−2 perturbation

We assume the perturbation to be of rank 2, the general case proceeds similarly. Decompose UV H

as uvH + xyH . The Hermitian matrix S is of the form S = H −uvH −xyH , having therefore the
part below the subdiagonal of rank at most 2. Similarly as done for the rank 1 case, we can peal
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off a rank 1 part. Now, this will not create zeros, because another part of rank 1 will still remain.
Graphically a first sequence of Givens transformations transforms S to the following form, having
the part marked with � still of rank 1. Without loss of generality we assume to be working on a
7× 7 matrix.

Ê × · · · · · ·
Ë ×× · · · · ·
Ì � ××× · · · ·
Í �

�
�××× · · ·

Î �
�

� �××× · ·
Ï �

�
� � �××× ·

Ð
�

� � � �×××
4 3 2 1

We remark that this first sequence of Givens transformations also transforms the vector u into a
vector with only the first three elements nonzero. To remove the remaining low rank part in the
scheme above, another sequence of Givens transformations is needed. We get the following form.

Ê × · · · · · ·
Ë ×× · · · · ·
Ì � ××× · · · ·
Í �

�
�×××× · · ·

Î �
�

�
�
×××× · ·

Ï �
�

�
�

×××× ·
Ð

� �
××××

4 3 2 1

This second sequence of Givens transformations will create also many zeros in the vector x, all
but the first 4 elements will become zero. This means that for the matrix H, we get the following
graphical scheme.

H =
�

�
�

�
�

�
�

�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·
××××

+


×
⊗2
⊗1

vH +


×
×
⊗4
⊗3

yH


Just like in the rank 1 case, we are not finished yet. The elements ⊗ in the vectors still need
to be removed. The order of removal is indicated by their subscript. Bringing these Givens
transformations outside the brackets gives us the following final representation.

H =

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·
××××

+


×vH +


×
×
yH

 (4)

This scheme corresponds to (for simplicity we reuse the symbols u and x depict the sparse
vectors) H = V (u) V (x)

(
B + uvH + xyH

)
.

Remark 1 We choose to present the construction of the sequences of Givens transformations V (u)

and V (x) based on the matrix S, to show the appearance of the extra subdiagonals. In practice,
however, they are entirely determined by the vectors x and u and one can immediately compute
the full sequence of n − 1 Givens transformations for V (u) and n − 2 transformations for V (x)

based on the two vectors u and x.

3.3 The generic rank m > 2 perturbation

Generalizing, if H = S + UV H , with UV H a rank m perturbation of a Hermitian matrix S, we
can represent H as follows,

H =
m∏

i=1

V (ui)

(
B +

m∑
i=1

uivH
i

)
,
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where B is a generalized Hessenberg with m+ 1 subdiagonals and ui are sparse vectors with only
the first i entries different from zero, each V (ui) consists of n − i Givens transformations. So, to
store the representation for a Hessenberg matrix which is the sum of a Hermitian plus rank m
perturbation we need to store:

•
∑m

i=1(n− i) = O(nm+m2) Givens transformations;

•
∑m+2

i=1 (n+ 1− i) = O(nm+m2) entries for the matrix B;

•
∑m

i=1 i = O(m2) entries for the vectors ui.

Based on this representation we will illustrate how to perform a single and double shift QR-
step. We will discuss the single shift and multishift setting in two different sections, so the reader
can follow more easily the algorithms. For simplicity we will restrict ourselves to the rank 2 case
and the double shift case. The ideas presented are however easily generalizable to fit the more
general case.

Remark 2 In the upcoming Sections 4 and 5 we silently assume all Givens transformations in the
sequences V (ui) to be different from the identity matrix. In this case all shift through operations
are well defined, and we can run the algorithm to completion. We will come back to this in the
beginning of Section 6 and discuss this in the Appendix.

4 Single shift QR-step on higher order perturbations

In this section we explain how to perform an iteration of the single-shift QR-method, using the
representation introduced in Section 3. We start with the single shift case to get the reader
acquainted with the algorithm.

Let H = H1 = V
(u)
1 V

(x)
1 (B1 + u1vH

1 + x1yH
1 ). We know that for performing a single shift QR-

step on a Hessenberg matrix n− 1 Givens transformations are needed. We label the i-th of these
n− 1 Givens transformation as Gi. After this similarity transformation is performed we obtain a
perturbed Hessenberg matrix Hi+1 = GH

i HiGi. The vectors and matrices used for representing
Hi will inherit the same subscript as well as all intermediate variables with the subscript i, unless
they are in final form for Hi+1 in that case they obtain the subscript i+ 1. In particular at the
end of the initialization step we will end up with matrix H2 that is a perturbed Hessenberg with
a bulge in position (2, 1), this is matrix HI from Section 2.3.

4.1 Initialization

Since we are dealing with the single shift case, the initialization step consists of a single Givens
transformation G1 acting on rows 1 and 2 (corresponding to the matrix Q̂I in section 2.3), such
that

GH
1 (H − µI)e1 = ‖(H − µI)e1‖2 e1.

Then H is transformed by a similarity transform using G1 and H2 = GH
1 H1G1 is obtained

which is not Hessenberg anymore. For simplicity we consider performing the left and right Givens
transformation independently.

9



4.1.1 Transformation on the left

The Givens transformations marked with × in the scheme indicates the transformation GH
1 . We

will start by removing this Givens transformation. We have the following situation.

H2 = = GH
1 V

(u)
1 V

(x)
1 (B1 + u1vH

1 + x1yH
1 )G1

=

�×y2 ��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·
××××

+


×vH

1 +


×
×
yH

1

G1

Performing a shift-through operation of length 2 to the bottom right: GH
1 V

(u)
1 V

(x)
1 = Ṽ

(u)
1 Ṽ

(x)
1 G̃H

1

results in the following. (The Givens transformation marked with × equals G̃H
1 .)

H2 = Ṽ
(u)
1 Ṽ

(x)
1 G̃H

1 (B1 + u1vH
1 + x1yH

1 )G1

=

�
�

�
�

�
�

�
�

�×
�

�
�

� �

�
�

�
�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·
××××

+


×vH

1 +


×
×
yH

1

G1

Performing the transformation G̃H
1 to the terms within the brackets gives us the following:

H2 = Ṽ
(u)
1 Ṽ

(x)
1 (G̃H

1 B1 + G̃H
1 u1vH

1 + G̃H
1 x1yH

1 )G1

= Ṽ
(u)
1 Ṽ

(x)
1 (B̃1 + u1vH

1 + x1yH
1 )G1

= Ṽ
(u)
1 Ṽ

(x)
1 (B̃1 + u2vH

1 + x2yH
1 )G1.

Due to the sparseness of the vectors u1 and x1 they don’t change. Only the matrix B1 is affected,
but all the zeros in the lower left triangular corner remain intact. The vectors u1 and x1 are
already in final form and hence are written as u2 and x2.

4.1.2 Transformation on the right

To conclude the initial step we need to remove the transformation G1 depicted on the right. We
remark that removing this Givens transformation is almost identical to the removal of the Givens
transformations needed for the chasing as will be shown later on. Performing the transformation
on the right gives us:

H2 = Ṽ
(u)
1 Ṽ

(x)
1 (B̃1 + u2vH

1 + x2yH
1 )G1

= Ṽ
(u)
1 Ṽ

(x)
1 (B̃1G1 + u2vH

1 G1 + x2yH
1 G1)

= Ṽ
(u)
1 Ṽ

(x)
1 (B̂1 + u2vH

2 + x2yH
2 ).

The vectors v2 and y2 will not change anymore in this step. The matrix B̂1 = B̃1G
H
1 has lost one

zero w.r.t. B1, this undesired element is marked with ⊗ in the next scheme.

H2 =

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
⊗×××× · ·
×××× ·
××××

+


×vH

2 +


×
×
yH

2

 .
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We will remove this unwanted nonzero element by a Givens transformation on the left. The
upcoming shift-through operation is already depicted.

H2 = Ṽ
(u)
1 Ṽ

(x)
1 ĜH

1 (B2 + u2vH
2 + x2yH

2 )

=

�
�

�
�

�
�

�
�

�
�

�
�

�×
�

�
�

� x
2

�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
0 ×××× · ·
×××× ·
××××

+


×vH

2 +


×
×
yH

2


Performing a shift-through operation of length 2 and moving the Givens transformations ĜH

1 two
positions up, to the top left position gives us the result of the initialization step.

H2 =G2V
(u)
2 V

(x)
2 (B2 + u2vH

2 + x2yH
2 )

=

�
�× �

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·
××××

+


×vH

2 +


×
×
yH

2


The Givens transformation on the left G2 will determine the next similarity transformation.

4.2 The Chasing

The global idea for the chasing, in order to move down a Givens transformation Gi on the left
acting on rows i and i + 1, is to apply first a similarity transformation annihilating the left
transformation and creating one on the right acting on columns i and i + 1. We then perform
the transformation on the right to the matrices and drag it through so that it pops up on the
left as a Givens transformation Gi+1 acting on rows i + 1 and i + 2. Hence the result is a new
transformation on the left, shifted down one row.

We will illustrate this step only briefly, since it is almost identical to the procedure described
in the initialization step for removing the transformation on the right. Performing the similarity
transformation determined by G2 gives us:

H3 = GH
2 H2G2 = V

(u)
2 V

(x)
2 (B2 + u2vH

2 + x2yH
2 )G2

= V
(u)
2 V

(x)
2 (B̃2 + u3vH

3 + x3yH
3 ),

with u2 = u3 and x2 = x3. Performing the right Givens transformation creates a bulge in position
(6, 2) in the matrix B̃2. This bulge needs to be removed again by a Givens transformation, which
needs to be brought to the top left by two shift-through operations.

H3 = V
(u)
2 V

(x)
2 Ĝ2(B3 + u3vH

3 + x3yH
3 )

=G3V
(u)
3 V

(x)
3 (B3 + u3vH

3 + x3yH
3 )

The resulting Givens transformation G3 acts on rows 3 and 4 and has moved down one position
w.r.t. G2.

4.2.1 The last transformations

Unfortunately one cannot run the implicit algorithm fully to the end. Suppose we have the matrix
Hn−3, and we perform the similarity transformation determined by Givens transformation Gn−3:
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Hn−2 = GH
n−3Hn−3Gn−3. The following scheme depicts the matrix Hn−2.

Hn−2 =GH
n−3Hn−3Gn−3 = V

(u)
n−3V

(x)
n−3(Bn−3 + un−3vH

n−3 + xn−3yH
n−3)Gn−3

=

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·
××××

+


×vH

n−3 +


×
×
yH

n−3

Gn−3

Applying the Givens transformation on the right, which acts on columns n− 3 and n− 2 will
not create a bulge in the matrix Bn−3. Hence, we cannot continue the chasing procedure. The
algorithm breaks down in this case. To determine the final Givens transformation, we need to
explicitly compute column Hn−3en−2 and then Hn−2en−1. Using the representation this can be
achieved easily.

For completeness we will illustrate the idea on how to update the representation. Assume we
have performed the similarity transformation with Gn−3 on Hn−3. We obtain a matrix factoriza-
tion of the following form (there is no Givens transformation Gn−2 on the left now):

Hn−2 = V
(u)
n−2V

(x)
n−2(Bn−2 + un−2vH

n−2 + xn−2yH
n−2).

We know that two more Givens transformations need to be performed to complete the procedure,
since n − 1 Givens are needed to perform a QR-step on a Hessenberg matrix. Explicitly com-
puting column n − 2 of Hn−2 reveals us the bulge which still needs to be removed. The Givens
transformation for removing this bulge is Gn−2. Performing a similarity transformation on Hn−2

with Gn−2 leads to:

Hn−1 =GH
n−2V

(u)
n−2V

(x)
n−2(Bn−2 + un−2vH

n−2 + xn−2yH
n−2)Gn−2

=

�
�

�
�

�
�

�
�

�
�

�
�

�×y �
�

�
�

�
�

�
�

�
� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·
××××

+


×vH

n−2 +


×
×
yH

n−2

Gn−2

For removing the transformation on the left, a shift-through operation is needed between Gn−2 and
the first sequence of Givens transformations V (u)

n−2: GH
n−2V

(u)
n−2 = V

(u)
n−1G̃

H
n−2 (after this operation

V
(u)
n−1 is in final form for this step, also un−1 = un−2 and xn−1 = xn−2 do not change):

Hn−1 = V
(u)
n−1G̃

H
n−2V

(x)
n−2(Bn−2 + un−1vH

n−2 + xn−1yH
n−2)Gn−2

=

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�×↪→�
�

� � �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·
××××

+


×vH

n−2 +


×
×
yH

n−2

Gn−2.

The undesired transformation can be fused now with the last Givens transformation of the sequence
V

(x)
n−2: G̃H

n−2V
(x)
n−2 = V

(x)
n−1. The Givens from the left is now removed without disturbing the

representation of the matrix.
The transformation on the right can be applied without any problem. It does not perturb the

structure of the matrices involved:

Hn−1 = V
(u)
n−1V

(x)
n−1(Bn−2 + un−1vH

n−2 + xn−1yH
n−2)Gn−1

= V
(u)
n−1V

(x)
n−1(Bn−1 + un−1vH

n−1 + xn−1yH
n−1).
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The penultimate step is now completed. Only one Givens transformation still needs to be
performed. Computed explicitly Gn−1 determines the final similarity transformation (the factors
and terms that do not change have already a changed subscript):

Hn =GH
n−1Hn−1Gn−1

=GH
n−1V

(u)
n−1V

(x)
n (Bn−1 + unvH

n−1 + xnyH
n−1)Gn−1

=

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�×↪→�
�

�
�

� � �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·
××××

+


×vH

n−1 +


×
×
yH

n−1

Gn−1

= V (u)
n V (x)

n (Bn + unvH
n + xnyH

n ).

To complete this step a fusion between GH
n−1 and the last Givens transformation of V (u)

n−1 needs to
be performed: GH

n−1V
(u)
n−1 = V

(u)
n , furthermore simply applying the transformation on the right to

Bn−1, vH
n−1 and yH

n−1 finishes the QR-step. One is ready to start a new iteration.

5 The multishift strategy

For simplicity we will only present the double shift case restricted to a rank 2 perturbation, the
general multishift case proceeds almost identical. The double shift case is quite important since
one can restrict computations to the real field in case the original matrix A is non-Hermitian but
real, by simply choosing the shifts as complex conjugates. In this case one converges not to a an
upper triangular matrix, but to a block upper triangular matrix, having blocks of size at most
2× 2 on the diagonal. The 2× 2 blocks on the diagonal will then contain the complex conjugate
eigenvalues of the original real valued matrix A [24, 14].

The cost of a double shift QR-step is roughly the double of a single shift QR-step. Since,
however, the convergence is assumed to be twice as fast global speed is approximately the same.
Multishift algorithms have, however, many other advantages [24].

For performing a complete double-shift QR-step on a Hessenberg matrix 2(n − 1) Givens
transformations are needed. Two Givens transformations are needed in the initialization step,
and in each of the chasing steps two more to move the bulge down one row. In particular, at step
i we have an ‘almost’ Hessenberg matrix Hi. To go from Hi to Hi+1 a similarity transformation is
performed involving two Givens transformations Gi,2 and Gi,1. Transformation Gi,2 acts on rows
i and i+ 1, transformation Gi,1 acts on rows i+ 1 and i+ 2. First GH

i,1 is applied followed by GH
i,2.

5.1 Initialization

We present now the more complicated case: the double shift QR-step, applied to matrices in Fn,2

represented as in (4). As before, let Q̂I be the initial unitary transformation such that

Q̂H
I (H − µ1I)(H − µ2I)e1 = β e1,

where β = ‖(H − µ1I)(H − µ2I)e1‖2. The orthogonal transformation Q̂H
I consists of two Givens

transformations. In particular, QI = G1,1G1,2 such that GH
1,2G

H
1,1(H − µ1I)(H − µ2I)e1 = β e1.

We start by applying a similarity transformation on H = H1, i.e. the initial step. We obtain:

H2 =GH
1,2G

H
1,1H1G1,1G1,2 = GH

1,2G
H
1,1 V

(u)
1 V

(x)
1 (B1 + u1vH

1 + x1yH
1 )G1,1G1,2

=

�× ��
�×y2 �

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·
××××

+


×vH

1 +


×
×
yH

1

G1,1G1,2. (5)
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The Givens transformations depicted on the left, marked with × are the transformations GH
1,2 and

G1,1.

5.1.1 Transformations on the left

Similarly as in the single shift case, we will shift these transformations trough the sequences V (u)
1

and V
(x)
1 . The shift-through operation was already depicted in Scheme 5. Based on the equality

GH
1,2G

H
1,1 V

(u)
1 V

(x)
1 = Ṽ

(u)
1 Ṽ

(x)
1 G̃H

1,2G̃
H
1,1, we obtain the following:

H2 = Ṽ
(u)
1 Ṽ

(x)
1 G̃H

1,2G̃
H
1,1(B1 + u1vH

1 + x1yH
1 )G1,1G1,2

=

�
�

�
�

�
�

�
�

�×
�

�
�

� �
�×

�
�

�
� �

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·
××××

+


×vH

1 +


×
×
yH

1

G1,1G1,2.

Performing the operations G̃H
1,2G̃

H
1,1 on the terms in the brackets only affects the matrix B1. Due

to the zero structure of the vectors u1 and x1 they remain unaltered and are already in final form
(u2 = u1 and x2 = x1):

H2 = Ṽ
(u)
1 Ṽ

(x)
1 (B̃1 + u2vH

1 + x2yH
1 )G1,1G1,2

=

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
⊗̂ ×××× · ·
×××× ·
××××

+


×vH

1 +


×
×
yH

1

G1,1G1,2.

One undesired element is created in the matrix B̃1. This element is marked with ⊗̂ since it will
play a role in the chasing. Besides the Givens transformations moving to the bottom, also this
bulge will move downwards as the iteration proceeds.

5.1.2 Transformations on the right

Just like in the single shift case removing the remaining transformations on the right is almost
identical to the chasing procedure. Performing the transformations on the right on the terms
inside the brackets gives us the following:

H2 = Ṽ
(u)
1 Ṽ

(x)
1 (B̂1 + u2vH

2 + x2yH
2 )

=

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
⊗×××× · ·
⊗⊗×××× ·

××××

+


×vH

2 +


×
×
yH

2

 .

As mentioned before, the bulge ⊗̂ makes part of the chasing and will move down along his subdi-
agonal. Hence, we only tempt to remove the undesired elements in the first column of the matrix
B̂1. Two Givens transformations are needed.

H2 = Ṽ
(u)
1 Ṽ

(x)
1 Ĝ1,1Ĝ1,2(B2 + u2vH

2 + x2yH
2 )

=

�
�

�
�

�
�

�
�

�
�

�
�

�×
�

�
�

�
�×

�

�
�

�
� x

2

�
� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
⊗̂ ×××× ·
××××

+


×vH

2 +


×
×
yH

2

 .
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Performing shift-through operations to bring the transformations Ĝ1,1Ĝ1,2 to the front gives us
Ṽ

(u)
1 Ṽ

(x)
1 Ĝ1,1Ĝ1,2 = G2,1G2,2V

(u)
2 V

(x)
2 , resulting:

H2 =G2,1G2,2V
(u)
2 V

(x)
2 (B2 + u2vH

2 + x2yH
2 ), (6)

which finalizes the initialization step.

5.2 The chasing

The global flow of the chasing is as follows. When starting the chasing procedure we have a matrix
factorization of the following form (assume i < n− 3):

Hi =Gi,1Gi,2V
(u)
i V

(x)
i (Bi + uivH

i + xiyH
i ),

where all vectors and matrices satisfy the constraints posed by the representation, only the matrix
Bi has a bulge, a nonzero element in position (i+2, i). One starts with a similarity transformation
determined by Gi,1Gi,2.

Hi+1 =GH
i,2G

H
i,1HiGi,1Gi,2

= V
(u)
i V

(x)
i (Bi + ui+1vH

i + xi+1yH
i )Gi,1Gi,2

= V
(u)
i V

(x)
i (B̂i + ui+1vH

i+1 + xi+1yH
i+1).

The vectors ui = ui+1 and xi = xi+1 are not affected by the transformations. The matrix B̂i has
three undesired nonzero elements in positions (i + 2, i), (i + 3, i) and (i + 3, i + 1). The Givens
transformations ĜH

i+1,1 and ĜH
i+1,2 are constructed such to annihilate respectively the elements in

positions (i+ 3, i) and (i+ 2, i):

Hi+1 = V
(u)
i V

(x)
i Ĝi,1Ĝi,2(Bi+1 + ui+1vH

i+1 + xi+1yH
i+1).

The matrix Bi+1 has only one undesired nonzero element in position (i+ 3, i+ 1), which is hence
shifted down, w.r.t. the position in Bi. Applying few times the shift-through operation to bring
the Givens transformations to the front gives us the result:

Hi+1 =Gi+1,1Gi+1,2V
(u)
i+1V

(x)
i+1(Bi+1 + ui+1vH

i+1 + xi+1yH
i+1).

5.3 The final similarity transformations in the chasing

Once again, we have to deal with the last steps separately, because the implicit algorithm cannot be
carried on fully to the end. The ideas applied are almost identical to the ones of Subsection 4.2.1.

6 Deflation

The QR-iterations should always be combined with a deflation technique, which allows to split
the problem into two or more smaller problems with the same structure. For a Hessenberg matrix
H, deflation means that the Hessenberg matrix is numerically of the following form

H =

[
H(1 : i, 1 : i) ×

0 H(i+ 1 : n, i+ 1 : n)

]
=



×××× ××××××
×××× ××××××
××× ××××××
×× ××××××

0 ××××××
××××××
×××××
××××
×××
××


. (7)
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The matrix can be subdivided into two other Hessenberg matrices H(1 : i, 1 : i) and H(i + 1 :
n, i+ 1 : n) on which one can continue working separately.

In this paper, however, there is a strong connection between the Hermitian matrix S and the
rank m part. The matrix H has a zero block, but this does not necessary mean that either S or
UV H has a zero block in the corresponding position. Only their sum must have a zero block in
this position.

The coupled representation used in this manuscript makes it impossible to apply deflation in
the classical sense. This means that one cannot just divide the Hessenberg matrix into two parts,
each having their specific representation. In this case we maintain a global representation for the
entire matrix, but the knowledge that there are deflatable blocks will make it possible to act on
these different blocks separately.

This section is organized as follows. In Section 6.1 we will see how to detect deflation and
how modify the representation to incorporate deflation. Sections 6.2.1 to 6.2.3 discuss how the
algorithm changes in case deflation is applied. In the Appendix we treat the algorithmic changes
for accounting of special structures in the low rank perturbation.

6.1 The representation in case of deflation

6.1.1 Assumptions on the Givens transformations

In the remainder of this section we assume a strict rank 2 perturbation. This means that the
vectors u and x have no trailing zeros. No trailing zeros means that the sequences of Givens
transformations V (u) and V (x) consist of non-identity Givens transformations. Assuming e.g. u
to have a trailing sequence of zeros results in a leading (left-most) sequence of identity Givens
transformations in V (u). This is excluded for the moment and discussed in the Appendix.

Since the shift-through operation of three non-identity Givens always results in three new non-
identity Givens the chasing procedure can never create identity Givens transformations in the
middle of the sequences V (u) or V (x). The creation of identity Givens transformations can only
occur at the left part of the sequence, when for example a fusion is applied. We can therefore
conclude that after a QR-step is performed, we can have Givens transformations equal to the
identity matrix only at the bottom (left-most) part of the sequence. In this case again we refer to
the Appendix.

So to conclude: in the first part of this section we explicitly assume all Givens transformations
in the sequences to be different from the identity.

6.1.2 Detection of deflation

The easiest, but not fastest way to detect numerical zeros on the subdiagonal of the Hessenberg
matrix is to explicitly compute these subdiagonal elements. This approach is used in [9]. Due to
our specific representation there is, however, a faster way to detect deflation. First we describe
the technique for a rank 2 perturbation, then we generalize to the generic rank m case. Moreover,
in case m = 0 this coincides with the standard approach.

Suppose the matrix H = V (u)V (x)
(
B + uvH + xyH

)
we are working with can be split into

two independent problems. This means that the element H(i+ 1) = 0 for a specific i.
Let us denote by W = V (x)H

V (u)H
H = B + uvH + xyH . Since the matrices V (u) and V (x)

represent sequences of ascending Givens transformations, we have H(i + 1, i) = 0 if and only if
W (i + 3, i) = 0. Since i + 3 ≥ 4 we have u(4 : n) = 0 and x(4 : n) = 0. This proves that,
since all the Givens transformations are different from the identity, W (i+ 3, i) = 0 if and only if
B(i+ 3, i) = 0. The condition B(i+ 3, i) = 0 can be checked by using a relative criterion involving
the size of the neighboring elements, and it is easy to verify whether deflation can be applied.

The representation, however, doesn’t reveal deflation in two other cases. In fact, we cannot
determine if H(n − 1, n − 2) = 0 or H(n, n − 1) = 0 without computing explicitly these entries
retrieving the values from the representation. This problem is similar to the problem we had for
computing the final steps in the chasing steps of the QR-method (see Sections 4.2.1 and 5.3).
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Graphically, H(i+ 1, i) = 0, corresponds to a factorizations of the following form (the dashed
line depicts where deflation should be applied in the original Hessenberg matrix H):

H =

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �





× · · · · · · · · ·
× × · · · · · · · ·
× ×× · · · · · · ·
× ××× · · · · · ·
× ×× × · · · · ·
× × ×× · · · ·

0 ××× · · ·
×××× · ·
×××× ·
××××


+



×
vH

2 +



×
×


yH
2


. (8)

We draw the attention once more to the fact that the zero indicating deflation is positioned
two rows below the position where one should actually subdivide the matrix, the column, however
remains the same.

Remark 3 Considering a rank m perturbation we have m + 1 subdiagonals. Assuming all used
Givens transformations to be different from the identity (otherwise we refer to the Appendix). A
zero element in the Hessenberg matrix can be detected as a zero on the (m + 1)−th subdiagonal.
The zero resides in the same column, only shifts down m rows. The final m subdiagonal elements
of the Hessenberg matrix have to be computed explicitly, their zeroness is not reflected in the
representation, simply because we cannot shift down m more rows.

Note also that in case of a standard Hessenberg matrix, which means a rank 0 perturbation,
the location of the zero corresponds exactly to the zero on the subdiagonal, which brings us to the
standard setting.

In standard deflation approaches, the matrix is divided into two independent subproblems with
the same characteristics of the original one. On the contrary, in our case, we cannot decouple the
problem into two smaller subproblems because we are using a different representation and the two
parts are interacting.

Let us illustrate how this is done by using this representation. Again we assume to be working
with the double shift method on a rank 2 perturbation, this illustrates the general idea.

6.2 Performing QR-steps after deflation was applied

In the previous section it was shown, that even-though deflation can be applied, both independent
Hessenberg matrices (see Equation (7)) H(1 : i, 1 : i) and H(i+1 : n, i+1 : n) still have interaction
in the representation.

It is, however, possible to perform QR-steps on H(1 : i, 1 : i) and H(i + 1 : n, i + 1 : n) just
like in a standard QR-algorithm were one can completely separate both matrices. In the following
subsections we will show how to perform QR-steps on the top parts: H(1 : i, 1 : i) bottom parts
H(i : n, i : n) (1 < i < n) and also middle parts: H(i : j, i : j), 1 < i < j < n (assuming of course
suitable deflation possibilities in H for either three cases). We denote the entire matrix we act on
as H, this corresponds to the matrix H from Equation (7) and (8). We will however only work
on the top, bottom and middle part of this matrix H!

6.2.1 The top part

Assume deflation is possible and the following matrix factorization is given (the dashed line depicts
the actual splitting between upper and lower part in the Hessenberg matrix). We start performing
a QR-step on the matrix H(1 : i, 1 : i). Denote H by H1, that is H1 = H.

H1 =

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·

0 ×××

+


×v1

H +


×
×
y1

H

 .
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Let us perform an implicit QR-step on the top part of the matrix. One would expect the chasing
step to break down, once the dashed line is reached. Assume the shifts are chosen with regard to
rapid convergence for the upper part of the Hessenberg matrix.3

The initial transformations are performed similarly as in the standard case. Hence we obtain
equation (6): H2 = G2,1G2,2V

(u)
2 V

(x)
2 (B2 + u2vH

2 + x2yH
2 ), G2,1 and G2,2 determining the up-

coming chasing step. Performing the unitary similarity transformation with G2,2 and G2,1 gives
us H3 = V

(u)
2 V

(x)
2 (B2 + u2vH

2 + x2yH
2 )G2,1G2,2, graphically depicted as follows: (G2,1 and G2,2

are marked with a × and shown on the right):

H2 =

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
⊗̂ ×××× ·

0 ×××

+


×v2

H +


×
×
y2

H


�×

�×
�

�

We see that since B(7, 4) = 0 no bulge is created when transformation G2,1 is applied to the
columns; multiplication by matrix G2,2 will leave a small bulge in position (6, 2) that can be
removed by means of a Givens transformation acting on rows 5 and 6. This transformation can
simply be dragged to the left as done before by repeatedly applying the shift-trough Lemma 2. It
is interesting to remark that we have an impact below the dashed line! We obtain

H3 = G3,1V
(x)
3 V

(u)
3

(
B3 + u3vH

3 + x3yH
3

)
.

Another similarity transformation is now performed, involving Givens transformation G3,1. Since
the original Hessenberg matrix has the element (5, 4) zero, we would expect the algorithm to
breakdown after this similarity transformation. Before applying G3,1 on the right we have:

H3 =
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�
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�
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�

�
�

�
�

�
�

� �



× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·

0 ×××

+


×vH

3 +


×
×
yH

3

 �×� (9)

after applying G3,1 on the right nothing essential changes. When trying to perform the chasing
step, we see that no bulge in position (7, 3) will be created and the algorithm breaks down, as
expected. One has performed an implicit QR-step on the part H(1 : i, 1 : i).

6.2.2 Bottom part

Assume we have a matrix H = H1 of the following form and we would like to perform a QR-step
now on the bottom part H(i : n, i : n). Even though the Givens transformations acting on the top
part will be of no influence, just as the vectors x and u we do depict them to omit confusion. For
simplicity we restrict to a 9× 9 matrix, the general case proceeds similarly.

H2 =
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�
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�
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�

�
�
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�
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� �





× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ××× · · · ·

0 ××× · · ·
×××× · ·
×××× ·
××××


+



×


vH
1 +



×
×


yH
1


, (10)

3The shifts are therefore computed based on the bottom right part of the matrix H(1 : i, 1 : i).
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The shifts are computed and the initial Givens transformations are determined by explicitly
computing the necessary columns of the matrix H. With respect to the original matrix in (7), we
are now looking for two shifts µ1 and µ2 and two Givens transformations such that

GH
1,2G

H
1,1(H(i : n, i : n)− µ1I)(H(i : n, i : n)− µ2I)e1 = βe1,

where e1 has the size of H(i : n, i : n). The two Givens should act on row 1, 2 and 2, 3 of the matrix
H(i : n, i : n), but since we are working with H that has extra rows on top, GH

1,2, is acting on rows
4 and 5 while GH

1,1 combines rows 5 with row 6. Graphically, we obtain (the Givens determining
the similarity transformation are marked with ×):
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�×y2 �
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� �





× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ××× · · · ·

0 ××× · · ·
×××× · ·
×××× ·
××××


�×

�×
�

� +



×
vH

2 +



×
×


yH
2


. (11)

We expect that the depicted zero remains in this position after the initial similarity trans-
formation is performed, otherwise our initial deflation was destroyed. In fact we can do almost
exactly the same as in the standard initial step. We first shift through the left-most marked Givens
transformations, as depicted in (11) . We obtain the following situation:
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vH

2 +



×
×


yH
2


.

Now the zero plays an important role. Applying these two transformations on the matrix B1, will
only create one bulge. Hence the zero remains intact.
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
There are two Givens transformations remaining on the right. Applying then we will produce

a bulge:
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+



×
vH

2 +



×
×


yH
2


.
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To remove the bulge we have to combine rows 8 and 9 and 7 and 8. These last two Givens can
be brought to the front applying a series of shift-through operations (just like in Section 5.1) and
one can continue the chasing procedure.

6.2.3 Middle part

When running the algorithm zeros will be created in many more instances. This will also result
in cases such as for example:

H =

H(1 : i− 1, 1 : i− 1) × ×
0 H(i : j, i : j) ×
0 0 H(j + 1 : n, j + 1 : n)

 . (12)

We know already how to perform QR-steps on the top part: the matrix H(1 : i − 1, 1 : i − 1)
(standard initial step and new finishing step), on the bottom part: matrix H(j + 1 : n, j + 1 : n)
(standard initial step and standard finishing step). In fact, performing a QR-step on this middle
part is just a combination of the standard initial step, with the new finishing step from the top
part.

7 Software and experiments

7.1 The software

In this section we present some details concerning the software implementation. The code was
written in Matlab R2007b and is available online4.

As described in Section 3, the representation is based on 2× 2 Givens rotations, which can be
stored by either 1 or 2 parameters. So globally the memory used by the algorithm for the rank-one
case, is given by n − 1 places for the unitary 2 × 2 matrices5, 3(n − 1) places for the diagonal,
subdiagonal and subsubdiagonal of the matrix B and finally n places for the product uvH . For
the rank 2 perturbation, an extra sequence of unitary transformations, an extra subdiagonal for
B and an extra vector for the product xyH are needed.

Since, in general, we will consider non-Hermitian eigenvalue problems, the Rayleigh shift was
taken, this means that for the single shift case, we chose the shift value equal to the last diagonal
element while for the double shift case, both the eigenvalues of the trailing 2×2 block were taken.

It is well known that balancing can have a significant impact on the accurateness of the com-
puted results. This means that a permuted diagonal matrix D is constructed such that the matrix
D−1AD has the row and column norms as nearly as possible equal to each other. See, e.g., the
matrix in Equation (14) in Subsection 7.2.1, which becomes Hermitian tridiagonal and hence has
perfectly conditioned eigenvalues after scaling with the matrix D = diag([1, . . . , 1,

√
α]). Although,

in the general non-Hermitian setting, balancing can be performed without bothering about the
structure, in our case, the Hermitian plus low rank structure needs to be maintained, hence it is
not trivial to design a good balancing strategy maintaining this structure.

7.1.1 Deflation

For a generic Hessenberg matrix H = (hij), deflation is admitted when the following constraint is
satisfied (see e.g. [26]):

hi+1,i < ε(|hii|+ |hi+1,i+1|), (13)

ε being the machine precision.
This criterion is, however, based on the entire matrix H, which consists of a sum of a Hermitian

and a low rank matrix. Both the Hermitian and the low rank matrix have, however, a non
4http://www.cs.kuleuven.be/∼raf/
5In the actual implementation we used 2× 2 unitary matrices instead of Givens transformations, that although

more expensive from the occupation of memory are easier to handle.
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neglectable low rank part below the subdiagonal. Perfect annihilation is required, in order to create
zeros in the matrix H. Numerical experiments show that in case of coefficients of largely varying
sizes in the matrix H, this annihilation might not be perfect anymore. Round-off introduces errors,
making it difficult/impossible to accurately compute the subdiagonal elements hi+1,i. The other
matrix elements in H are computed up to high precision, but the difficulties of determining hi+1,i

sometimes results in too early or too late termination of the QR-steps, resulting often in a loss of
accuracy. This behavior was encountered in several of the numerical experiments performed.

In Section 6.1.2, it was illustrated how a zero in H can be detected in the representation
by finding a corresponding zero in a subsubdiagonal of the matrix B. Let us refer to these two
deflation criteria as the H-criterion (Hessenberg) or the B-criterion (zero detected in the matrix
B). For detecting a zero in a subdiagonal of B we use Equation (13), but then applied to the
subsubdiagonal elements of B.

In the following numerical experiment we compare both deflation criteria for the same matrix
of size 128. In both figures all eigenvalues are plotted and their estimate of accuracy based on
the condition number is also depicted. Figure 1(a) represents the eigenvalues computed via the
standard B-deflation criterion while Figure 1(b) we used the H-criterion. Both figures look almost
identical and relative accuracy of all the eigenvalues is comparable6. The average number of
iterations is significantly different. The B-criterion uses 4.5 iterations on average, whereas the H-
criterion due to cancellation needs on average 14 iterations. In fact the iteration can be stopped
far before the 14 iterations, but one is not able to determine the subdiagonal elements accurately
and hence one is not sure when to terminate the iteration process to obtain a certain level of
accuracy.
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Figure 1: Comparison of two deflation criteria. Relative error in the eigenvalues and estimated
error using the B-deflation criterion (a) and the H-criterion (b).

7.1.2 Computational complexity

An important operation in the algorithm is the shift-through operation. Each shift through-
operation involves a QR-factorization of a 3× 3 unitary matrix. Constructing the unitary matrix
takes ≈ 18 flops, computing the Givens transformations and performing them on the unitary
matrix involves another ≈ 33 operations.

Performing a simple QR-step can be divided in two main steps:

• First operation on the left. This involves a single shift through operation (51 flops), followed
by applying the unitary transformation on the matrix B (≈ 18 flops).

• Inside the chasing, one has to perform the unitary transformation on the right and drag it
through the matrix B such that it pops up again on the left. This has to be performed n−1

6In this example all elements were constructed randomly. When sizes of the elements vary more accuracy is
quite often lost in the H-criterion.
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times. To perform the operations, one needs a window of 4× 3 sliding on the main diagonal
of the matrix B. Computing this window takes ≈ 30 operations. Applying the unitary
matrix on v takes 6 operations, applying it on B and factoring it again out takes ≈ 47 flops.
Performing the shift through operation to bring it to the front takes ≈ 51 operations.7

Hence we obtain a global cost of approximately 134n − 65 for each QR-step on a Hessenberg
matrix of size n. The designed algorithm is hence clearly an O(n2) method.

7.2 The numerical experiments

In this section we present the results of the numerical experiments performed on matrices belonging
to the class Fn,1.

We denote by λ = [λ1, λ2, . . . , λn] the vector containing the exact eigenvalues and by λ̃ =
[λ̃1, λ̃2, . . . , λ̃n] the vector of the computed ones, sorted in such a way λ̃i is an approximation of
λi. The error criterion for measuring accurateness are as follows:

E(abs) = ‖λ− λ̃‖∞ = max
i

{
|λi − λ̃i|

}
,

E(rel) = max
i

{
|λi − λ̃i|
|λi|

}
.

To compare with the results from [9] we also use the infinity norm relative criterion defined as

E(rel2) =
‖λ− λ̃‖∞
‖λ‖∞

.

Note that E(rel) < tol guarantees that all the eigenvalues have been computed with a relative error
lower than the tolerance tol, while this is not true when E(rel2) is considered. In our numerical
results we compared the eigenvalues returned by our program with the Matlab R© eig and we used
a cutting criteria of 10−16 as deflation tolerance.

The purpose of this experimentation is to test accuracy in the eigenvalues computation with
respect to general purpose algorithms not specifically designed to deal with structured matrices.
The test suite consists of different kinds of perturbed tridiagonal matrices and of Hessenberg forms
of Hermitian plus low rank matrices.

7.2.1 Description of the test suite

In this section we describe the matrices used to estimate the quality of our algorithm, both from
the point of view of accuracy and computational speed. Many of the matrices considered have
a particular interest from an applicative point of view. In particular, we tested our software
on almost tridiagonal matrices and on Hessenberg matrices that can be expressed as the sum
of Hermitian and rank-one matrices. Changing slightly the notation introduced in [9], we will
consider these different test matrices.

Type I: Chebyshev-Comrade matrices are matrices of the form A = Tn + uen
T , where Tn is

an n × n Hermitian tridiagonal matrix associated with Chebyshev polynomials of the first
kind, that is

Tn =



0 1√
2

1√
2

0 1
2

1
2

. . . . . .

. . . . . . 1
2

1
2 0 1√

2
1√
2

0


.

7In this rough estimate we neglect the final step which needs to be determined explicitly, since no shift through
needs to be performed, the cost is roughly the same.
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Table 1: Errors for Type-I matrices of size n = 128, and u = α [1, . . . , 1]T .
α 1 103 105 107 108 1011

E(abs) 3.0631e-13 8.6616e-12 1.4552e-10 5.5879e-09 8.9407e-08 1.7243e-06
E(rel) 3.0631e-13 8.6722e-12 8.5210e-11 5.5943e-09 1.4885e-08 3.8406e-06
E(rel2) 1.6396e-13 8.6555e-15 1.4552e-15 5.5879e-16 8.9407e-16 1.7243e-17
avrgit 2.6371 2.8182 2.8099 2.8099 2.7934 3.1736

These matrices arise when one wants to compute the roots of a polynomial expressed in the
first kind Chebyshev polynomial basis.

Type-II: Random tridiagonal plus random rank-one permutation. A = T + uen
T , where

T is a random symmetric tridiagonal matrix, and u is a random vector in [0, 1].

Type-III: Unsymmetric tridiagonal matrices. We consider an almost symmetric tridiago-
nal matrix of the form

T =



0 1

1 0
. . .

. . . . . . 1
1 0 1
α 0

 =



0 1

1 0
. . .

. . . . . . 1
1 0 α
α 0

+



0
...
0
0

1− α
0


en

T . (14)

When α becomes very large, the dominant eigenvalues are ill-conditioned.

Type-IV: Hamiltonian-like matrices. We consider the Hessenberg form of Hamiltonian-like
matrices which are special diagonal plus rank-one matrices from an application in transport
theory8. The matrices considered are of size 2n × 2n and are defined in terms of two
parameters α and β, and two strictly positive n-vectors c,ω. The diagonal plus rank-one
matrices are as follows

A =
[
D 0
0 −∆

]
+
[
q
e

] [
eT ,−qT

]
,

where e = [1, . . . , 1]T , q = [q1, q2, . . . , qn]T , with qi = ci/(2ωi), D and ∆ are two diagonal
matrices with ∆ii = (β ωi (1 +α))−1 and Dii = (β ωi (1−α))−1. Moreover,

∑n
i=1 ci = 1 and

0 < ωn < · · · < ω1 < 1.
Critical cases are those where α approaches 1, since the norm of A increases affecting the
accuracy of the approximated eigenvalues. In our tests, we chose α = 0.9, β = 0.8, c = [1 :
n]/sum([1 : n]) and ω = [n : −1 : 1]/(n+ 1).

Type-V: Hessenberg form of random matrices. We consider the Hessenberg form of random
symmetric plus random rank-one matrices.

In Table 1 we report the results for Type-I matrices choosing u = α [1, . . . , 1]T , for increasing
values of α.

We note that the accuracy in the computation of the eigenvalues deteriorates as α increases,
suggesting a dependence from the norm of the perturbation. Comparing the results with the ones
from [9] we see that a slight improvement in absolute value is made: one digit is gained.

For Type-I matrices with randomly chosen vector u, we are able to obtain a higher accuracy
as reported in Table 2. Comparing with [9] we see, however, that we perform worse.

Results for Type-II matrices, that is random tridiagonal plus random rank-one permutation
matrices are reported in Table 3. The values reported are obtained averaging over 50 instances of
the problem.

8See [15, 9] and the references therein for more explanations about the practical interests of these matrices, and
the meaning of the parameters.
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Table 2: Errors for Type-I matrices of the form Tn + ueT
n , with u = rand(n, 1). For different

values of n, the absolute and relative errors are shown.
n E(abs) E(rel) E(rel2)

50 1.0947e-13 1.0947e-13 8.6909e-14
100 4.2141e-13 2.4800e-11 3.5758e-13
150 3.4097e-12 2.1823e-12 2.1823e-12
200 3.6731e-12 2.6981e-12 2.6981e-12
300 6.8008e-12 5.0597e-12 5.0597e-12
500 1.7089e-11 1.3405e-11 1.3405e-11

Table 3: Errors for Type-II matrices, and for different values of n. The values reported represent
the average error obtained over 50 randomly generated instances.

n E(abs) E(rel) E(rel2)

100 2.2438e-12 1.3879e-12 1.0361e-12
150 3.4440e-10 5.6035e-10 1.5864e-10
200 5.7883e-12 4.9680e-12 2.6019e-12
300 1.5570e-12 7.6508e-12 7.2006e-13
500 4.2696e-12 3.0138e-11 1.8976e-12

Table 4: Errors for Type-III matrices, n=128, and different values of α.

α 1 10 102 103 105 107 108

E(abs) 5.8842e-14 7.9892e-13 9.8765e-13 1.6662e-12 5.8321e-11 3.1127e-09 1.8700e-08
E(rel) 5.8842e-14 4.9782e-13 4.3876e-13 3.1974e-13 5.1728e-11 1.0268e-09 9.2553e-09
E(rel2) 2.9430e-14 2.3967e-13 9.8270e-14 5.2664e-14 1.8443e-13 9.8434e-13 1.8700e-12
avrgit 2.9098 2.9268 3.3719 3.3033 2.9016 3.0656 2.9431
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Table 5: Errors for Type-IV matrices of different size. The results are obtained for α = 0.9 and
β = 0.8.

n E(abs) E(rel) E(rel2)

50 3.1335e-12 1.8983e-12 9.6708e-15
100 6.8070e-12 3.4106e-12 1.0694e-14
150 1.0714e-11 1.0714e-11 1.1290e-14
200 1.8701e-11 1.8701e-11 1.4825e-14
500 7.2838e-11 7.2838e-11 2.3223e-14

1000 8.0850e-10 8.0850e-10 1.2912e-13

Table 6: Type-V: Hessenberg form of randomly generated matrices.

n E(abs) E(rel) E(rel2)

50 2.0783e-12 2.0783e-12 3.2932e-14
100 9.5799e-12 9.5799e-12 7.6777e-14
150 5.5904e-11 6.2688e-12 2.9514e-13
200 8.2377e-11 8.2377e-11 3.2935e-13
500 9.1855e-11 3.2461e-11 1.4710e-13

1000 3.4718e-09 5.1914e-10 2.7480e-12

Matrices of Type-III are almost symmetric tridiagonal matrices that can be expressed as a
rank-one perturbation of a symmetric tridiagonal matrix. Depending on the magnitude of the
perturbation the extreme eigenvalues become ill-conditioned. Our algorithm is however very good
in dealing with this situation (see Table 4) because for α = 108 we still have an absolute error of
O(10−8) and a relative accuracy of O(10−12), respect to the infinity norm. Comparing with the
results provided in [9], we see that for large values of α we gained quite a lot in accuracy.

We have considered also matrices obtained after the reduction to Hessenberg form of Hamiltonian-
like matrices. In Table 5 the results are reported for different sizes with α = 0.9 and β = 0.8.
Results are comparable with the ones from [9]. Unfortunately, it seems that the loss of accuracy
of matrices of higher dimension depends also on the loss of accuracy when applying the unitary
similarity reduction to Hessenberg form. The resulting Hessenberg matrix obtained from the re-
duction had a norm of the lower triangular part already equal to 10(−13) for size 100 which is far
from the expected zero.

Results for the Hessenberg form of randomly generated symmetric matrices plus random rank-
one matrices are given in Table 6. We can see a loss of accuracy for higher values of n which is due
to the reduction to Hessenberg form, but still acceptable when looking at the condition numbers
of the individual eigenvalues.

8 Conclusions

In this article a new algorithm was developed for performing a QR-step on a Hessenberg matrix
which is the sum of Hermitian plus low rank matrix. The implementation was based on the
Givens-weight representation. The use of a unitary factorization to represent the matrix results
in the incapability of using the standard deflation approach and hence an alternative deflation
technique was developed.

Numerical experiments illustrate that this algorithm is a viable alternative to the existing
technique proposed in [9]. In some experiments a significant increase in accuracy is obtained,
whereas in others the technique from [9] performs better.
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Future research involves a backward error analysis and a detailed investigation of the deflation
criterion used. Moreover, computing explicitly the last Givens transformation when performing
the QR-iteration seems an unnatural step, it would be interesting if we could get rid of this explicit
computations.
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Appendix: Different rank combinations in the perturbation

Throughout the entire article we assumed all Givens transformations in the sequences to be dif-
ferent from the identity transformation. In this section we show that admitting identity transfor-
mations does not really complicate things. Identity Givens transformations are cheaper to deal
with and will eventually vanish.

We know from Section 6, that identity Givens transformations can only occur as a leading
part of the sequences V (ui), and occur only when ui has trailing zeros. Let ri denote the index of
vector ui, such that ui(ri + 1 : n) = 0 and ui(ri) 6= 0. Without loss of generality we can reorder
the vectors ui so that r1 ≥ r2 ≥ . . . ≥ rm, which mean that u1 is the vector with the least number
of trailing zeros, where un has the most zeros9.

Let us gradually build up the representation. Construct V (u1) as a sequence of r1 Givens
transformations such that V (u1)

H
u1 has only the top element different from zero. Since H =

S +
∑n

i=1 uivH
i , when applying V (u1) we get

V (u1)
H
H = V (u1)

H
S +

n∑
i=1

V (u1)
H

uivH
i

9There are many possibilities for ordering the vectors and obtaining different representations. We choose the
one admitting an easy flow of the chasing procedure.
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Let us denote the matrices and vectors on which V (ui)
H

is applied by a superscripted (ui). In
this way we obtain:

V (u1)
H
H = S(u1) +

n∑
i=1

u(u1)
i vH

i .

Considering the vectors V (u1)
H

ui = u(u1)
i , we see that the associated number r(u1)

i has possibly
grown by 1, w.r.t. the number ri. More precisely r

(u1)
i = ri for those i such that ri = r1 and if

ri < r1 we obtain r
(u1)
i = ri + 1. Continuing this procedure and constructing then V (u2) as a

sequence of r(u1)
2 −1 Givens transformations such that V (u2)

H
u(u1)

2 has only two elements nonzero
on the top. The sequence V (u2) contains r(u1)

2 −1 = min(r1, r2+1)−1 < r1 Givens transformations.
This procedure can be continued and the number of Givens transformations determining V (ui)

can only decrease, when i increases.
The procedure above is best illustrated by an example. Assume we have a rank 2 perturbation

uvH + xyH , with u(8 : 9) = 0 (ru = 7), x(5 : 9) = 0 (rx = 4). This means the following for the
symmetric matrix S = H − uvH − xyH : the bottom part S(8 : 9, 8 : 9) is of Hessenberg form;
the middle part S(5 : 7, 5 : 7) is of Hessenberg form plus a rank 1 perturbation; the top part
S(1 : 4, 1 : 4) is of Hessenberg form plus a rank 2 perturbation. This means that for the global
matrix H we have that H(1 : 4, 1 : 4) is the sum of a symmetric plus strict rank 2 perturbation, the
part H(5 : 7, 5 : 7) is a symmetric plus strict rank 1 perturbation, the bottom part H(8 : 9, 8 : 9)
is a symmetric plus rank 0 perturbation (hence S(8 : 9, 8 : 9) is symmetric tridiagonal).

This structure implies that we need less Givens transformations to create zeros in the vectors
u and x. We obtain the following representation scheme where Givens transformations equal to
the identity matrix are not depicted. The vector û has 1 element different from zero and x̂ has 2
elements different from zero. The unitary matrix V (u) consists of 6 Givens transformations such
that V (u)H

u = û. The unitary matrix V (x)H
is constructed to annihilate all, except the topmost

2 elements of the vector V (u)H
x, so we obtain V (x)H

V (u)H
x = x̂. Since V (u)H

x has lost its zero
in position 5 it consists of three Givens transformations:

H = V (u)V (x)(B + ûvH + x̂yH)

=

�
�

�
�

�
�

�
�

�
�

�
�

�
� �

�
�

�





× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ×× × · · · ·
× ×× · · ·
× ×× · ·
× × ·
××


+



×
vH +



×
×


yH


.

The zeros of u and x have an impact on the representation of H in two important places. First of
all the sequences of non-identity Givens transformations V (x) and V (u) are shorter than before.
Second, the number of subdiagonal elements in B decreases accordingly to the number of Givens
transformations.

The reader can check the structure of the subdiagonal elements carefully by reconsidering
exactly the same techniques as described in Section 3. We have now a matrix H, ideally partitioned
into three part accordingly with a specific rank m = 2, 1, 0 perturbation.

Let us briefly show how natural the transition from the rank 2 to the rank 1 perturbation
proceeds in case of the single shift approach, the multishift approach proceeds similarly.

The fact that many of the Givens transformations equal the identity implies that the chasing
procedure becomes much simpler. The only drawback is that we cannot determine the chasing
Givens transformations on the fly anymore. We need to compute them explicitly by computing
a small block in the Hessenberg matrix. Once the transformation is determined, one can easily
apply it on the representation, without destroying it.
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Suppose we have performed the initialization step successfully and we have computed the
following factorization of the matrix H2:

H2 =G2V
(u)
2 V

(x)
2 (B2 + u2vH

2 + x2yH
2 )

=
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

× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ×× × · · · ·
× ×× · · ·
× ×× · ·
× × ·
××


+



×
vH +



×
×


yH


.

Performing the similarity transformation defined by G2 we obtain:

H3 = GH
2 H2G2 = V

(u)
3 V

(x)
3 (B3 + u3vH

3 + x3yH
3 )G2.

Unfortunately no bulge is created, hence we cannot continue the chasing and column H3e2 needs to
be computed explicitly to determine the bulge in position (4, 2). Having determined G3 explicitly
we can perform the next similarity transformation:

H4 =GH
3 V

(u)
3 V

(x)
3 (B3 + u3vH

3 + x3yH
3 )G3

=
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

× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ×× × · · · ·
× ×× · · ·
× ×× · ·
× × ·
××


+



×
vH +



×
×


yH


G3.

Eventhough one might expect problems now since we have again a Givens transformation on the
left, we see that a simple shift-through operation GH

3 V
(u)
3 = V

(u)
4 G̃H

3 followed by a fusion, with
the last non-identity Givens transformation of V (x)

3 solves this problem:

GH
3 V

(u)
3 V

(u)
3 = V

(u)
4 G̃H

3 V
(x)
3 = V

(u)
4 V

(x)
4 .

Applying the transformation G3 on the right to the terms gives us (fill-in is created in position
(6, 3) in B4):

H4 = V
(u)
4 V

(x)
4 (B4 + u4vH

4 + x4yH
4 )

=
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

× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ×× × · · · ·
× × ×× · · ·
××× · ·
× × ·
××


+



×
vH

4 +



×
×


yH
4


.

The created fill-in is not really a problem, it only indicates that the nice rank perturbation (the
division in rank 0, 1 and 2) is getting lost. We see now that the diagonal starts filling-up, from
the next iteration we will see that also the Givens transformations start filling-up. This filling-up
process is not a problem since in the end we will obtain all Givens transformations different from
the identity as we assumed in the beginning of the article.
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Again one cannot determine the next chasing step, G4 also needs to be computed explicitly10.
Performing this similarity transformation we obtain:

H5 =GH
4 V

(u)
4 V

(x)
4 (B4 + u4vH

4 + x4yH
4 )G4

=
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

× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ×× × · · · ·
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× ××× · ·

× × ·
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
+



×
vH

4 +



×
×


yH
4


G4.

Performing the depicted shift-through operation will put the marked Givens transformation in
an empty position: GH

4 V
(u)
4 = V

(u)
5 G̃H

4 . This transformation can then simply be added to the
sequence of Givens transformation V

(u)
4 , obtaining V (x)

5 = G̃H
4 V

(x)
4 .

The application of transformation G4 on the right does not have a significant impact on the
structure, there is not even a new bulge created now. The new structure is depicted in the
following scheme (We did denote the newly added Givens transformation with ×, but in this case
it is not undesired in this position, it satisfies the general symmetric plus rank 2 representational
constraints):

H5 = V
(u)
5 V

(x)
5 (B5 + u5vH

5 + x5yH
5 )

=
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

× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ×× × · · · ·
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× ××× · ·
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+
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×
vH

4 +



×
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
.

The global picture is clear now. Explicitly computing the remaining Givens transformations,
filling up empty positions in B as well as in the sequences of Givens transformations leads to the
following final scheme. The newly added Givens transformations are marked as ×, note that also
some extra subsubdiagonal elements have been created.

Hn = V (u)
n V (x)

n (Bn + unvH
n + xnyH

n )

=
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

× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ×× × · · · ·
× × ×× · · ·
× ××× · ·
×× × ·
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
+



×
vH

4 +



×
×


yH
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
.

One can see that with a single iteration step we cannot remove all the identity Givens trans-
formations. This means that some structures will remain intact, but after the application of other
QR-steps, due to the fact the matrices are not symmetric, gradually they will disappear (see e.g.
[6, 5, 23]).

Remark 4 We briefly remark that in the case some of the Givens transformations are equal to
the identity, as discussed in this appendix, one has to adapt the deflation technique to deal with the
particular situation of submatrices with different ranks. In particular, a combination of deflation
criteria for the different m and the explicit computation of some columns should be used.

10Computing these Givens transformations is in fact computationally less expensive than performing the standard
chasing step, so there is no computational problem here.
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