An Intemational Joumal

g Available online at www.sciencedirect.com computers &
v \3:' SCIENCE @ DIRECT® mathematics
L A e with applicationa

ELSEVIER Computers and Mathematics with Applications 50 (2005) 741-752
www.elsevier.com/locate/camwa

A Fast Algorithm for the
Inversion of General Toeplitz Matrices

P. G. MARTINSSON, V. ROKHLIN AND M. TYGERT
Department of Mathematics
Yale University, P.O. Box 208283
New Haven, CT 06520-8283, U.S.A.

(Recetved February 2005; revised and accepted March 2005)

Abstract—We propose a “fast” algorithm for the construction of a data-sparse inverse of a general
Toeplitz matrix. The computational cost for inverting an N x N Toeplitz matrix equals the cost of
four length-N FETs plus an O{N)-term. This cost should be compared to the O(Nlog? N} cost
of previously published methods. Moreover, while those earlier methods are based on algebraic
considerations, the procedure of this paper is analysis-based; as a result, ita stability does not depend
on the symmetry and positive-definiteness of the matrix being inverted. The performance of the
scheme is illustrated with numerical examples. © 2005 Elsevier Ltd. All rights reserved.

Keywords—Toeplitz matrix, Fast algorithm, Direct inversion.

1. INTRODUCTION

We consider the problem of inverting an N x N Toeplitz matrix,

tw ty—1 ... ©h1
tN+1 tn 2]

T = - .] (1)
tan—1 17

with real or complex entries. Methods for computing T-! in O(/N?) operations have been known
since the 1960s, see, for example, [1,2]. For the case where T is positive-definite, it is fairly well
understood how to construct T~ stably in O(N log”> N) operations, see [3] and the references
therein. These techniques are based on algebraic properties implied by the Toeplitz structure.
When such algebraic techniques are applied to general Toeplitz matrices, stability issues arise;
methods for managing such issues (at the cost of sacrificing the O(N log? N} CPU time estimate
for certain matrices) are presented in, e.g., [4,5].

In this paper, we use rank considerations, rather than algebraic properties, to construct a fast
inversion scheme. Our approach depends crucially on the well-known fact that the representa-
tion of T in Fourier space, T‘, is semiseparable in the sense that its off-diagonal blocks can be

The first author was supported in part by the Office of Naval Research under Contract #N00014-01-1-0364.
The second author was supported in part by the Defense Advanced Research Projects Agency under Contract
#MDA972-00-1-0033.

0808-1221/05/8 - see front matter @ 2005 Elsevier Ltd. All rights reserved. Typeset by ApS-TEX
doi:10.1016/j.camwa. 2005.03.011

742 P.G. MARTINSSON, et al.

approximated by low-rank matrices, see, [6-10]. Combining this fact with the observation that
factorizations of these off-diagonal blocks can be obtained very rapidly, we demonstrate that the
O(N) inversion algorithm of [11] can be used to compute a compressed representation of 71,
whence T—! ig readily applied via two FFTs. This inversion scheme is in no way dependent on
either the positivity or the symmetry of 7. Numerical experiments on general symmetric Toeplitz
matrices indicate that the procedure is very stable. According to [7], similar results should be
obtained if the inversion scheme of [12] were applied to the problem of inverting T

This paper is structured as follows. Section 2 introduces our notation. Section 3 lists some
basic facts about Toeplitz matrices and their Fourjer representations. Section 4 contains the proof
that the Fourier representation of a Toeplitz matrix possesses the properties required for the fast
inversion scheme of [11] to be applicable. Section 5 presents the results of several numerical
examples,

2. PRELIMINARIES

In this section, we introduce a notational framework.
Let N be a positive integer and let

t=[t(1),£(2),...,t (2N - 1)] (2)

be a sequence of (possibly complex) numbers. We call this sequence the Toeplitz-vector that
generates the Toeplitz-matriz T € C¥*¥ with elements,

T{m,n)=t(N+m—mn). (3)
As an example, for N = 4, we have

t4) t@) t2) t()
t(5) t(4) t(3) t(2)

T=\ie) t(5) t(a) t(3)|" 4)
£(7) £(6) t(5) t(4)

Matrices are always named using upper case letters while lower case letters are used for vectors.
We define a discrete Fourier transform F by

ey — L y —2mim(n—1/2)/N
(Fu] (m) = 4 (m) = n; e w(n), (5)
which is a unitary operator on CV, The inverse transform is thus given by
uw=wwmﬁ%iﬁmww%w. ©
N3

(See Remark 2 for some comments on our choice of a discrete Fourier transform.) Then, the
Fourier representation of T is defined by

T = FTF*. (7)
We introduce a shift operator S, such that, for v € C¥,

u{n+1), n=1,...,.N-1,

CRIORS ®

A Fast Algorithm 743
and a flip operator P, such that
[Pul(n) =u(N+1—n). (9)

As an example, for N =4, § and P have the matrix representations,

0100 000 1
0010 0010

S=10 00 1 and P=1, 4 4 o (10)
1000 1000

Throughout this paper, norms of vectors are [*-norms, ||v| = (E;.V:l lv;|2)1/2, and norms of
matrices are the corresponding operator norms. Thus, if A is an m x n matrix,

4] = mex 124

wel™ ul

(11)

Finally, we introduce the concept of neutered block columns and rows. Suppose that A is a
matrix composed of p x p blocks. We say that the submatrix formed by all the blocks in say,
the j*" column of blocks, except the block on the diagonal, is the j*® neutered block column.
Neutered rows are defined analogously. See Figure 1 for an illustration.

Figure 1. Illustration of the concept of a neutered block column. The figure shows a
4 % 4 block matrix. The submatrix formed by the three gray blocks is the “second
neutered block column™.

3. PROPERTIES OF THE FOURIER
REPRESENTATION OF A TOEPLITZ MATRIX

This section contains two technical results. Lemma. 1 gives a formula for the Fourier represen-
tation T of a Toeplitz matrix T', while Lemma 2 lists some its properties.

LEMMA 1. The entries of the matrix T' defined by (7) are given by

where, forn=1,..., N,
v(n) = (N +n) —t(n), (13)
(n) = e~ NG (n), (14)
z(n) =nt(n)+ (N —n)t(N+n), (15)
E(n) = e_”i“/Nm (16)

\/N,

Td4 P.G. MARTINSSON, et al.

and
i

oM = (=) /)’

(17)
PRroOF. The Toeplitz matrix T almost commutes with the shift operator S, see (8), in the sense
that ST — T'S has rank two. To be precise,

ST — T8 = ve} —env*P, {18)

where v is defined by (13), P is defined by (9), and e; € CV is the j'* canonical basis vector (so
that e.g., e1 = [1, 0, ..., 0]*). On the Fourier side, equation (18) takes the form,

ST - T8 = véf — ent* . (19)

Now, we use that Sisa diagonal matrix with entries,

S (n,n) = *mn/N, (20)
and that, forn=1,...,N,

b1 (n) = () e, (1)
ex () = (g) e/ (22)
b=, (23)

to write (19) in component form,

2mm/NT (m n) (m’ n) e21rin/N

. 24
— (%)) (m) e-rrm/N _ (%) ﬂlm/N* (n) ()

Equation (12) follows directly from (24) when m # n.
To derive the expression for the diagonal elements of T', we insert (3), (5), and (6) into (7} to
obtain

T(n ,n Z Z —{2xin/N)(p—q); (N+P q) (25)

p—l g=1
Changing summation variables to r = N + p— q and s = p — g, we find that

Z Ze—(zwm/m(r Mt (r) + = Z E e~min/Neot (N +5) (26)

r_l p=1 3=1 p=1+s
Z e—(21rm/N)1',rt (‘.l") = Z —(2nin/N)s (N s) t (N + 8) (27)
-r"—l
=5 Z e~ @mn/NIT (rf (7) + (N —) £ (N +71)). (28)
r=1
That T(n,n) = &(n) now follows from (15), (16), and (5).]

REMARK 1. It is frequently useful to write the formula (12} in matrix form. To this end, let us
define an N x N matrix ¥ by

Y(m,n)={:‘:(m—n)’ ™, (29)

m=n,

A Fast Algorithm 745

where ¢ is defined by {17). Since ¢ is N-periodic, the matrix Y is circulant. Furthermore, let us
define X and V' as N x N diagonal matrices with nonzero elements,

X (n,n) =& (n), (30)
Vn,n)=10(n). (31)

Then, we can write (12} in matrix form as
T=VY-YV+X (32)

In particular, using the index notation of [16], the off-diagonal block T'(Ja,J}) corresponding to
two disjoint index sets J; and Js, is given by the formula

T (Ja, J1) = V (Joy Jo) Y (Joy J1) = Y (Ja, 1) V (J1, 1) . (33)

LEMMA 2. Let T be a Toeplitz matrix (as defined by (3)) and let T' be its Fourier representation
(as defined by (7)). Then,

(i) the matrix T is always symmetric {but not necessarily Hermitian),
T =1, (34)

(ii) if T is real, then T is almost persymmetric in the sense that

T(m,n)=T(N—-n,N—-m), formmn=1,...,N~1, (35)
T(N,n)=T(N,N —n), forn=1,...,N -1, (36)
T (m,N}=T(N —m,N), form=1,...,N—1, (37)

(iii) if T is both real and symmetric, then T is real. In fact,
T = —imag (V) imag (Y) 4 imag (Y) imag (V) + real (X). (38)

All of these statements are direct consequences of the definition of a Toeplitz matrix, {3), and
the definition of its Fourier representation, (5)—7).
REMARK 2. While the exact form of the results of Lemma 2 depends on the choice of a Fourier

transform, some incarnation of the lemma holds for any reasonable choice. For instance, if we
had used the common definition,

N
Ful(m) = 7= 5 et (39)

then in the case that T is real and symmetric, T would not be real, but its imaginary part would
have had rank two. Our particular choice, given by (5), was motivated simply by the fact that it
resulted in a cleaner formulation of Lemma 2 than the other options we tried.

4. THE FOURIER TRANSFORM OF A
TOEPLITZ MATRIX IS SEMISEPARABLE

In this section, we will demonstrate that when T is nonsingular, it is possible to compute a
compressed representation for the inverse of the N x N matrix T defined by (7) using O(N)
arithmetic operations, once ¥ and % (see (14),(16)) have been computed. We do this by using
the fast inversion algorithm described in [11]. This algorithm is applicable to any matrix that
satisfies the following two conditions,

(i) its off-diagonal blocks have low rank and
(ii) these blocks can be factored cheaply.

746 P.G. MARTINSSON, et al.

In this section, we will state these conditions in detail and prove that the matrix T, satisfies both
of them.

The following lemma states that to precision &, the rank of any neutered block ecolumn of T
(see Figure 1) is at most O(log(1/c)log N).
LEMMA 3. Let T be the Fourier representation of a Toeplitz matrix T (as defined by (7)), let
Ji=[,i+1,5+2,...,5+n—1] be an index set and let Tne be the corresponding neutered

block column (see Figure 1). Then, for sufficiently small but positive e, the matrix Tne allows
the factorization,

TNC =WR+E, (40)
where the matrix R has dimension k x n for some integer k satisfying
E<ClogNlog (%)) (41)

the matrix W has dimension (N — n) x k and satisfies
iwil <1, (42)
and the remainder matrix E has dimension (N — n) x n and satisfies
IE| < 2| (43)
SKETCH OF PROOF. Let J; denote the indices not contained in J1, i.e.,
Jo=[,2,...,5-1,5+m,...,N|.
From Remark 1 we know that
Ine = VoY1 — Yo 1, (44)
where for i,7 € {1,2},
Vi=V(J,J),
Y=Y (Ji,J5),
with V and Y defined by (31) and (29), respectively.
The entries of the matrix Y are samples of the continuous function z +— (sin z) ™!, see (17),(29).
Using this fact, calculations similar to those in [13] show that the singular values of Y5, decay
exponentially. Employing a standard rank-revealing QR-factorization, see [14], then, it follows

that Y5; admits the factorization, o
Yo =QR+E, (45)

where @ is an (N — n) x k matrix with orthonormal columns for some k satisfying (41), R is a
k x n matrix, and E is an (N — n) x n matrix satisfying,

o] << @
Combining (44) and (45), we find that

Tnc =VaQR - QRV; + .E — BV (47)

_[_1 E”'Q(Jz)ﬂ] 5 g
~[momre o[R!+ k- on “

To convert (47) into (40}, we set
1
= | ————V; 9
W [FE e @), (49)
_[RIB ()

E=V,E - EWV;. (51)

A Fast Algorithm 747

The bound (42) follows from (49) and the fact that) has orthonormal columns. The bound (43)
follows from (46} and (51). |

The fast inversion algorithm that we use to invert T' requires only very limited information
about the off-diagonal blocks of the matrix in the compression stage. In fact, it only needs to
know the linear dependence relations between the columns (rows) in a neutered block column
(row) (see Figure 1). According to the factorization (40), these linear dependence relations are
the same for the (small) matrix R as for the (large) matrix TNC, to within precision £. In other
words, during the inversion, we can compute R in lieu of Tie and use é to determine the linear
dependence relations. Now, since the matrix R in (45) can be precomputed, formula (50) shows
that once a particular Toeplitz vector ¢ has been specified, it is possible to compute B in 2nk
floating point operations. We summarize these findings as follows.

OBSERVATION 1. Given a Toeplitz vector ¢, it is possible to compute the factor R in (40) using
2nk floating point operations.

REMARK 3. PRECOMPUTATION. The statement of Observation 1 relies on the fact that R
has been precomputed for a given N and for a given hierarchical partitioning of the index set
{1,...,N}. This can be accomplished in O(N?log? N) arithmetic operations using a standard
rank-revealing QR-factorization as described in [14,15]. However, using the fact that Y is circu-
lant, it is possible to perform the precomputation in O(N log? N') operations since all neutered
block columns of the same size are identical and since a large neutered block column can be
factored by merging and updating the factorizations of two smaller ones.

5. NUMERICAL EXAMPLES

In this section, we present some results from numerical examples illustrating the performance
of the fast inversion scheme of [11] when applied to four different types of Toeplitz matrices.
These types were chosen to illustrate how the performance of the scheme, in terms of speed and
accuracy, depends on,

(a} the condition number of the matrix T to be inverted, and
(b} the smoothness of the Toeplitz vector ¢.

1
100 200 300 400 E00 800 700 800

Figure 2. A nonsmooth Toeplitz vector used to generate an ill-conditioned Toeplitz
matrix of “T'ype IIT".

748 P.G. MARTINSSON, et al.

The four types are as follows.

{1) Nonsmooth t, well-conditioned T. The Toeplitz vector consists of numbers randomly
distributed between —1 and 1. Additionally, a constant 10v/N was added to t(V) to force
the matrix to be well-conditioned.

(2) Smooth t, well-conditioned T. t(5) = 1/(1+ |7 — N}|).

(3) Non-smooth t, ill-conditioned T. The Toeplitz vector was constructed from a sequence
of randomly distributed numbers by suppressing those numbers close to the diagonal, see
Figure 2.

(4) Smooth t, ill-conditioned T. t(j) = 0.05/(1 + 0.02j5 — N|?).

For each of the four classes of matrices, the program was set to produce an approximate
inverse with a residual error of at most 10!°. For the two well-conditioned classes of matrices,
experiments were also performed at the lower accuracy 1078,

The algorithm was implemented in Fortran 77 and run on a Pentium IV desktop with a 2.8 GHz
processor and 512 Mb of RAM.

The results of these experiments are given in Tables 1-4. As a reference for the timings,
Table 5 gives the computational times required to invert the matrices using Trench’s algorithin
(as described in [16]}. '

Table 1. Computational results for Toeplitz matrices of Type I. The top block re-
ports experiments run at an accuracy of 10~ 10 and the lower block experiments run
at 10-%,

N L3 tiny tsolve Er M ETvench

401 | 13 | 42e—2 | 10e~3 | 1.0e—9 | 36e—1 | 8.4e—15
801 1.3 920 -2 3.0e—3 33e—-9 Tle—1 1.2e — 14

1601 1.4 18e—1 7.0e—3 3.5e—9 1.3 8.4e—15

3201 1.4 3.5e=1 ld4e -2 4.0e — 9 2.6 1.2e — 14

6401 1.4 7.2e -1 2.9e - 2 12e -8 5.0 1.2e — 14
12801 1.4 1.4 6.0e =2 1.9¢ -8 1.0e—1 —

401 1.3 1.6e—2 5.0e—4 88e:—35 1l7e -1 8.4e— 15
801 13 3.0e -2 1.2¢e—-3 1.5e—4 3.2 -1 1.2e — 14
1601 14 58¢—2 3.2a-3 d.le—4 6.le—1 8.4e—15

3201 14 12e-1 47.2e—3 7.6e — 4 1.2 1.2e —~ 14
6401 14 23e—1 l4e—2 l.le—3 24 1l.2e— 14
12801 14 4.6e—1 3.1le—2 29e -3 4.9 —

Table 2, Computational results for Toeplitz matrices of Type II. The top block
reports experiments run st an accuracy of 10710 and the lower block experiments
run at 105,

N % tiny tuolve Ep M -E'l‘mnch
401 2.0 1.7e -2 44e—4 1.3e - 10 1.7e—1 8.3e — 15

801 2.2 3.4e—2 l4e—3 1l.1le—10 34e—1 1.2e—14
1601 23 6.56 — 2 34e-3 2.4e—10 6.5e — 1 8.0e —15

3201 2.5 l3e—1 T4e -3 9.0e — 10 1.3 lle—14
6401 2.6 2.6e—1 1.5e -2 6.8e — 10 2.6 l.le — 14
12801 27 | 8.8e=-1 3.1e—2 1.2e—9 5.1 —

103 2.0 lle—2 2.6e—4 1.8e—6 10e—1 8.3e—15
801 2.2 21le—-2 8.0e —4 22 -6 2.0e—1 1.2e — 14
1601 2.3 3.6e—=2 22e-3 3.6e—6 3.9e—1 8.0e — 15
3201 25 Tde -2 48:—3 54e—6 78e—1 l.le—14
6401 2.6 1.5e —1 0.6e —3 87e—6 1.5 lle — 14
12801 2.7 3.0e -1 21le—2 1.7e - & 3.2 —

A Fast Algorithm

Table 3. Computational results for Toeplitz matrices of Type III.

N K Linv teolve Ep M | Etrench
401 lded | 5.0e—2 | 14e—3 | 18 —T7 | 40e—1 | 3.7e—10
801 | 2.1ed | 11e—1 | 34e—3 | 2.Te—T7 | T.Te—1 99e—9
1601 2.8eb 2.2e—1 Tde—3 6.8 —6 1.5 3.2e—7
3201 7.5e5 4.de—1 1.7e -2 30e—-5 29 39 -6
6401 | 3.1e6 | 8.8e—1 | 3.3e—2 | 8.2e—4 5.7 3.le—5
12801 5.0e6 1.6 6.56 — 2 7.5e=3 11 —_
Table 4. Computational results for Toeplitz matrices of Type IV.
N K tiny txolve Er M Erench
401 | 2.1e9 | 1.7e—2 | 40e—4 | 2.le—3 | L7e—1 1.9 —6
801 | 2.2¢9 | 3.3¢—~2 | 1lde—3 | 18 —3 | 34e—1 | 6.0e—6
1801 | 2.2¢9 | 65e—2 | 34e—3 | 8.le—3 | 6Be—~1 | 74e—6
3201 | 2.2e0 | 13e—1 | 76e—3 | 2.0e—-2 1.3 7.8e — 6
6401 | 2.2¢9 | 2.6e—~1 l6e—2 | l.le—2 2.6 7.9e —6
12801 2.2e9 5.le—1 3.2e—-2 l4e—2 51 —
Table 5. Performance numbers for the Trench algorithm.
N tiny tapply M
401 | 10e—3 | THe—4 | 3.le—1
801 5.0e — 3 3.8:—3 1.2
1601 | 24e—2 | 17e—2 49
3201 | 1.0e—1 | 6be—2 2.0el
6401 448 —1 2.6e—1 7.8el

-3

10

10

Figure 3. Time in seconds for inverting T versus problem size. The timingg for the
compressed algerithm applied to different types of Toeplitz vectors are drawn with
solid lines while the time required for the Trench algorithm is drawn with a dashed
line (the last data point is extrapolated).

749

750 P.G. MARTINSSON, et al.

10* 10*

Figure 4. Time in seconds for applying the inverse of T versus problem size. The
timings for the compressed algorithm applied to different types of Toeplitz vectors
are drawn with solid lines while the time required for the Trench algorithm is drawn
with a dashed line.

-1 1 1

10! 10*
Figure 5. The amount of memory required (in Mb) for inverting T versus prob-
lem size. Solid lines corresponds to accelerated algorithms while the dashed line
corresponds to the Trench algorithm.

The computational error is reported in the I2-operator norm; to be precise, if we denote the
computed inverse by 71, what we report is

B =T [T T

— -1 _
max g =B o = I (52)

A Fast Algorithm 51

This quantity was computed by applying a power iteration to the operator (T, 1T—I)*(T'T-1I)
(we note that T, 1T is typically not entirely symmetric). Similarly, letting TiL.,, denote the
inverse computed using the Trench algorithm, we report Etvench = || Tina T — || for each of the
matrices investigated. In the tables, the following numbers are also reported.

[The condition number of the Toeplitz matrix T
tiny Time required to compute the compressed inverse {in seconds).
taclve Time required to apply the compressed inverse (in seconds).
M Memory required to compute the compressed inverse {(in Mb).

The data given in the tables is presented graphically in Figures 3-5, in which, respectively, tnv,
taolve, and M, are plotted against N.

The numerical experiments show that both the computational complexity and the memory
requirements of the fast inversion scheme presented here scale more or less linearly with problem
size. Moreover, both of these quantities depend on the structure of the matrix to be inverted; when
the Toeplitz vector ¢ is smooth, the algorithm requires only 35% as many arithmetic operations
as in the worst case.

The size of a matrix at which the procedure of this paper compares favorably with the Trench
scheme depends on what is being compared, what accuracy is required, and the properties of the
Toeplitz vector. Thus, if the times for inverting the matrix are compared, the break-even point
in our experiments lies somewhere between 2000 and 10000; if the time to apply the inverse to
a vector is compared, the break-even point is 800 or less; and if the memory requirements are
compared, the break-even point is 500 or less.

REFERENCES

1. W.R. Trench, An algorithm for the inversion of finite Toeplitz matrices, J. Soc. Indust. Appl. Math. 12,
516-522, (1964).

2. 8. Zohar, Toeplitz matrix inversion: The algorithm of W.F. Trench, J. Assoc. Comput. Mach. 18, 592-601,
(1969).

3. G, Ammar, Classical foundations of algorithms for solving positive definite Toeplitz equations, Calcolo 83,
99-113, (1996).

4, M. Van Barel, G. Heinig and P. Kravanja, A stabilized superfast solver for nonsymmetric Toeplitz systems,
SIAM Journal on Matriz Analysis and Applications 28 (2), 494-510, (2001).

5. M. Stewazt, A superfast Toeplitz solver with improved numerical stability, SIAM Journal on Matriz Analysis
and Applications 35 (3), 669-693, (2003).

6. J.-P. Cardinal, On a property of Cauchy-like matrices, C. R. Acad. Sci. Paris Sér. I Math. 328 (11), 1089—
1093, (1999).

7. 8. Chandrasekaran, T. Pals, M. Gu, P. Dewilde and A.-J. van der Veen, Fast and stable direct solvers for PDEa
and integral equations, In Colloguium Talk, Summer, Lawrence Livermore National Laboratory, (2002).

8. T. Kailath and V, Olshevsky, Diagonal pivoting for partially reconstructible Cauchy-like matrices, with
applications to Toeplitz-like linear equations and te boundary rational matrix interpolation problems, in Pro-
ceedings of the Fifth Conference of the International Linear Algebra Society (Atlanta, GA, 1995), Special
Issue of Linear Algebra Appl. 254, 251-302, (1997).

9. V. Olshevksy, Editor, Fust algorithms for structured matrices: Theory and applications, In Contemporary
Mathematics, Volume 328, Papers from the AMS-IMS-SIAM Joint Summer Research Conference on Fast
Algorithms in Mathematics, Computer Science and Engineering held at Mount Holyoke College, South Hadlay,
MA, August 5-8, 2001 pp. viili-432, American Mathematical Society, Providence, Rl, U.8.A., (2003).

10. V.Y. Pan and A. Zheng, Superfast algorithms for Canchy-like matrix computations and extensions, Linear
Algebra Appl. 310 (1-3), 83-108, (2000).

11, P.G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in two dimensions,
J. Comp. Phys. 205 (1), 1-23, (2005).

12. 8. Chandrasekaran and M. Gu, A fast and stable solver for recursively semi-separable systems of equations,
In Structured Matrices in Mathematics, Computer Science, and Engineering, Contemporary Mathematics,
Volume I, Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference, University of Colorado,
Boulder, June 27-July 1, 1999, (Edited by V. Olshevsky),, AMS Publications, Providence, RI, U.5.A., (2001).

13. A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data. II, Appl. Comput. Harmon. Anal.
2 (1), 85-100, (1995).

14. M. Gu and 5.C. Eisenatat, Efficient algorithms for computing & strong rank-revealing QR factorization, STAM
J. Sci. Comput. 17 (4), 848-889, (1996).

752 P.G. MARTINSSON, et al.

15. H. Cheng, Z. Gimbutas, P.G. Martinsson and V. Rokhlin, On the compression of low-rank matrices, STAM
J. 8ci. Comp. 28, 1389-1404, (2005).

16. G.H. Golub and C.F. Van Loan, Matrizc Computations, Johns Hopkins Studies in the Mathematical Sciences,
Third Edition, Johns Hopkins University Press, Baltimore, MD, U.5.A., (1996).

