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Abstract—A number of problems in probability and statistics
can be addressed using the multivariate normal (Gaussian) dis-
tribution. In the one-dimensional case, computing the probability
for a given mean and variance simply requires the evaluation of
the corresponding Gaussian density. In the n-dimensional setting,
however, it requires the inversion of an n×n covariance matrix,
C, as well as the evaluation of its determinant, det(C). In many
cases, such as regression using Gaussian processes, the covariance
matrix is of the form C = σ2I + K, where K is computed
using a specified covariance kernel which depends on the data
and additional parameters (hyperparameters). The matrix C is
typically dense, causing standard direct methods for inversion
and determinant evaluation to require O(n3) work. This cost
is prohibitive for large-scale modeling. Here, we show that for
the most commonly used covariance functions, the matrix C
can be hierarchically factored into a product of block low-rank
updates of the identity matrix, yielding an O(n log2 n) algorithm
for inversion. More importantly, we show that this factorization
enables the evaluation of the determinant det(C), permitting the
direct calculation of probabilities in high dimensions under fairly
broad assumptions on the kernel defining K. Our fast algorithm
brings many problems in marginalization and the adaptation of
hyperparameters within practical reach using a single CPU core.
The combination of nearly optimal scaling in terms of problem
size with high-performance computing resources will permit the
modeling of previously intractable problems. We illustrate the
performance of the scheme on standard covariance kernels.

Index Terms—Gaussian process, covariance function, covari-
ance matrix, determinant, hierarchical off-diagonal low-rank,
direct solver, fast multipole method, Bayesian analysis, likelihood,
evidence

I. INTRODUCTION

ACommon task in probability and statistics is the compu-
tation of the numerical value of the posterior probability

of some parameters θ conditional on some data x,y ∈ Rn
using a multivariate Gaussian distribution. This requires the
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evaluation of

p(θ|x,y) ∝ 1

|det(C(x;θ))|1/2 e
− 1

2y
tC−1(x;θ)y p(θ), (1)

where C(x;θ) is an n × n symmetric, positive-definite co-
variance matrix. The explicit dependence of C on particular
parameters θ is shown here, and may be dropped in the
proceeding discussion. In the one-dimensional case, C is
simply the scalar variance. Thus, computing the probability
requires only the evaluation of the corresponding Gaussian. In
the n-dimensional setting, however, C is typically dense, so
that its inversion requires O(n3) work as does the evaluation
of its determinant det(C). This cost is prohibitive for large n.

In many cases, the covariance matrix C is assumed to be
of the form C(x) = σ2I +K(x), where Kij(x) = k(xi, xj).
This happens when the model for the data assumes some sort
of uncorrelated additive measurement noise having variance
σ2 in addition to some structured covariance described by
the kernel k. The function k(xi, xj) is called the covariance
function or covariance kernel, which, in turn, can depend on
additional parameters, θ. Covariance matrices of this form uni-
versally appear in regression and classification problems when
using Gaussian process priors [49]. Because many covariance
kernels are similar to those that arise in computational physics,
a substantial body of work over the past decades has produced
a host of relevant fast algorithms, first for the rapid application
of matrices such as K [21], [24], [29], [31], [64], and more
recently on their inversion [4], [7], [10], [15], [21], [30], [39],
[43]. We do not seek to further review the literature here,
except to note that it is still a very active area of research.

Using the approach outlined in [4], we will show that under
suitable conditions, the matrix C can be hierarchically factored
into a product of block low-rank updates of the identity
matrix, yielding an O(n log2 n) algorithm for inversion. More
importantly (and perhaps somewhat surprising), we show that
our factorization enables the evaluation of the determinant,
det(C), in O(n log n) operations. Together, these permit the
efficient direct calculation of probabilities in high dimensions.
Previously existing methods for inversion and determinant
evaluation were based on either rough approximation meth-
ods or iterative methods [8], [13], [17], [54], [55]. These
schemes are particularly ill-suited for computing determinants.
Although bounds exist for sufficiently random and diagonally
dominant matrices, they are often inadequate in the general
case [11]. We briefly review existing accelerated methods for
Gaussian processes in Section II-D and present a cursory
heuristic comparison with our covariance matrix factorization.

Gaussian processes are the tool of choice for many statistical
inference or decision theory problems in machine learning
and the physical sciences. They are ideal when requirements
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include flexibility for the modeling of continuous functions.
However, applications are limited by the computational cost of
matrix inversion and determinant calculation. Furthermore, the
determinant of the covariance matrix is required for Gaussian
process likelihood evaluations (i.e., computation of any actual
value of the probability of the data under the covariance hy-
perparameters, or evidence). Existing linear algebraic schemes
for direct matrix inversion and determinant calculation are pro-
hibitively expensive when the likelihood evaluation is placed
inside an outer optimization or Markov chain Monte Carlo
(MCMC) sampling loop.

In this paper we will focus on describing and applying
our new methods for handling large-scale covariance matrices
(dense and full- or high-rank) to avoid the computational
bottlenecks encounters in regression, classification, and other
problems when using Gaussian process models. We motivate
the algorithms by explaining where their need arises only
in Gaussian process regression, but similar calculations are
frequently encountered in other regimes under Gaussian pro-
cess priors. Other applications, such as marginalization and
adaptation of hyperparameters are relatively straightforward,
and the computational bottlenecks of each are highly related.

The paper is organized as follows. Section II reviews some
basic facts about Gaussian processes and the resulting formu-
las encountered in the case of a one-dimensional regression
problem. Prediction, marginalization, adaptation of hyperpa-
rameters, and existing approximate accelerated methods are
also discussed. Section III discusses the newly developed
matrix factorization for Hierarchical Off-Diagonal Low-Rank
(HODLR) matrices, for which factorization requires only
O(n log2 n) work. Subsequent applications of the operator and
its inverse scale as O(n log n). Many popular covariance func-
tions used for Gaussian processes yield covariance matrices
satisfying the HODLR requirements. While other hierarchical
methods could be used for this step, we focus on the HODLR
decomposition because of its simplicity and applicability to
a wide range of covariance functions. We would like to
emphasize that the algorithm will work for any covariance
kernel, but the scaling of the algorithm might not be optimal;
for instance, if the covariance kernel has a singularity or is
highly oscillatory without damping. Further, in Section IV,
we show that the determinant of an HODLR decomposition
can be computed in O(n log n) operations. Section V contains
numerical results for our method applied to some standard
covariance functions for data embedded in varying dimensions.
Finally, in Section VI, we summarize our results and discuss
any shortcomings and other applications of the method, as well
as future avenues of research.

The conclusion contains a cursory description of the cor-
responding software packages in C++ and Python which
implement the numerical schemes of this work. These open-
source software packages have been made available since the
time of submission.

II. GAUSSIAN PROCESSES AND REGRESSION

In the past two decades, Gaussian processes have gained
popularity in the fields of machine learning and data analysis

for their flexibility and robustness. Often cited as a com-
petitive alternative to neural networks because of their rich
mathematical and statistical underpinnings, practical use in
large-scale problems remains out of reach due to compu-
tational complexity. Existing direct computational methods
for manipulations involving large-scale covariance matrices
require O(n3) calculations. This causes regression/prediction,
parameter marginalization, and optimization of hyperparame-
ters to be intractable problems. This scaling can be reduced
in special cases via several approximation methods, discussed
in Section II-D, however for dense, highly coupled covariance
matrices no suitable direct methods have been proposed. Here,
by direct method we mean one that constructs the inverse
and determinant of a covariance matrix to within some pre-
specified numerical tolerance directly instead of iteratively.
The matrix inverse can then be stored for use later, much as
standard LU or QR factorizations. The numerical tolerance
can be measured in the spectral or Frobenius norms, and
our algorithm is able to easily achieve approximations on the
order of 10−12. Often, near machine precision (∼ 10−15) is
attainable.

The following sections contain an overview of regression
via Gaussian processes and the large computational tasks that
are required at each step. The one-dimensional regression case
is discussed for simplicity, but similar formulae for higher
dimensions and classification problems are straightforward to
derive. In higher dimensions, the corresponding computational
methods scale with the same asymptotic complexity, albeit
with larger constants. For a thorough treatment of regression
using Gaussian processes, see [42], [49].

The canonical linear regression problem we will analyze
assumes a model of the form

y = f(x) + ε, (2)

where ε ∼ N (0, σ2
ε ) is some form of uncorrelated measure-

ment noise. Given a dataset {xi, yi}, the goal is to infer f ,
or equivalently some set of parameters that f depends on. We
will enforce the prior distribution of the unknown function f
to be a Gaussian process,

f ∼ GP(m, k) (3)

where k = k(x, x′) is some admissable covariance function (k
corresponds to positive definite covariance matrices), possibly
depending on some unknown hyperparameters, and m = m(x)
is the expected mean of f . The task of fitting hyperparameters
is discussed in Sections II-B and II-C of the paper. Table I lists
some of the frequently used covariance functions for Gaussian
processes.

A. Prediction

One of the main uses for the previous model (especially
in machine learning) is to predict, with some estimated confi-
dence, f(x̃) for some new input data point x̃. This is equivalent
to calculating the conditional distribution ỹ|x,y, x̃. We will
not assume any parametric form of f , and enforce structure
only through the observed data and the choice of the mean
function m and covariance function k. Additionally, for the
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TABLE I
COMMON COVARIANCE KERNELS USED IN GAUSSIAN PROCESSES

Name Covariance function
Ornstein-Uhlenbeck exp (−|x− y|)

Gaussian exp
(
−|x− y|2

)

Matérn family σ2

(√
2ν|x− y|

)ν

Γ(ν)2ν−1
Kν

(√
2ν|x− y|

)

Rational Quadratic
1

(1 + |x− y|2)
α

time being, assume that k is fixed (i.e., hyperparameters are
either fixed or absent). Given the data x = (x1 x2 . . . xn)t

and y = (y1 y2 . . . yn)t, it is easy to show that the conditional
distribution (likelihood) of y is given by

y|x ∼ N
(
m(x), σ2

ε I +K(x)
)
, (4)

where the mean vector and covariance matrix are:

m(x) = (m(x1) m(x2) . . . m(xn))
t
,

Kij(x) = k(xi, xj).
(5)

The conditional distribution of a predicted function value,
ỹ = f(x̃), can then be calculated as

ỹ|x,y, x̃ ∼ N (f̃ , σ̃2), (6)

with

f̃ = k(x̃,x)
(
σ2
ε I +K(x)

)−1
y,

σ̃2 = k(x̃, x̃)− k(x̃,x)
(
σ2
ε I +K(x)

)−1
k(x, x̃).

(7)

In the previous formulas, for the sake of simplicity, we have
assumed that the mean function m = 0. The vector k(x̃,x)
is the column vector of covariances between x̃ and all the
known data points x, and k(x, x̃) = k(x̃,x)t [49]. We have
therefore reduced the problem of prediction and confidence
estimation (in the expected value sense) down to matrix-vector
multiplications. For large n, the cost of inverting the matrix
σ2I +K is expensive, with direct methods for dense systems
scaling as O(n3). A direct algorithm for the rapid inversion
of this matrix is one of the main contributions of this paper.

B. Hyperparameters and marginalization

As mentioned earlier, often the covariance function k used
to model the data x, y depends on some set of parameters, θ.
For example, in the case of a Gaussian covariance function

k(x, x′;θ) = β +
1√
2πσ

e
−(x−x′)2

2σ2 , (8)

the column vector of hyperparameters is given by θ = (β, σ)t.
Often hyperparameters correspond to some physically

meaningful quantity of the data, for example, a decay rate
or some spatial scale. In this case, these parameters are fixed
once and for all according to the specific physics or dynamics
of the model. On the other hand, hyperparameters may be
included for robustness or uncertainty quantification and must
be marginalized (integrated) away before the final posterior
distribution is calculated. In this case, for relevant hyperpa-
rameters θ and nuisance parameters η, in order to compute

the evidence one must compute marginalization integrals of
the form

p(y,x|θ) ∝
∫

1

|det(C)|1/2 e
− 1

2 (x
tC−1x) p(η) dη, (9)

where C = C(x;θ,η) is a covariance matrix corresponding
to the Gaussian process prior and p(η) is some prior on η. If
there are r nuisance parameters, this is an r-dimensional in-
tegral whose numerical integration requires O(qr) quadrature
nodes, where q is roughly the number of quadrature nodes
needed for one-dimensional marginalization. Unless C−1 and
det(C) can be calculated rapidly for varying samples of the
nuisance parameters, the direct calculation of this integral
is not possible. Rapid algorithms for constructing C−1 and
det(C) would allow for the direct marginalization of nuisance
parameters, thereby directly constructing the probability of the
data, or the marginal evidence. This is in contrast with several
existing approximate Monte Carlo methods for computing
the above integral (e.g. importance sampling, MCMC, etc.),
which are not direct, and which converge with only half-
order accuracy (i.e. the numerical accuracy of the integral
only decreases as m−1/2, where m is the number of Monte
Carlo samples). These sampling methods may decrease the
number of inversions of C for varying parameters, but do not
completely avoid this cost.

C. Adaptation of hyperparameters

Alternatively, there exist situations in which the hyperpa-
rameters θ do not arise out of physical considerations, but
rather one would like to infer them as best fit parameters.
This entails minimizing some regression norm with respect to
the parameters,

min
θ
|y − f(x)|

or rather maximizing a parameter likelihood function (point
estimation using a Bayesian framework):

max
θ

p(θ|x,y, f).

In either case, some manner of non-linear optimization must
be performed because of the non-linear dependence of every
entry of the covariance matrix C on the hyperparameters θ.

Regardless of the type of optimization scheme selected,
several evaluations of the evidence, likelihood, and/or Gaus-
sian regression must be performed – each of which requires
evaluation of the inverse of the covariance matrix, C−1. In
order to achieve the maximum rate of convergence of these
opimization algorithms, the full likelihood (or evidence) is
required, i.e. the numerical value of the determinant of C is
need. Unless the determinant and inverse can be re-calculated
and applied to the data x rapidly, optimizing over all possible
θ’s is not a computationally tractable problem. We skip the
discussion of various optimization procedures relevant to the
adaptation of hyperparameters in Gaussian processes [49] ,
but only point out that virtually all of them require the re-
computation of the inverse covariance matrix C−1.
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D. Accelerated methods

A variety of linear-algebraic methods have been proposed to
accelerate either the inversion of C = I+K, the computation
of its determinant, or both. If K is of low-rank, say p, then
it is straightforward to compute C−1 and det(C) using the
the Sherman-Morrison-Woodbury formula [36], [53], [61] and
the Sylvester determinant theorem [1] in O(p2n) operations.
However, unless an analytical form of the low-rank property
of the covariance kernel is known, some type of dense numer-
ical linear algebra must be performed. Usually, constructing
general low-rank approximations to n × n matrices requires
at least O(pn2) operations, where p is the numerical rank
of the matrix. By numerical rank we loosely mean that there
are p (normalized) singular values larger than some specified
precision, ε. This definition of numerical rank is consistent
with spectral norm, and closely related to the Frobenius norm.

Almost all of the dense matrix low-rank approximations
construct some suitable factorization (approximation) of K:

K ≈ Qn×pKs
p×pQ

T
p×n , (10)

where one can think of QT as compressing the action of K
onto a subset of points {xi1, . . . , xip}, Ks as the covariance
kernel acting on that subset, and Q as interpolating the result
to the full set of n points {x1, x2, . . . , xn} [45], [54]–[56].

Iterative methods can also be applied. These are particularly
effective when there is a fast method to compute the necessary
matrix-vector products. For Gaussian covariance matrices, this
can be accomplished using the fast Gauss transform [29] and
its higher-dimensional variants using kd-trees (see, for exam-
ple, [52], [63]). Alternatively, when k(xi, xj) is a convolution
kernel and the data are equispaced, the Fast Fourier Transform
(FFT) can be used to accelerate the matrix vector product [18].
For non-equispaced data, non-uniform Fast Fourier Transforms
(NUFFTs) are applicable [19], [20], [28]. As mentioned in the
introduction, analysis-based fast algorithms can also be used
for specific kernels [17] or treated using the more general
“black-box” or “kernel-independent” fast multipole methods
[21], [24], [64].

In some instances, the previously described linear algebraic
or iterative methods can be avoided all-together if an analytical
decomposition of the kernel is known. For example, much
of the mathematical machinery needed to develop the fast
Gauss transform [29] relies on careful analysis of generating
functions (or related expansions) of the Gaussian kernel. For
example,

e−(t−s)
2/δ =

∞∑

j=0

1

j!

(
s− s0√

δ

)
hj

(
t− s0√

δ

)
, (11)

expresses the Gaussian as a sum of separated functions in s,
t, centered about s0, scaled by δ, and where hj is the jth

degree Hermite function. Similar formulas, often referred to
as addition formulas or multipole expansions in the physics
literature, can be derived for other covariance kernels. As
another example, one could build a low-rank representation
of covariance matrices generated by the Matérn kernel using

formulas of the form:

Kν(w − z) =

∞∑

j=−∞
(−1)jKν+j(w)Ij(z), (12)

where w,z are complex variables for which |w| < |z| and Ij
is the modified Bessel function of the second kind or order
j. See [46], [60] for a full treatment of formulas of this type.
Relationships such as the previous ones lead (almost) directly
to fast algorithms for the forward application of the associated
covariance matrices. Directly building the inverse matrix (and
evaluating the determinant) is more complicated.

Before we move on, there are several other accelerated
methods which are popular in the Gaussian process commu-
nity (namely greedy approximations, sub-sampling, and the
Nyström method) [49]. We would like to briefly describe the
accelerations that can be obtained by interpreting Gaussian
processes via a state-space model [37], [51], [57].

Stochastic linear differential equations (causal, and driven
by Gaussian noise) and state-space models are intimately
connected with Gaussian processes and (stationary) covari-
ance functions via the Wiener-Khintchine theorem [16]. In
particular, this observation allows one to construct spectral
density approximations to stationary covariance kernels which
in turn give rise to a corresponding state-space process.
This process can then be analyzed using Kalman filters
and other smoothers, which often have linear computational
complexity time for single point inference [37], [40]. The
accuracy of this inference lies in the quality of the spectral
density approximation, which is usually expressed as a rational
function. This finite-rank spectral density approximation via
rational functions can be interpreted much in the same way
as approximating the Gaussian process covariance matrix as
in equation (10) – once this finite-rank approximation is
constructed, the resulting matrix inversion scales as O(p2n)
by the Sherman-Morrison-Woodbury formula (see Section III).
Applying state-space models to parameter inference problems,
instead of smoothing or functional inference problems, is more
subtle but several methods from signal processing are useful.
For a clear exposition on this topic, see [12], [51]. Often
the asymptotic computational cost of the state-space model
analysis will be similar to the algorithm of this paper because
both methods are using rank considerations to approximate
the covariance structure – the algorithm of this paper uses a
spatial-hierarchical method, whereas fast state-space methods
use a spectral approximation of temporal data.

One last theme for increasing the scalability of Gaussian
processes to big data sets is to introduce some notion of
sparsity [38], [45]. Many of the previous accelerated methods
can be interpreted as introducing sparsity at the covariance
kernel level – i.e. by approximating the matrix K as a finite
rank operator. The resulting approximation is dense, but data-
sparse. Alternatively, one may introduce sparsity at the level
of the actual matrix K by thresholding small elements away
from the diagonal. The resulting K may retain high (or
full) numerical rank, but the actual matrix is sparse, thereby
enabling sparse matrix algebra to be performed which has
reached a high level of acceleration in modern computing
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environments. Sparsity may also be introduced by the inclu-
sion of data-generating latent variables (related to the state-
space interpretation of Gaussian processes), similar to hidden
Markov models [12], [38], [51].

It should be noted that all of the previous methods for
accelerating Gaussian process calculations involve some sort
of approximation. Depending on the method, either the re-
sulting covariance matrix is approximated (using a low-rank
factorization) or the actual covariance kernel is approximated
(using a low-rank representation, or by approximating the
actual Gaussian process by a finite-rank chain, as in the
case of the state-space models). In each case, the analysis of
the approximating Gaussian process is different because the
approximation take place at different levels in the mathematics.
Our accelerated direct method, which is described in the next
section, makes an approximation at the level of the covariance
matrix. This is akin to viewing the covariance matrix as a
continuous linear operator, and not an arbitrary data matrix.
Often this approximation is negligible as it is near to machine
precision in finite digit arithmetic.

Lastly, the evaluation of determinants is a somewhat dif-
ferent matter. Most of the previously described accelerated
approximations in this section are unable to evaluate the
determinant in less than O(n3) time since this is equiva-
lent to constructing some matrix factorization or all of the
eigenvalues. Taylor series approximations [47] and Monte
Carlo methods have been suggested [9], as well as conjugate
gradient-type methods combined with trace estimators [17].
For additional approximation methods, see the text [49]. In
general, however, it is difficult to obtain accurate values for
the determinant in a robust and reliable manner. Thus, the
development of a fast, accurate, and direct method is critical
in making large-scale Gaussian process modeling useful for
for exact inference problems.

III. HIERARCHICAL MATRICES

A large class of dense matrices, for example, matrices
arising out of boundary integral equations [65], radial basis
function interpolation [4], kernel density estimation in machine
learning, and covariance matrices in statistics and Bayesian
inversion [5], [6], can be efficiently represented as data-sparse
hierarchical matrices. After a suitable ordering of columns and
rows, these matrices can be recursively sub-divided and certain
sub-matrices at each level can be well-represented by low-rank
matrices.

We refer the readers to [2], [10], [14], [15], [27], [33]–
[35] for more details on this approach. Depending on the
subdivision structure and low-rank approximation technique,
different hierarchical decompositions exist. For instance, the
fast multipole method [31] accelerates the calculation of long-
range gravitational forces for n-body problems by hierarchi-
cally compressing the associated matrix operator using low-
rank considerations. The algorithm of this paper makes use
of sorting data points according to a kd-tree, which has the
same formalism in arbitrary dimension. The data is sorted
recursively, one dimension at a time, yielding a data structure
which can be searched in at most O(n) time, and often much

faster. Once the sorting is completed, the data points can be
globally re-ordered according to, for example, a Z-order or
Z-curve. It is this ordering which generates a correspondence
between individual data points and matrix columns and rows.
Based on the particular covariance kernel and the data structure
used (an adaptive versus a uniform sorting), the resulting
algorithm will perform slightly differently, but with the same
asymptotic scaling.

In this article, we will be working with the class of hier-
archical matrices known as Hierarchical Off-Diagonal Low-
Rank (HODLR) matrices [4], though the ideas extend for
other classes of hierarchical matrices as well. As the name
suggests, this class of matrices has off-diagonal blocks that
are efficiently represented in a recursive fashion. A graphical
representation of this class of matrices is shown in Figure 1.
Each block represents the same matrix, but viewed on different
hierarchical scales to show the particular rank structure.

Full rank; Low rank;

Fig. 1. The same HODLR matrix at different levels.

We first give an example of a simple two-level decom-
position for real symmetric matrices, and then describe the
arbitrary-level case in more detail. In a slight abuse of notation,
in order to be consistent with previous sources describing
HODLR matrices, we will refer to the decomposition of a
matrix K, which is not necessarily the same K as previ-
ously mentioned in the covariance matrix case, namely in
C = I +K.

Algebraically, a real symmetric matrix K ∈ Rn×n is termed
a two-level HODLR matrix, if it can be written as:

K =

[
K

(1)
1 U

(1)
1 V

(1)T

1

V
(1)
1 U

(1)T

1 K
(1)
2

]
, (13)

with the diagonal blocks given as

K
(1)
1 =

[
K

(2)
1 U

(2)
1 V

(2)T

1

V
(2)
1 U

(2)T

1 K
(2)
2

]
,

K
(1)
2 =

[
K

(2)
3 U

(2)
2 V

(2)T

2

V
(2)
2 U

(2)T

2 K
(2)
4

]
,

(14)

where the U
(j)
i , V (j)

i matrices are n/2j × r matrices and
r � n. In practice, the rank of the U , V matrices will fluctuate
slightly based on the desired accuracy of the approximation. In
general, all off diagonal blocks of all factors on all levels can
be well-represented by a low-rank matrix, i.e., on each level,
U

(j)
i , V

(j)
i are tall and thin matrices. It is easy to show that

the matrix structure given in equations (13) and (14) can be
manipulated to provide a factorization of the original matrix as
a product of matrices, one of which is block-diagonally dense,
and the rest of which are block-diagonal low-rank updates to
the identity matrix. This is shown in Figure 2.
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can be obtained via spectral analysis of the interpolating
Chebyshev polynomial, and the approximation can be
computed in O(r2 max m, n) time.

On the other hand, if there is no a-priori information of
the matrix, then linear-algebraic methods provide an at-
tractive way of computing fast low-rank decompositions.
These include techniques like pseudo-skeletal approxi-
mations [23], interpolatory decomposition [17], random-
ized algorithms [19], [36], [52], rank-revealing LU [39],
[42], adaptive cross approximation [?], [44] (ACA) (which
is a minor variant of partial pivoted LU), and rank-
revealing QR [28]. Though purely analytic techniques can
be faster since many operations can be pre-computed,
algebraic techniques are attractive for constructing black-
box low-rank factorizations. The algorithm of this paper
relies on an implementation of approximate partial piv-
oted LU , which we will now discuss.

Briefly, we construct factorizations of off-diagonal
blocks via a partial-pivoted LU decomposition which
executes in O(r2n) time. Heuristically, this factorization
constructs a series of rank-one matrices whose sum
approximates the original matrix, i.e. we wish to write

A ⇡
rX

k=1

↵kukvT
k . (17)

The vectors uk, vk are computed from the columns and
rows of A.

The linear complexity is achieved by checking the
resulting approximation against only a sub-sampling of
the original matrix. If the underlying matrix (covariance
kernel) is sufficiently smooth, then this sub-sampling
error estimation will result in an approximation which
is accurate to near machine precision. For more matrices
or covariance kernels which are highly oscillatory or
contain small-scale stucture, this method will not scale
and will likely yield a less-accurate approximation. We
omit a pseudo-code description of this algorithm, as it is
a well-know linear algebra procedure, and instead refer
to Section 2.2, Algorithm 6 of [44].

The next section presents the fast matrix factorization
of the entire covariance matrix once the low-rank de-
composition of the off-diagonal blocks has been obtained
using one of the above mentioned techniques. We offer to
concise, but complete description of the factorization in
order to make the exposition self-contained. For a longer
and more detailed discussion of the material, see [4].

3.2 HODLR matrix factorization

NONUNIFORM DATA
The overall idea behind the O(n log2 n) factorization

of an n ⇥ n, -level (where  ⇠ log n) HODLR matrix
described in [4] is to factor it as a product of + 1 block
diagonal matrices,

K = K K�1 K�2 · · · K1 K0, (18)

where Kk 2 Rn⇥n is a block diagonal matrix with
2k diagonal blocks, each of size 2�kn ⇥ 2�kn. More
importantly, each of these diagonal blocks is a low-rank
update to the identity matrix. This factorization relies
on the Sherman-Morrison-Woodbury formula [32], [46],
[51]. For example, a two-level HODLR matrix described
in equations (13) and (14) can be factorized as:
2
6664

K
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(19)

where Im is the m⇥m identity matrix, and the matrices
K̃

(k)
ij are low-rank. Similarly, Figure 3 graphically depicts

the factorization of a level 3 HODLR matrix.

K(3)

=

K3

⇥

K2

⇥

K1

⇥

K0

Full rank; Low-rank; Identity matrix; Zero matrix;

Fig. 3. Factorization of a three level HODLR matrix.

It should be noted that a matrix of the form:
In U1V

T
2

U2V
T
1 In

�
= I2n +


U1 0
0 U2

� 
0 V T

2

V T
1 0

�
(20)

is just a low-rank update to the identity matrix. We refer
the readers to [4] for more details on the factorization.
The following section contains pseudo-code describing
the procedure by which the HODLR factorization is
computed.

3.3 Pseudo-code
Insert pseudo-code here.

Algorithm 3.1: A TWO-LEVEL FACTORIZATION(✏)

procedure ASSEMBLY(c)
f  9c/5 + 32

return (U
(n)
ij , V

(n)
ij )

procedure INVERSION(all U
(n)
ij , V

(n)
ij )

f  9c/5 + 32
return (f)

main
inversionx lower
while x  upper

do
⇢

output (x, CELSIUSTOFAHRENHEIT(x))
x x + 1

Fig. 2. A two-level factorization of an HODLR matrix.

The above is merely a description of the structure of
matrices which meet the HODLR requirements, but not a de-
scription of how to actually construct the factorization. There
are two aspects which need to be discussed: (i) constructing
the low-rank approximations of all the off-diagonal blocks, and
(ii) using these low-rank approximations to recursively build a
factorization of the form shown in Figure 2. We now describe
several methods for constructing the low-rank approximations
in the next section.

A. Fast low-rank approximation of off-diagonal blocks

The first key step is to have a computationally efficient
way of obtaining the low-rank factorization of the off-diagonal
blocks. Given any matrix A ∈ Rm×n, the optimal low-rank
approximation (in the least-squares sense) is obtained using
the singular value decomposition (SVD) [25]. The downside
of using the SVD is that the computational cost of direct
factorizations scales asO(mnr), where r is the numerical rank
of the matrix. In practice, r is obtained on-the-fly such that the
factorization is accurate to some specified precision ε. For our
algorithm to be computationally tractable, we need a fast low-
rank factorization. More precisely, we need algorithms that
scales at most as O(r2n) to obtain a rank r factorization of a
n×n matrix. Thankfully, there has recently been tremendous
progress in obtaining fast low-rank factorizations of matrices.
These techniques can be broadly classified as either analytic
or linear-algebraic techniques.

If the matrix entries are obtained as evaluations from a
smooth function, as is the case for most of the covariance
matrices in Gaussian processes, we can rely on approximation
theory based analytic techniques like interpolation, multipole
expansion, eigenfunction expansion, Taylor series expansions,
etc. to obtain a low-rank decomposition. In particular, if the
matrix elements are given in terms of a smooth function f , as
in the Gaussian process case,

Aij = f(xi, xj), (15)

then polynomial interpolation methods can be used to effi-
ciently approximate the matrix A with near spectral accuracy.
Barycentric interpolation formulae such as those recently
discussed by Townsend and Trefethen and others [58], [59]
serve to effectively factorize A into

A ≈ EÃP, (16)

where Ã is a matrix obtained by sampling the function f at
suitable chosen nodes, e.g. Chebyshev interpolation nodes.
The matrices E, P are then obtained via straightforward
interpolation formulas. The accuracy of the approximation can

be estimated from spectral analysis of the interpolating Cheby-
shev polynomial, and the approximation can be computed in
O(rmax (m,n)) time.

On the other hand, if there is no a-priori information of the
matrix, then linear-algebraic methods provide an attractive way
of computing fast low-rank decompositions. These include
techniques like pseudo-skeletal approximations [26], interpo-
latory decomposition [21], randomized algorithms [23], [41],
[62], rank-revealing LU [44], [48], adaptive cross approxima-
tion [50], [66] (which is a minor variant of partial-pivoted
LU ), and rank-revealing QR [32]. Though purely analytic
techniques can be faster since many operations can be pre-
computed, algebraic techniques are attractive for constructing
black-box low-rank factorizations. The algorithm of this paper
relies on an implementation of approximate partial-pivoted
LU , which we will now discuss.

Briefly, we construct factorizations of off-diagonal blocks
via a partial-pivoted LU decomposition which executes in
O(rn) time. Heuristically, this factorization constructs a series
of rank-one matrices whose sum approximates the original
matrix, i.e. we wish to write

A ≈
r∑

k=1

αkukv
T
k . (17)

The vectors uk, vk are computed from the columns and rows
of A.

The linear complexity is achieved by checking the resulting
approximation against only a sub-sampling of the original ma-
trix. If the underlying matrix (covariance kernel) is sufficiently
smooth, then this sub-sampling error estimation will result in
an approximation which is accurate to near machine precision.
For other matrices or covariance kernels which are highly
oscillatory or contain small-scale structure, this method will
not scale and will likely yield a less-accurate approximation. In
this case, analytic methods are preferable as they will be more
efficient and provide suitable high-accuracy approximations.
We omit a pseudo-code description of this algorithm, as it
is a well-know linear algebra procedure, and instead refer to
Section 2.2, Algorithm 6 of [50].

The next section presents the fast matrix factorization of
the entire covariance matrix once the low-rank decomposition
of the off-diagonal blocks has been obtained using one of the
above mentioned techniques. We offer a concise, but complete
description of the factorization in order to make the exposition
self-contained. For a longer and more detailed discussion of
the material, see [4].

B. HODLR matrix factorization

The overall idea behind the O(n log2 n) factorization of an
n×n, κ-level (where κ ∼ log n) HODLR matrix as described
in [4] is to factor it as a product of κ + 1 block diagonal
matrices,

K = KκKκ−1Kκ−2 · · ·K1K0, (18)

where, except for Kκ, Kk ∈ Rn×n is a block diagonal matrix
with 2k diagonal blocks, each of size n/2k × n/2k. More
importantly, each of these diagonal blocks is a low-rank update
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to the identity matrix. The first factor Kκ is formed from dense
block diagonal sub-matrices of the original matrix, K. Aside
from straightforward block-matrix algebra, the main tool used
in constructing this factorization is the Sherman-Morrison-
Woodbury formula [36], [53], [61]. To simplify the notation
assume for a moment that K is an n×n matrix, where n = 2m

for some integer m. For example, a two-level HODLR matrix
described in equations (13) and (14) can be factorized as:



K
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0 K
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0 0 K
(2)
3 0

0 0 0 K
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[
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12
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21 In/2

]
,

(19)

where Im is the m × m identity matrix, and the matrices
K̃

(k)
ij are low-rank. Similarly, Figure 3 graphically depicts the

factorization of a level 3 HODLR matrix.

K(3)

=

K3

×

K2

×

K1

×

K0

Full rank; Low-rank; Identity matrix; Zero matrix;

Fig. 3. Factorization of a three level HODLR matrix.

In the case of a one-level factorization, we can easily write
down the computation. Let the matrix K be:

K =

[
A11 UV T

V UT A22

]
, (20)

where we assume that U , V have been computed using one of
the algorithms of the previous section. Then the only step in
the decomposition is to factor out the terms A11, A22, giving:

K =

[
A11 0
0 A22

] [
In/2 A−111 UV

T

A−122 V U
T In/2.

]
. (21)

We see that the computation involved was to merely apply the
inverse of the dense block diagonal factor to the corresponding
rows in the remaining factor. Furthermore, since the matrix
UV T was low-rank, so is A−111 UV

T . Unfortunately, a one-
level factorization such as this is still quite expensive: it
required the direct inversion of A11, A22, each of which are
n/2× n/2 matrices. The procedure must be done recursively
across log n levels in order to achieve a nearly optimal
algorithm.

Before describing the general scheme, we give the full
two-level factorization using the notation of equations (13)
and (14). The full factorization in this two-level scheme
is given in equation (22) (spanning two columns on the
proceeding page). The matrices A1 and A2 appearing in the
off-diagonal expressions are given by:

A1 =

[
A11 U

(2)
1 V

(2)T

1

V
(2)
1 U

(2)T

1 A22

]

A2 =

[
A33 U

(2)
2 V

(2)T

2

V
(2)
2 U

(2)T

2 A44

] (23)

This factorization is an indication of how to construct the
ultimate κ-level factorization as it only required the direct
construction of the inverse of dense matrices of size n/4×n/4.
If this procedure is repeated recursively, the only dense inver-
sions required are of n/2κ × n/2κ matrices.

At first glance, it may look as though the computation of
A−11 , A−12 is expensive, and will scale as O(n3/8). However,
these matrices are of the form:[

A UV T

V UT B

]
=

[
A 0
0 B

]
+

[
U 0
0 V

] [
0 V T

UT 0

]
. (24)

If the inverses of A, B are known (and they are in this case,
they were computed on a finer level), and U , V are low-rank
matrices, then the inverse of the full matrix can be computed
rapidly using the Sherman-Morrison-Woodbury formula:

(A+ LSR)
−1

= A−1 −A−1L
(
S−1 +RA−1L

)−1
RA−1.

If S is of small rank, then the inner inverse can be computed
very rapidly.

To summarize, see Figure 4 for rough pseudo-code describ-
ing how to construct a general κ-level HODLR factorization.
We avoid too much index notation, please see [4] for a full
detailed algorithm.

This pseudo-code computes a factorization of the original
matrix K. We have not yet computed the inverse K−1. The
inverse can be computed by directly applying the Sherman-
Morrison-Woodbury formula to each term in the factorization

K = KκKκ−1 · · · K1K0. (25)

Since each term is block diagonal or a block diagonal low-
rank update to the identity matrix, the inverse factorization can
be computed in O(n log n) time.

Before moving on we would like to point out that in the case
where the data points at which the kernel is to be evaluated at
are not approximately uniformly distributed, the performance
of the factorization may suffer, but only slightly. A higher level
of compression could be obtained in the off-diagonal blocks if
the hierarchical tree structure is constructed based on spatial
considerations instead of point count, as is the case with some
kd-tree implementations.

The next section gives a brief estimate of the computational
complexity of constructing a HODLR-type factorization.

C. Computational complexity

Constructing a HODLR-type factorization can be split into
two main steps: (i) computing the low-rank factorization of
all off-diagonal blocks, and (ii) using these low-rank approxi-
mations to recursively factor the matrix into roughly O(log n)
pieces.

For an n×n matrix which admits the HODLR structure, as
shown in, Figure 1, there are approximately κ ≈ log2 n/p,
where p is the size of the diagonal block on the finest
level (this is a user-defined parameter). Ignoring the diagonal
blocks, this means there are two blocks of size n/2 × n/2,
four blocks of size n/4 × n/4, etc. Finding the low-rank
approximation of an n/2j × n/2j off-diagonal block using
cross approximation requires O(rn/2j) flops, where r is the
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K =




A11 0 0 0
0 A22 0 0
0 0 A33 0
0 0 0 A44







In/4 A−111 U
(2)
1 V

(2)T

1 0 0

A−122 V
(2)
1 U

(2)T

1 In/4 0 0

0 0 In/4 A−133 U
(2)
2 V

(2)T

2

0 0 A−144 V
(2)
2 U

(2)T

2 In/4




[
In/2 A−11 U

(1)
1 V

(1)T

1

A−12 V
(1)
1 U

(1)T

1 In/2

]
(22)

Require: Factorization precision ε > 0
Require: Size of smallest sub-matrix on finest level, pmax {the size of the smallest diagonal block}
Require: Matrix entry evaluation routine, f(i, j)

1: κ← blog2 n/pmaxc
2: for j = 1 to κ do
3: for all i do
4: Compute the low-rank factorization U (j)

i V
(j)T

i of all off-diagonal blocks in the κ-level
hierarchy to precision ε

5: end for
6: end for
7: Form the block diagonal matrix Kκ using the block diagonals of the original matrix K
8: for j = κ− 1 down to 1 do
9: for ` = j − 1 down to 1 do

10: Apply the inverse of the block diagonals of Kj to each left low-rank factor, U (`)
i , V (`)

i ,
in the remaining off-diagonal blocks {Factor Kj out of the remaining matrix}

11: end for
12: end for
13: K0 is the last factor, off the form I + low-rank, obtained by having applied all earlier factor inverses

to off-diagonal blocks on finer levels

Fig. 4. Pseudo-code for constructing an HODLR factorization.

ε-rank of the sub-matrix. Constructing all such factorizations
requires O(rn log n).

Once the approximations are obtained, the matrix must be
pulled apart into its HODLR factorization. Let us remember
that there are κ ≈ log2 n levels in the HODLR structure. In
order to factor Kκ (the matrix of dense block diagonals), as
in equation (18), out of the original matrix K, we must apply
the inverse of the corresponding block diagonal to all the left
low-rank factors, U (κ)

i , V (κ)
i as in equations (21) - (23). In

general, a p× p inverse must computed and applied to all left
low-rank factors, of which there are O(κ). The inverse calcu-
lation is O(p3), and the subsequent application is O(prn/2j),
j = 1, . . . , κ, which dominates the inverse calculation. There
are 2κ such applications, yielding the cost for only the first
factorization level to be O(prn log n). Applying the same
reasoning as each subsequent factor Kj , j = κ − 1, . . . , 0,
along with the complexity result,

logn∑

j=1

j = O(log2 n), (26)

yields a total complexity for the factorization stage of
O(n log2 n). The factors of p, r have been dropped as it is
assumed that p, r � n.

Given a HODLR-type factorization, it is straightforward to
show that the computational complexity of determining the
inverse scales as O(n log n). There are O(log n) factors, and
since each level is constructed as low-rank updates to the
identity, invoking the Sherman-Morrison-Woodbury formula

yields the inverse in O(n) time. This gives a total runtime of
O(n log n).

IV. DETERMINANT COMPUTATION

As discussed earlier, once the HODLR factorization has
been obtained, Sylvester’s determinant theorem [1] enables the
computation of the determinant at a cost of O(n log n) op-
erations. This computationally inexpensive method for direct
determinant evaluation enables the efficient direct evaluation
of probabilities. We now briefly review the algorithm used for
determinant evaluation.

Theorem IV.1 (Sylvester’s Determinant Theorem). If A ∈
Rm×n and B ∈ Rn×m, then

det (Im +AB) = det (In +BA) ,

where Ik ∈ Rk×k is the identity matrix. In particular, for a
rank p update to the identity matrix,

det(In + Un×pVp×n) = det(Ip + Vp×nUn×p).

Remark IV.2. The computational cost associated with com-
puting the determinant of a rank p update to the identity is
O(p2n). The dominant cost is computing the matrix-matrix
product Vp×nUn×p.

Furthermore, we recall two basic facts regarding the de-
terminant. First, the determinant of a block diagonal matrix
is the product of the determinants of the individual blocks
of the matrix. Second, the determinant of a square matrix is
completely multiplicative over the set of square matrices, that
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is to say,

det(A1A2 · · ·An) = det(A1) det(A2) · · · det(An). (27)

Using the HODLR factorization in equation (18) and these
two facts, we have:

det(K) = det(Kκ) det(Kκ−1) det(Kκ−2) · · ·
det(K2) det(K1) det(K0). (28)

Each of the determinants on the right hand side of equa-
tion (28) can be computed as a product of the determinants
of diagonal blocks. Each of these diagonal blocks is a low-
rank perturbation to the identity, and hence, the determinant
can be computed using Sylvester’s Determinant Theorem IV.1.
It is easy to check that the computational cost for each
of the determinants det(Ki) is O(n), therefore the total
computational cost for obtaining det(K) is O(κn), and we
recall that κ ∼ log n.

V. NUMERICAL RESULTS

In this section, we discuss the performance of the previ-
ously described algorithm for the inversion and application of
covariance matrices C = I + K, as well as the calculation
of the normalization factor, i.e., the determinant det(C).
Detailed results for n-dimensional datasets x, where each xi
is a point in one, two, and three dimensions, are provided
for the Gaussian and multiquadric covariance kernels. We
also provide benchmarks in one dimension for covariance
matrices constructed from exponential, inverse multiquadric,
and biharmonic covariance functions. Unless otherwise, stated,
all the proceeding numerical experiments have been run on a
MacBook Air with a 1.3GHz Intel Core i5 processor and 4
GB 1600 MHz DDR3 RAM. In all these cases, the matrix
entry Cij is given as

Cij = σ2
i δij + k(ri, rj)

where k(ri, rj) is a particular covariance function evaluated at
two points, ri and rj . It should be noted that in certain cases,
the matrix K with entries Kij(r) = k(ri, rk) might itself be
a rank deficient matrix and that this has been exploited in the
past to construct fast schemes. However, this is not always the
case, for instance, if the covariance function is an exponential.
In this situation, the rank of K is in fact full-rank. Even if
the matrix K were to be formally rank deficient, in practice,
the rank might be very large whereas the ranks of the off-
diagonal blocks in the hierarchical structure are very small.
Another major advantage of this hierarchical approach is that
it is applicable to a wide range of covariance functions and
can be used in a black-box, plug-and-play, fashion.

In each of the following tables, timings are provided for
the assembly, factorization, and inversion of the covariance
matrix (denoted by the columns Assembly, Factor, and Solve).
Assembly of the matrix refers to computing all of the low-rank
factorizations of the off-diagonal blocks (including the time
required to construct a kd-tree on the data), and Factor refers to
computing the log n level factorization described earlier. The
time for computing the determinant of the n×n matrix is given
in the Det. column, and the error provided is approximately the

103 104 105 106
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2D Fast
3D Fast

Fig. 5. Comparison of time required to factorize the covariance matrix in
the case of a Gaussian covariance kernel in one, two, and three dimensions.
The conventional direct calculation is independent of dimension but scales as
O(n3).

relative l2 precision in the solution to a test problem Cx = b,
where b was generated a priori from the known vector x.

A. Gaussian covariance

Here the covariance function, and the corresponding entry
of K, is given as

k(ri, rj) = exp
(
−|ri − rj |2

)
, (29)

where ri, rj are points in one, two, or three dimensions.
The results for the Gaussian covariance kernel have been
aggregated in Table II. Scaling of the algorithm for data
embedded in one, two, and three dimensions is compared with
the direct calculation in Figure 5.

B. Multiquadric covariance matrices

Covariance functions of the form

k(ri, rj) =
√

(1 + |ri − rj |2) (30)

are known as multiquadric covariance functions, one class of
frequently used radial basis functions. Analogous numerical
results are presented below in one, two, and three dimensions
as were in the previous section for the Gaussian covariance
function. Table III contains the results. Scaling is virtually
identical to the Gaussian case, and we omit the corresponding
plot.

C. Exponential covariance

Covariances functions of the form

k(ri, rj) = exp(−|ri − rj |) (31)

are known as exponential covariance functions. One-
dimensional numerical results are presented in Table IV.
Figure 6 compares scaling for various kernels.
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TABLE II
TIMINGS FOR GAUSSIAN COVARIANCE FUNCTIONS IN ONE, TWO, AND THREE DIMENSIONS. THE MATRIX ENTRIES ARE GIVEN AS

Cij = 2δij + exp
(
−||ri − rj ||2

)
, WHERE ri ARE RANDOM UNIFORMLY DISTRIBUTED POINTS IN THE INTERVAL [−3, 3]d (d = 1, 2, 3).

One-dimensional data Two-dimensional data Three-dimensional data
n Assembly Factor Solve Det. Error Assembly Factor Solve Det. Error Assembly Factor Solve Det. Error

10, 000 0.12 0.11 0.008 0.01 10−13 0.56 0.50 0.018 0.03 10−13 15.4 17.3 0.113 0.91 10−12

20, 000 0.15 0.23 0.016 0.03 10−13 1.16 0.99 0.028 0.05 10−13 30.9 33.1 0.224 1.06 10−12

50, 000 0.47 0.71 0.036 0.12 10−12 2.74 2.44 0.067 0.12 10−13 75.5 76.3 0.434 1.68 10−11

100, 000 1.24 1.46 0.052 0.24 10−12 5.43 5.08 0.165 0.23 10−12 149 166 0.923 3.11 10−11

200, 000 2.14 3.12 0.121 0.39 10−13 12.4 14.4 0.485 0.44 10−12

500, 000 6.13 10.2 0.388 0.56 10−12 31.7 37.3 1.33 1.17 10−12

1, 000, 000 14.1 23.2 0.834 1.52 10−12 70.8 79.2 3.15 2.24 10−12

TABLE III
TIMINGS FOR MULTIQUADRIC COVARIANCE FUNCTIONS IN ONE, TWO, AND THREE DIMENSIONS. THE MATRIX ENTRIES ARE GIVEN AS
Cij = δij +

√
1 + ||ri − rj ||, WHERE ri ARE RANDOM UNIFORMLY DISTRIBUTED POINTS IN THE INTERVAL [−3, 3]d (d = 1, 2, 3).

One-dimensional data Two-dimensional data Three-dimensional data
n Assembly Factor Solve Det. Error Assembly Factor Solve Det. Error Assembly Factor Solve Det. Error

10, 000 0.08 0.13 0.006 0.02 10−13 0.77 0.86 0.022 0.04 10−13 19.0 23.2 0.135 1.32 10−12

20, 000 0.11 0.22 0.011 0.03 10−13 1.41 1.42 0.042 0.06 10−13 38.7 45.1 0.276 1.65 10−11

50, 000 0.34 0.65 0.030 0.13 10−13 3.31 3.43 0.082 0.15 10−12 87.8 97.8 0.578 2.28 10−11

100, 000 0.85 1.44 0.059 0.22 10−12 6.54 6.95 0.177 0.31 10−12 164 195 1.24 3.84 10−10

200, 000 1.56 3.12 0.147 0.44 10−13 14.1 15.9 0.395 0.59 10−11

500, 000 4.72 8.33 0.363 0.94 10−12 38.2 42.1 1.12 1.69 10−11

1, 000, 000 10.9 17.1 0.814 1.94 10−12 79.9 90.3 2.38 3.39 10−11

TABLE IV
TIMINGS FOR ONE-DIMENSIONAL EXPONENTIAL COVARIANCE

FUNCTIONS. THE MATRIX ENTRY IS GIVEN AS
Cij = δij + exp(−|ri − rj |), WHERE ri ARE RANDOM UNIFORMLY

DISTRIBUTED POINTS IN THE INTERVAL [−3, 3].

Time taken in seconds
n Assembly Factor Solve Det. Error

104 0.13 0.06 0.003 0.02 10−13

2× 104 0.23 0.11 0.008 0.03 10−13

5× 104 0.64 0.32 0.020 0.10 10−12

105 1.41 0.70 0.039 0.23 10−13

2× 105 2.86 1.42 0.076 0.42 10−12

5× 105 8.63 3.47 0.258 0.67 10−12

106 18.8 8.05 0.636 1.35 10−12

D. Inverse Multiquadric and Biharmonic

The inverse multiquadric and biharmonic kernel (also
known as the thin plane spline) are frequently used in radial
basis function interpolation and kriging in geostatistics. These
kernels are given by the formulae

k1(ri, rj) =
1√

1 + |ri − rj |2
,

k2(ri, rj) = |ri − rj |2 log |ri − rj |,
(32)

respectively. Timing results are presented in Tables V and VI,
and comparison with the exponential kernel is shown in
Figure 6.

TABLE V
TIMINGS FOR ONE-DIMENSIONAL INVERSE MULTIQUADRIC COVARIANCE

FUNCTIONS. THE MATRIX ENTRY IS GIVEN AS
Cij = δij + 1/

√
1 + |ri − rj |2 , WHERE ri ARE RANDOM UNIFORMLY

DISTRIBUTED POINTS IN THE INTERVAL [−3, 3].

Time taken in seconds
n Assembly Factor Solve Det. Error

104 0.11 0.13 0.006 0.02 10−13

2× 104 0.17 0.29 0.017 0.04 10−13

5× 104 0.47 0.84 0.037 0.12 10−12

105 1.07 1.58 0.072 0.21 10−12

2× 105 2.18 3.49 0.158 0.44 10−12

5× 105 6.43 11.8 0.496 0.71 10−11

106 14.2 26.8 1.02 1.49 10−11

E. Scaling in high dimensions

In this section we report results on the scaling of the
algorithm described in this paper when the data (independent
variables, x) lie in high Euclidean dimensions. We perform
two experiments. First, we run our algorithm on data lying
in the hypercube [−3, 3]d for various values of d. In this
scenario, we actually see an increase in computational speed
and accuracy as d is increased after some point. These results
are reported in Table VII. However, this is not a fair result.
As d increases, the expected value of r = ||ri−rj || increases,
causing, at least in the case of an unscaled Gaussian covariance
kernel, for many matrix entries to be very close to zero.

The second experiment was with the same set of param-
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TABLE VI
TIMINGS FOR ONE-DIMENSIONAL BIHARMONIC COVARIANCE FUNCTION.
THE MATRIX ENTRY IS GIVEN AS Cij = 2δij + |ri − rj |2 log(|ri − rj |),

WHERE ri ARE RANDOM UNIFORMLY DISTRIBUTED POINTS IN THE
INTERVAL [−3, 3].

Time taken in seconds
n Assembly Factor Solve Det. Error

104 0.28 0.31 0.015 0.03 10−12

2× 104 0.61 0.59 0.028 0.06 10−12

5× 104 1.62 1.68 0.067 0.15 10−12

105 3.61 3.93 0.123 0.34 10−12

2× 105 8.03 10.7 0.236 0.65 10−12

5× 105 26.7 31.2 0.632 1.41 10−11

106 51.3 81.9 1.28 3.40 10−11

103 104 105 106
10−1

102

105

System Size
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ol
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im
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Direct
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Biharmonic

Fig. 6. Comparison of time required to factorize a variety of covariance
matrices arising from exponential, inverse multiquadric, and biharmonic
covariance kernels for one-dimensional data.

eters, except the data are located in the scaled hypercube,
[−3/

√
d, 3/
√
d]d. These results are reported in Table VIII.

This is equivalent to rescaling Euclidean distance, or rescal-
ing the covariance kernel. We see that the scalings for this
experiment saturate once d ≈ 10 due to the fact that we
are not increasing the number of data points n along with
d. For fixed n, the data become very sparse as d increases
and the ranks of the off-diagonal blocks in the associated
covariance matrix remain the same. What we mean to say
by this is that 5000 points in a ten-dimensional space is
massively under-sampling any sort of spatial structure, this is
equivalent to grid of about two or three points per dimension
(2.3410 ≈ 5000). Running the algorithm with this type of data
is equivalent to doing dense linear algebra since the ranks of
all off-diagonal blocks are close to full. This is a manifestation
of the curse of dimensionality. However, it’s possible that one
may encounter both types of data (scaled vs. unscaled) in real-
world situations.

These experiments were run on a faster laptop, namely a
MacBook Pro with a 3.0GHz Intel Core i7 processor and
16 GB 1600 MHz DDR3 RAM. No sophisticated software
optimizations were made.

TABLE VII
TIMINGS FOR GAUSSIAN COVARIANCE FUNCTIONS IN d-DIMENSIONS.

THE MATRIX ENTRIES ARE GIVEN AS Cij = 2δij + exp
(
−||ri − rj ||2

)
,

WHERE ri ARE RANDOM UNIFORMLY DISTRIBUTED POINTS IN THE
UNSCALED INTERVAL [−3, 3]d (WHERE d = 1, . . . , 64).

Time taken in seconds
n Dim d Assembly Factor Solve Det. Error

5000 1 0.02 0.087 0.002 0.001 10−12

5000 2 1.17 2.043 0.027 0.014 10−11

5000 4 9.67 21.25 0.073 0.088 10−13

5000 8 10.4 7.773 0.041 0.039 10−08

5000 16 0.09 0.168 0.002 0.002 10−17

5000 32 0.15 0.061 0.004 0.001 10−16

5000 64 0.21 0.059 0.001 0.001 10−16

TABLE VIII
TIMINGS FOR GAUSSIAN COVARIANCE FUNCTIONS IN d-DIMENSIONS.

THE MATRIX ENTRIES ARE GIVEN AS Cij = 2δij + exp
(
−||ri − rj ||2

)
,

WHERE ri ARE RANDOM UNIFORMLY DISTRIBUTED POINTS IN THE
SCALED INTERVAL [−3/

√
d, 3/
√
d]d (WHERE d = 1, . . . , 64).

Time taken in seconds
n Dim d Assembly Factor Solve Det. Error

5000 1 0.02 0.087 0.002 0.001 10−12

5000 2 0.70 1.157 0.017 0.005 10−11

5000 4 33.6 108.2 0.165 0.360 10−12

5000 8 40.8 138.4 0.186 0.359 10−15

5000 16 41.9 138.7 0.182 0.358 10−15

5000 32 43.4 174.1 0.174 0.354 10−15

5000 64 42.2 142.2 0.181 0.346 10−15

F. Regression performance

In this section we demonstrate the relationship between
various parameters in our algorithm and regression perfor-
mance. The two main parameters that need to be set in our
algorithm are the factorization precision ε (see Figure 4) and
the maximum size of the smallest sub-matrix on the finest
level, pmax. For a fixed ε, changing pmax does not affect
the RMSE (root-mean-square error) of the regression (up to
machine precision errors), it merely affects the overall runtime.
For sufficiently large pmax, the scheme ceases to be a multi-
level algorithm. We merely state this as a fact, and do not
report the data. We set pmax = 20 in the following numerical
experiment.

However, for varying values of ε, we present the difference
between the RMSE for the exact (dense linear algebra)
regression and the regression obtained using the matrix factor-
ization algorithm of this paper. We generate 1024 data-points
{xj , yj} from the model:

y = sin(2x) +
1

8
ex + ε, (33)

where ε ∼ N (0, σ2
ε ) and xj is chosen randomly in the interval

(−3, 3). The non-parametric regression curve (or estimate)
under a Gaussian process prior (with zero mean) is then
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Fig. 7. Regression obtained from Gaussian process prior for synthetic data
drawn from the model in equation (33).

calculated at the same points xj as in (6) and (7):

ŷ = K(x)
(
σ2
ε I +K(x)

)−1
y, (34)

where we have chosen our covariance kernel to be consistent
with the previous numerical experiments:

k(x, x′) = e−(x−x
′)2 . (35)

No effort was made to adapt the covariance kernel to the
synthetic data. For σε = 1.0, the inferred curve through the
data is shown in Figure 7. If dense linear algebra is used to
invert I +K to obtain the exact estimate yexact, the RMSE
for this data is:

RMSE =
‖y − ŷexact‖√

1024

= 0.9969571605921435.

(36)

Figure 8 shows the absolute difference between the RMSE
obtained from dense linear algebra and that obtained from our
accelerated scheme as a function of factorization precision ε.
Unsurprisingly, from this plot we determine that, indeed, the
difference in regression performance (at least as measured by
RMSE) is proportional to ε.

VI. CONCLUSIONS

In this paper, we have presented a fast, accurate, and
nearly optimal hierarchical direct linear algebraic algorithms
for computing determinants, inverses, and matrix-vector prod-
ucts involving covariances matrices encountered when using
Gaussian processes. Similar matrices appear in problems of
classification and prediction; our method carries over and
applies equally well to these problems. Previous attempts
at accelerating these calculations (inversion and determinant
calculation) relied on either sacrificing fidelity in the covari-
ance kernel (e.g. thresholding), constructing a global low-rank
approximation to the covariance kernel, or paying the com-
putational penalty of dealing with dense, full-rank covariance
matrices. Our HODLR-based algorithm obviates the need for

Fig. 8. Difference in the root-mean-square error of the Gaussian process
regression using the algorithm of this paper and that of the direct calculation
as a function of the factorization precision ε.

this compromise. Our observation that many covariance matri-
ces of mathematical statistics have fine-grained, compressible
hierarchical structure that provides access to the inverse may
find use in many applications in the future.

The source code for the algorithm has been made available
on GitHub. The HODLR package for solving linear systems
and computing determinants is available at https://github.com/
sivaramambikasaran/HODLR [3] and the Python Gaussian
process package [22], george, has been made available at
https://github.com/dfm/george. Both packages are open source,
the HODLR package is released under the MPL2.0 license
and george is released under the MIT license. Details on
using these packages are available at their respective online
repositories.

In its present form, our method degrades in performance
when the n-dimensional data has a covariance function based
on points in Rd with d > 3, as well as when the covariance
function is oscillatory. Part of the performance loss cannot be
avoided due to the curse of dimensionality. High-dimensional
data is simply more complicated than low-dimensional data
causing the off-diagonal blocks to have larger ranks (at least
in the scenario of more and more data samples). The other
part of the performance loss is in the compression. For high-
dimensional data, analytic interpolatory low-rank approxima-
tions will provide faster and more robust approximations.
Extensions of our approach to these cases is a subject of
current research. We are also investigating high-dimensional
anisotropic quadratures for marginalization and moment com-
putation.
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