
Metodi di Approssimazione

Course notes

federico.poloni@unipi.it

April 17, 2025

1

This document contains work-in-progress notes on the topics treated in the
course. They were originally converted semi-automatically from the Beamer
slides that I used in the past years, so the wording is still “slides-like” in many
parts, but I am trying to fix it and expand on the proofs and text.

They are meant mainly for me to use as notes while I am teaching, but they
could be useful for students and independent learners, too.

1

Chapter 1

Sylvester equations and
invariant subspaces

Before dealing with matrix functions, we start from some related topics.

Vectorization Vectorization is a way to construct an explicit basis for the
vector space of m× n matrices.

We define the map vec: Cm×n → Cmn as

X =

x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

 ∈ Cm×n, vecX :=

x11

x21

...
xm1

x12

x22

...
xm2

...

x1n

x2n

...
xmn

.

In plain words, vecX is the vector obtained by stacking the columns of the
matrix X one on top of the other.

With vectorization, the elements of X are listed in column-major order: the
leftmost index is the one that ‘changes more often’. This choice matches the
memory layout in which matrices are stored in memory in most languages, like

2

Matlab, Fortran, Python/Numpy (C/C++ prefer row-major instead), and it is
often the most convenient one to work with.

>> A = [1 3 5; 2 4 6]

A =

1 3 5

2 4 6

>> reshape(A, [6,1]) % or A(:)

ans =

1

2

3

4

5

6

>> reshape(A, [3,2])

ans =

1 4

2 5

3 6

There are explicit formulas to convert indices in the matrix into indices in
the vector:

(X)ij = (vecX)i+mj 0-based,

(X)ij = (vecX)i+m(j−1) 1-based.

In many cases, it is more convenient to use the pair (i, j) as a vector index,
without performing this conversion.

Let now A,X,B be matrices of compatible dimensions for the product AXB;
more precisely, A ∈ Cp×m, X ∈ Cm×n, B ∈ Cn×q. We are interested in finding
out an expression for the matrix associated to the linear map X 7→ AXB in the
basis given by vectorization; i.e., the matrix K (as a function of A and B) such
that

vec(AXB) = K vecX ∀X.

Let us take a generic element (AXB)hl; this ends up in position (vec(AXB))h+p(l−1)

then,

(AXB)hl =
∑
j

(AX)hj(B)jl =
∑
j

∑
i

AhiXijBjl

=
[

Ah1B1l Ah2B1l . . . AhmB1l Ah1B2l Ah2B2l . . . AhmB2l . . .

Ah1Bnl Ah2Bnl AhmBnl] vecX.

Hence, row h + p(l − 1) of K contains multiple copies of row h of matrix A,
multiplied each time by a different entry in column l of B. Putting everything

3

together, we obtain the expression

vec(AXB) =

b11A b21A . . . bn1A
b12A b22A . . . bn2A
...

...
. . .

...
b1qA b2qA . . . bnqA

 vecX. (1.1)

Each block is a multiple of A, with coefficient given by the corresponding entry
of B⊤. We can give a definition that models this structure.

Kronecker product Given two matrices F ∈ Cm×n and G ∈ Cp×q, their
Kronecker product, F ⊗G, is given by

F ⊗G :=

f11G f12G . . . f1nG

f21G f22G . . .
...

...
. . .

. . .
...

fm1G fm2G . . . fmnG

 .

With this definition, the matrix appearing in (1.1) can be expressed as B⊤⊗A,
where B⊤ denotes the transpose of B.

Properties of Kronecker products

• vecAXB = (B⊤ ⊗ A) vecX. Warning: this is not B∗, even when the
matrices are complex. This is one of the few places where one has to deal
with transposition-without-conjugation.

• (A⊗B)(C ⊗D) = (AC ⊗BD), when dimensions are compatible. Proof :
B(DXC⊤)A⊤ = (BD)X(AC)⊤.

• (A⊗B)⊤ = A⊤ ⊗B⊤, and analogously for the conjugate-transpose (A⊗
B)∗.

Exercise 1.1. One can see that, for each m,n, there exists a permutation
matrix Π ∈ Cmn×mn such that ΠvecX = vec(X⊤) for each X ∈ Cm×n. This
matrix is known as the commutation matrix, or perfect shuffle matrix.

1. What are the entries of the perfect shuffle matrix for m = n = 2? What
about m = 3, n = 2?

2. Show that A⊗B = Π(B ⊗A)Π⊤ for each A,B of suitable sizes.

A matrix equation is an equation whose unknown is a matrix. One of the
simplest ones is the following, known as Sylvester equation: given A,B,C, find
X that satisfies

AX −XB = C (1.2)

with A ∈ Cm×m, C,X ∈ Cm×n, B ∈ Cn×n.
This is a mn×mn linear system, in fact, since the LHS is a linear function

of X.

4

Solvability criterion for Sylvester equation

Theorem 1.2. The Sylvester equation (1.2) has a unique solution iff Λ(A) ∩
Λ(B) = ∅.

Proof.

AX −XB = C ⇐⇒ (In ⊗A−B⊤ ⊗ Im) vec(X) = vec(C).

Let A = QAUAQ
∗
A, B

⊤ = QBUBQ
∗
B be Schur decompositions. Then,

K = In ⊗A−B⊤ ⊗ Im = (QB ⊗QA)(In ⊗ UA − UB ⊗ Im)(QB ⊗QA)
∗. (1.3)

is a Schur decomposition: indeed, (QB ⊗QA)(QB ⊗QA)
∗ = QBQ

∗
B ⊗QAQ

∗
A =

In ⊗ Im = Imn, and In ⊗ UA − UB ⊗ Im is a triangular matrix.
We can read off the eigenvalues of K from this decomposition. What entries

appear on the diagonal of In⊗UA−UB ⊗ Im? If Λ(A) = {λ1, . . . , λm}, Λ(B) =
{µ1, . . . , µn}, then on the diagonal we have elements Λ(In ⊗ A − B⊤ ⊗ Im) =
{λi − µj : i, j}.

Exercise 1.3. Starting from singular value decompositions A = UASAV
∗
A and

B = UBSBV
∗
B , use an idea similar to the one in (1.3) to construct a singular

value decomposition of A ⊗ B. (Note that one needs to reorder the singular
values, since they do not appear in decresing order, and that further reorderings
are needed in the case in which A, B are rectangular.)

Use this result to conclude that ∥A ⊗ B∥2 = σmax(A ⊗ B) = σmax(A) ⊗
σmax(B) = ∥A∥2∥B∥2.

Solution algorithms We have seen that a Sylvester equation is equivalent
to the linar system K vecX = vecC, with K = In ⊗ A − B⊤ ⊗ Im. Solving
this linear system would cost O((mn)3), if one uses standard algorithms such
as Gaussian elimination / LU factorization.

A much better algorithm is the Bartels–Stewart algorithm (1972), which
solves the problem in O(m3 + n3) exploiting the structure of the matrix.

Idea: invert factor by factor the decomposition

(QB ⊗QA)(In ⊗ UA − UB ⊗ Im)(QB ⊗QA)
∗.

• Solving orthogonal systems ⇐⇒ multiplying by their transpose, O(m3+
n3) using the ⊗ structure.

• Solving upper triangular system ⇐⇒ back-substitution; costs O(nnz) =
O(m3 + n3).

Bartels–Stewart algorithm A more operational description is the following.
Step 1 : reduce to a triangular equation. Take Schur forms

QAUAQ
∗
AX −XQBU

⊤
BQ⊤

B = C

5

(take care not to mix up ∗ and ⊤); i.e., setting for ease of notation LB := U⊤
B

(mnemonic: U / L for upper / lower triangular)

UAY − Y U⊤
B = E, Y = Q∗

AXQB , E = Q∗
ACQB .

We can compute E immediately. Step 2 : Solve the equation UAY − Y LB = E
by back-substitution to get Y . We can compute each entry Yij , by using the
(i, j)th equation, as long as we have computed all the entries below and to the
right of Yij . For instance, take the following 4×3 example: we wish to compute
the (2, 2) entry of the equation UAY − Y LB = E. To compute the product in
the LHS, we need only to access the entries in red and blue.

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

−

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ 0 0
∗ ∗ 0
∗ ∗ ∗

 =

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

In particular, we can solve for the entry Y2,2 displayed in blue, once we have
computed all the entries below and to the right.

In general, we have the formula∑
k≥i

(UA)ikYkj −
∑
k≥j

Yik(LB)kj = Eij

from which we can solve for Yij as

Yij =
Eij −

∑
k>i(UA)ikYkj +

∑
k>j Yik(LB)kj

(UA)ii − (LB)jj
.

Step 3 : X = QAY Q⊤
B .

function Y = sylv_triangular(UA, LB, E)

% solve UA*Y - Y*LB = E with UA upper triangular

% and LB lower triangular

[m, n] = size(E);

Y = zeros(m,n);

for j = n:-1:1

for i = m:-1:1

Y(j+1:end,j)

Y(i,j+1:end)

num = E(i,j) - UA(i,i+1:end)*Y(i+1:end,j) ...

+ Y(i,j+1:end)*LB(j+1:end,j);

den = UA(i,i) - LB(j,j);

Y(i,j) = num / den;

end

end

6

>> rng(0);

>> m = 6; n = 4;

>> UA = triu(randn(m));

>> LB = tril(randn(n));

>> E = randn(m, n);

>> Y = sylv_triangular(UA, LB, E);

>> Y

Y =

6.8220e+04 8.5491e+01 7.0973e+01 3.0548e+01

3.5020e+04 1.0850e+02 9.6090e+01 4.8133e+01

1.1360e+03 2.3123e+01 2.3093e+01 1.3657e+01

1.5027e+02 2.4580e+00 3.0929e+00 4.1007e+00

-7.5619e+02 -1.7189e+01 -1.9498e+01 -1.7543e+01

2.7747e+00 6.6523e-01 1.0627e+00 -1.0303e+00

>> norm(UA*Y - Y*LB - E)

ans =

3.4933e-12

>> norm(UA*Y - Y*LB - E) / (norm(UA)*norm(Y)+norm(Y)*norm(LB)+norm(E))

ans =

7.2368e-18

The absolute residual is small, but not up to ≈ 10−15. The reason for this is
that Y has large norm. This is not uncommon with Sylvester equation; we shall
devote the next section to investigating their stability.

Exercise 1.4. Show that one can solve by substitution in a similar fashion
also equations of the form UAY − Y UB = E, with UA, UB upper triangular, or
LAY − Y LB = E, with LA, LB lower triangular. In which order do we need to
compute the entries of Y in each case?

Exercise 1.5. Study in a similar way the matrix equation X − AXB = C
known as Stein’s equation: show that the equation is uniquely solvable if and
only if there exists no λ ∈ Λ(A), µ ∈ Λ(B) such that λµ = 1, and formulate a
Bartels–Stewart-like algorithm to solve the equation in time O(m3 + n3).

Comments

• The idea (with some complications) works also with real Schur forms, i.e.,
block triangular forms with blocks of size 1 and 2: back-substitution gives
block equations which are tiny 1× 1, 1× 2, 2× 1 or 2× 2 Sylvesters.

• A similar idea works for the more general case AXB + CXD = E, with
some complications; one needs to start with the QZ decomposition of the
pairs (A,C) and (B⊤, D⊤).

7

• The idea does not work for three-term equations, AXB+CXD+EXF =
G. For those, there is no (known) way to beat O(m3n3).

Conditioning of Sylvester equations The most natural norm to study
conditioning is ∥X∥F = ∥vecX∥2.

The condition number κ(K) is the ratio between

σmax(I ⊗A−B⊤⊗ I) = ∥I ⊗A−B⊤⊗ I∥ ≤ ∥I ⊗A∥+ ∥B⊤⊗ I∥ ≤ ∥A∥+ ∥B∥

and

σmin(I ⊗A−B⊤ ⊗ I) = min
Z

∥AZ − ZB∥F
∥Z∥F

.

There is no simple expression for this quantity, but it will appear in the following
as well; we give it a name: the separation between A and B

sep(A,B) := σmin(I ⊗A−B⊤ ⊗ I) = min
Z

∥AZ − ZB∥F
∥Z∥F

.

An interesting case is the one in which A and B are normal matrices; this is
equivalent to saying that in their Schur forms UA, UB are diagonal. When this
happens, it is easy to see that K is normal, too. In this case, the Schur form is
also (up to taking absolute values) a singular value decomposition, and hence

σmin(I ⊗A−B⊤ ⊗ I) = min
λ∈Λ(A),µ∈Λ(B)

|λ− µ|

But, in general, for a non-normal matrixM the minimum singular value σmin(M)
of a matrix can be arbitrary smaller than the absolute value of the smallest
eigenvalue. As in many other settings, it is hard to bound singular values away
from zero.

Exercise 1.6. Show that sep(A,B) = sep(B,A), using the commutation /
perfect shuffle matrix seen in Exercise 1.1.

Backward stability It is a classic result that back-substitution to solve a
triangular linear system is backward stable, i.e., the computed solution x̃ com-
puted in floating-point arithmetic satisfies exactly a nearby triangular linear
system

(U +∆U)x̃ = b+ δb, ∥∆U∥/∥U∥ = O(u), ∥δb∥/∥b∥ = O(u).

Combining this with the fact that products with orthogonal matrices preserve
norms, one can mimic the proof of backward stability for other algorithms based
on orthogonal transformations (e.g., solving least squares with QR) and show
that with the solution X̃ computed in floating-point arithmetic by the Bartels–
Stewart method is the exact solution of a nearby linear system

(K +∆K) vec(X̃) = vecC +∆C , ∥∆C∥F /∥C∥F , ∥∆K∥/∥K∥ = O(u).

8

In particular, this implies a bound on the residual,

∥r∥ = ∥K vec X̃−vecC∥ ≤ O(u)(∥K∥∥X̃∥+∥C∥F) ≤ O(u)((∥A∥+∥B∥)∥X̃∥+∥C∥F).

Note that in general we might have ∥X∥ ≈ ∥X̃∥ ≫ ∥A∥, ∥B∥, ∥C∥F , as in our
Matlab example above, since ∥K−1∥ = sep(A,B)−1 might be arbitrarily large.

However, an important observation is that ∆K does not always have the same
Kronecker-product structure of K; hence we cannot conclude that X̃ solves a
nearby matrix equation

(A+∆A)X̃ − X̃(B +∆B) = C +∆C , (1.4)

i.e., we can show that the computed solution X̃ is backward stable “as am
mn×mn linear system” but not “as a Sylvester equation”. The surprising result
is that the backward error of the computed equation “as a Sylvester equation”
is not guaranteed to be small, instead. We show why in the following.

Structural backward stability We are interested in studying the latter,
stronger version of backward stability “as a Sylvester equation”. This is called
structural backward stability, since we are interested in finding a backward error
matrix ∆K = I ⊗∆A +∆⊤

B ⊗ I with the same structure as K.
To study structural backward stability, note that (1.4) is equivalent to the

underdetermined linear system[
−X̃⊤ ⊗ In Im ⊗ X̃ Imn

]
︸ ︷︷ ︸

=:S

vec∆A

vec∆B

vec∆C

 = vec(AX̃ − X̃B − C)︸ ︷︷ ︸
=:r

.

Any solution of this linear system provides a perturbed matrix equation (1.4)

whose (exact) solution is X̃.
From standard results on underdetermined linear systems and least squares

problems, the smallest-norm solution of the system is given by S+r, where S+

is the Moore-Penrose pseudoinverse S+ = S⊤(SS⊤)−1. We have then∥∥∥∥∥∥
vec∆A

vec∆B

vec∆C

∥∥∥∥∥∥ ≤ ∥S+∥∥r∥ = ∥r∥
σmin(S)

≤ O(u)((∥A∥+ ∥B∥)∥X̃∥+ ∥C∥)
σmin(S)

.

To prove structured backward stability, we would like this quantity to be O(u),
when ∥A∥, ∥B∥, ∥C∥ = O(1).

We now study the singular values of S. For simplicity, we shall restrict to
the square case m = n. Up to an orthogonal change of basis, we can assume
that X̃ = diag(σ1, σ2, . . . , σn) is diagonal.

Then, we can compute explicitly SS⊤ = X̃⊤X̃ ⊗ In + In ⊗ X̃X̃⊤ + In2 ,
which is the diagonal matrix with entries σ2

i + σ2
j + 1 for i, j = 1, 2, . . . , n.

Hence, σmin(S) =
√
2σ2

n + 1. Thus we have∥∥∥∥∥∥
vec∆A

vec∆B

vec∆C

∥∥∥∥∥∥ ≤ O(u)((∥A∥+ ∥B∥)σ1 + ∥C∥)√
2σ2

n + 1
,

9

which might be large when σ1 ≫ 1 and σn = O(1).
This analysis comes from [Higham ’93], which contains also an explicit com-

puted 2× 2 example in which the backward error is large.

Block decoupling We can give an interesting viewpoint on the problem of
solving Sylvester equations. We know from the theory of the Jordan form that[

λ 1
0 µ

]
is similar to

[
λ 0
0 µ

]
,

if λ ̸= µ, but [
λ 1
0 λ

]
is not similar to

[
λ 0
0 λ

]
.

In the first case, we can also obtain explicitly a change of basis matrix that
realizes the transformation. Compute[

1 x
0 1

]−1 [
λ 1
0 µ

] [
1 x
0 1

]
=

[
λ (λ− µ)x+ 1
0 µ

]
, (1.5)

so if we take x = −1
λ−µ we have obtained an explicit change of basis. It is not

surprising to see λ−µ in the denominator, since we know that the method must
break down if λ = µ.

With Sylvester equations, we can make a block version of this argument.
Let us start from the block triangular matrix[

A C
0 B

]
,

with Λ(A) ∩ Λ(B) = ∅, and compute[
I X
0 I

]−1 [
A C
0 B

] [
I X
0 I

]
=

[
A AX −XB + C
0 B

]
, (1.6)

hence, if we take X that solves the Sylvester equation AX −XB = −C, then
this argument shows that [

A −C
0 B

]
and

[
A 0
0 B

]
are similar. If A and B have close-by eigenvalues, then sep(A,B) is small, and
we expect to obtain a large X; hence, an ill-conditioned change of basis matrix
is needed to obtain the similarity.

1.1 Invariant subspaces

Let M ∈ Cn×n be a diagonalizable matrix, which we can write as M = V ΛV −1,
Λ = diag(λ1, . . . , λn). Recall that a column vi of V is an eigenvector of M
associated to λi, i.e.,

Mvi = viλi, i = 1, . . . , n.

10

Then, we define the invariant subspace of M associated to a certain subset
of eigenvalues, let’s say without loss of generality {λ1, . . . , λs} with s ≤ n, as
the span of the corresponding eigenvectors, span(v1, v2, . . . , vs). More generally,
given a subset S ⊆ C, for instance the unit disc, we say that the invariant
subspace of M associated to S is the one obtained by taking all the eigenvalues
in Λ(M) ∩ S.

Here it is important to note that if there are multiple eigenvalues we want to
take all of them, so that the subspace is well-defined as a function of M : if M
has a multiple eigenvalue λ1 = λ2, then the eigenvectors v1, v2 are not unique,
but the eigenspace span(v1, v2) is unique and well-defined independently of the
choice of V .

We can generalize this definition to non-diagonalizable matrices. Let us
take a Jordan form M = V JV −1. Recall from your linear algebra courses the
columns vi of V contain so-called Jordan chains, i.e., vectors that satisfy certain
recurrence relations. In particular, the columns whose indices belong to blocks
with eigenvalue λ ∈ Λ(M) form a basis for the so-called generalized eigenspace

Vλ = {v ∈ Cn : (M − λI)kv = 0 for some k > 0}.

The invariant subspace V associated to a subset S = {λ1, . . . , λs} ⊆ Λ(M) is
the sum of subspaces Vλ1

+ · · ·+Vλs
of all generalized eigenspaces associated to

eigenvalues in S, i.e., the span of the vi with indices i that correspond to blocks
with eigenvalues in S.

Example: the stable invariant subspace An interesting example of in-
variant subspace is the so-called stable invariant subspace

V = {v : lim
k→∞

Mkv = 0}, (1.7)

This space appears, for instance, in the study of iterative methods for linear
systems like the Jacobi and Gauss-Seidel method: the error at step k follows
the recurrence relation ek+1 = Mek, where M is a matrix called the iteration
matrix of the method; so the method converges iff e0 ∈ V. We have the following
result.

Theorem 1.7. The stable invariant subspace V defined in (1.7) is the invariant
subspace associated to the interior of the unit disc D = {z ∈ C : |z| < 1}.

Proof. Write M in a Jordan decomposition ordered such that

M = V JV −1, V =
[
V1 V2

]
, J =

[
J1

J2

]
, (1.8)

where J1 contains only the Jordan blocks with eigenvalues inside the unit disc
D, and J2 only those on the circle or outside. Then, the invariant subspace
associated to D is ImV1.

11

If w ∈ ImV1, then we can write

w = V1v1 =
[
V1 V2

] [v1
0

]
,

and hence

Mkw = V JV −1w = V

[
Jk
1

Jk
2

] [
v1
0

]
= V

[
Jk
1 v1
0

]
→ 0 when k →∞.

To prove the reverse inclusion, we need to take w ̸∈ V, and prove that Mkw
does not converge to 0. We write

w = V1v1 + V2v2 = V

[
v1
v2

]
with v2 ̸= 0, and we obtain

Mkw = V

[
Jk
1 v1

Jk
2 v2

]
.

Suppose the last nonzero entry of v2 is in position m. Then, since J2 is upper
triangular, one sees that the last nonzero entry of Jk

2 v2 is

(Jk
2 v2)m = (Jk

2)mm(v2)m = (J2)
k
mm(v2)m.

This entry does not converge to zero, as (J2)mm is an eigenvalue of M outside
D, and (v2)m ̸= 0.

Block triangular decomposition To compute an invariant subspace, we do
not need a Jordan decomposition; it is enough to have a factorization with a
block triangular matrix

M =
[
U1 U2

] [A C
0 B

] [
U1 U2

]−1
, A ∈ Cn1×n1 , B ∈ Cn2×n2 . (1.9)

Theorem 1.8. Suppose that we have a triangular decomposition (1.9) with
Λ(A) and Λ(B) disjoint. Then, ImU1 is the invariant subspace associated to
Λ(A) ⊆ Λ(M).

Proof. First note that Λ(M) = Λ(A) ∪ Λ(B), because (1.9) is a similarity. To
prove the result, we shall transform (1.9) into a Jordan form. We have already
seen that, if X solves a certain Sylvester equation,[

A C
0 B

]
=

[
I X
0 I

] [
A 0
0 B

] [
I −X
0 I

]
.

12

Now take Jordan forms A = VAJAV
−1
A , B = VBJBV

−1
B to obtain

M =
[
U1 U2

] [A C
0 B

] [
U1 U2

]−1

=
[
U1 U2

] [I X
0 I

] [
A 0
0 B

] [
I −X
0 I

] [
U1 U2

]−1

=
[
U1 U2

] [I X
0 I

] [
VA

VB

]
︸ ︷︷ ︸

V

[
JA 0
0 JB

] [
V −1
A

V −1
B

] [
I −X
0 I

] [
U1 U2

]−1

︸ ︷︷ ︸
V −1

Expanding the product, one sees that

V =
[
U1VA U1XVA + U2VB

]
, (1.10)

so U1 spans the same subspace as the first n1 columns of V .

Invariant subspaces are invariant Let us take a triangular decomposi-
tion (1.9). If w ∈ ImU1, we can write w = U1v1 for a certain v1 ∈ Cn1 . Then,
direct computation shows that

Mw =
[
U1 U2

] [A C
0 B

] [
v1
0

]
= U1(Av1). (1.11)

This tells us that Mw ∈ ImU1, i.e., the subspace ImU1 is invariant under
multiplication by M . This property motivates the name “invariant subspaces”.
Another interesting observation that we can draw from this computation is that
A is the matrix that represents the linear operator f : w 7→ Mw, f : ImU1 →
ImU1, in the basis given by the columns of U1.

Some remarks:

• For a block triangular decomposition, ImU2 is in general not invariant;
this can be seen for instance from (1.10). It is invariant only if C = 0, i.e.,
the decomposition is actually block diagonal.

• The inclusion M ImU1 ⊆ ImU1 can be strict, if M has zero eigenvalues.

• Actually, these “invariant subspaces” are not the only subspaces that are
invariant under multiplication by M . If M has multiple eigenvalues, there
are more. For instance, take the 3× 3 Jordan block

J =

λ 1
λ 1

λ

 .

This matrix has only one generalized eigenspace Vλ = C3, but the sub-
spaces V = span(e1) and V = span(e1, e2) also satisfy JV ⊆ V. Indeed,
since J is block triangular, we can repeat the computation in (1.11) with
the first block of size n1 = 1 or n1 = 2. However, we cannot say that

13

these two subspaces V are “associated to a subset of the spectrum” in
any meaningful way. We have given our definition based on associated
eigenvalues, since that is the concept that we are interested in studying.

• More generally, one can prove (we do not do it here) that all subspaces
that are invariant under multiplication by M can be obtained by taking
a Jordan form of M , and selecting a certain number of initial vector from
each Jordan chain.

Computing invariant subspaces using the Schur form A notable de-
composition in the form (1.9) is the Schur decomposition M = UTU∗, where
U is unitary and A,B blocks of a triangular T . Hence, for any n1, the first
n1 columns of U in a Schur form span the invariant subspace associated to
the eigenvalues T11, . . . , Tn1n1

. However, in applications typically we are not
happy with any invariant subspace; we want to be able construct the invariant
subspace associated to a certain subset of the eigenvalues. The Schur form is
typically computed with the QR/Francis algorithm, and in that algorithm we
are not free to choose the order of the eigenvalues in diag(T). Hence, we need
a method to reorder these eigenvalues.

Reordering Schur forms Given a Schur form M = UTU∗, we wish to com-
pute another Schur form M = Û T̂ Û∗ that has the eigenvalues in a different
order. We can solve this problem with the help of Sylvester equations.

It is enough to have a method to swap the eigenvalues of two diagonal blocks:
given an upper triangular matrix [

A C
0 B

]
with Λ(A) ∩ Λ(B) = ∅, we show how to construct a unitary Q such that

Q∗
[
A C
0 B

]
Q =

[
B̂ Ĉ

0 Â

]
,

where Â, B̂ are triangular with Λ(Â) = Λ(A), Λ(B̂) = Λ(B).
Then, we can apply this method repeatedly on blocks of eigenvalues that are

in the wrong order: if we wish to swap the eigenvalues in the blocks T22 and
T33 of

T11 ∗ ∗ ∗
T22 ∗ ∗

T33 ∗
T44

 ,

then we constructQ as above withA = T22, B = T33 and take Û = diag(I,Q, I)U .

14

Hence we can focus on the block-2 × 2 problem. Let X solve the Sylvester
equation AX −XB = −C. By permuting rows and columns in (1.6), we get[

0 I
I −X

]
︸ ︷︷ ︸
=[X I

I 0]
−1

[
A C
0 B

] [
X I
I 0

]
=

[
B 0
0 A

]
.

So the matrix [X I
I 0] does something similar to what we want, but it is not

unitary. However, we have already done a big part of the job: we found a basis

for the invariant subspace Im

[
X
I

]
associated to Λ(B).

To conclude, we replace [X I
I 0] with its QR factor: let QR = [X I

I 0]. Then we
have

R−1Q∗
[
A C
0 B

]
QR =

[
B 0
0 A

]
,

i.e.,

Q∗
[
A C
0 B

]
Q = R

[
B 0
0 A

]
R−1.

The matrix in the RHS is a product of upper triangular matrices; we can write

R =

[
R11 R12

0 R22

]
and hence obtain

R

[
B 0
0 A

]
R−1 =

[
R11BR−1

11 ∗
0 R22AR−1

22

]
.

Hence we have constructed a new matrix that has a leading triangular block B̂
with Λ(B̂) = Λ(B).

Remark Since A,B are already triangular, to solve the Sylvester equation
AX−XB = −C we only need the back-substitution part of the Bartels–Stewart
algorithm; the Schur forms and orthogonal transformations are not needed here.

Matlab example Computing the stable invariant subspace of a matrix M
with ordschur.

>> rng(0); M = 1/2 * randn(5, 5)

M =

0.2688 -0.6538 -0.6749 -0.1025 0.3357

0.9169 -0.2168 1.5175 -0.0621 -0.6037

-1.1294 0.1713 0.3627 0.7448 0.3586

0.4311 1.7892 -0.0315 0.7045 0.8151

0.1594 1.3847 0.3574 0.7086 0.2444

>> [Q, U] = schur(M, ’complex’);

>> norm(Q*U*Q’ - M)

15

ans =

3.0833e-15

>> diag(U)

ans =

-0.5816 + 1.3637i

-0.5816 - 1.3637i

-0.2013 + 0.0000i

0.9045 + 0.0000i

1.8236 + 0.0000i

>> [Q2, U2] = ordschur(Q, U, [0 0 1 1 0]);

>> diag(U2)

ans =

-0.2013 + 0.0000i

0.9045 + 0.0000i

-0.5816 + 1.3637i

-0.5816 - 1.3637i

1.8236 + 0.0000i

>> norm(Q2*U2*Q2’ - M)

ans =

3.5872e-15

The first two columns of Q2 span the stable invariant subspace of M . If we
do not want to hardcode the vector [0 0 1 1 0] that selects the eigenvalues
inside the unit disc, we can use the instruction abs(diag(U))<1, which creates
a vector of true/false values. The function ordschur also accepts as second
argument some special strings that solve for common cases, for instance we can
write ordschur(Q, U, ’udi’) to select the interior of the unit disc, or ’lhp’
to select the left half plane.

Sensitivity of invariant subspaces One of the reasons why we care about
invariant subspaces is that they show that certain problems have better sen-
sitivity than a full eigendecomposition. Consider for instance the problem of
finding the stable invariant subspace of

M =

1/2 1 1 1

1/2 + ε 1 1
2 1

2 + ε

 .

Naively, one may think that we need to compute all the eigenvectors of M for
this task. This is an ill-conditioned problem: the leading 2× 2 matrix has two
very close eigenvalues 1/2 and 1/2 + ε, and we have seen in (1.5) the technique
to diagonalize it; the resulting eigenvectors are

v1 =

1
0
0
0

 , v2 =

ε−1

1
0
0

 ,

16

with the second eigenvector depending on the inverse of the eigenvalue difference
(1/2+ε)−ε. Similarly for the trailing 2×2 block: “separating” the eigenvectors
associated to the two eigenvalues 2 and 2+ε is an ill-conditioned operation, and
the eigenvector matrix V is severely ill-conditioned.

However, here is that we do not need to “separate” those two pairs of eigen-
vectors: span{v1, v2} does not depend on x, and we do not need any dangerous
division to compute it.

Even if we want to get the anti-stable invariant subspace, i.e., the one as-
sociated to the outside of the unit disc, we only have to reorder the Schur
decomposition to swap the first two and last two entries. That is a much easier
task than a full diagonalization, since

sep

([
1/2 1
0 1/2 + ε

]
,

[
2 1
0 2 + ε

])
≈ 0.7

for small ε, so solving the associated Sylvester equation is a well-conditioned
problem.

So, similarly, while the two eigenvectors v3, v4 are themselves ill-conditioned,
the invariant subspace span{v3, v4} is much less sensitive to perturbation.

We can capture this intuition in a theorem that relates the invariant sub-
spaces of M and a pertu rbation M + δM ; we shall see that the sensitivity is
related to the function sep(A,B).

For simplicity, we can assume that the matrix M already comes in a block
triangular decomposition (1.9), and that U = I (up to an orthogonal change of
basis).

Theorem 1.9. [Stewart Sun book, Section V.2.2] Let

M =

[
A C
0 B

]
be a matrix with sep(A,B) > 0, and consider a perturbation M + δM , with

δM =

[
δA δC
δD δB ,

]
;

set a = ∥δA∥F and analogously for b, c, d. If

sep(A,B)− a− b ≥ 0,

(sep(A,B)− a− b)2 − 4d(∥C∥F + c) ≥ 0 (1.12)

(which both hold when the perturbation δM is sufficiently small), then there is a
(unique) X with

∥X∥F ≤
2d

sep(A,B)− a− b
(1.13)

such that

[
I
X

]
spans an invariant subspace of M + δM .

In particular, 2
sep(A,B) can be considered as an absolute condition number of

the invariant subspace Im[I0] with respect to perturbation of the matrix M .

17

Proof. Note that M + δM =
[
A+δA C+δC
δD B+δB

]
, with a small (2, 1) block. We

wish to construct a similarity transformation which zeroes out this block and
constructs a block triangular decomposition of M+δM . To do this, we use ideas
analogous to the ones we have seen in the rest of this section; however, the form
of our equations will be slightly different, since this time we want to zero out a
block below the diagonal, instead of above. Hence, we try constructing a block
triangular decomposition of the form[

I 0
X I

]−1

(M + δM)

[
I 0
X I

]
=

[
Â Ĉ

0 B̂

]
;

if this equation holds, then Im

[
I
X

]
is the invariant subspace of (M + δM),

associated to the eigenvalues in Λ(Â). If ∥X∥ is sufficiently small, then Â and
B̂ are close to A and B, respectively, and their spectra are disjoint.

Expanding out the product in the LHS, we see that we need to solve the
equation

X(A+ δA)− (B + δB)X − δD +X(C + δC)X = 0. (1.14)

Note that this equation is more complicated than a Sylvester equation, because
it has a degree-2 term. It is called algebraic Riccati equation, and we will
encounter it again in the course.

We shall prove that this algebraic Riccati equation has a sufficiently small
solution X. To do this, we first rewrite it as a fixed-point problem.

The linear part of this equation can be vectorized to get the operator T =
A⊤ ⊗ I − I ⊗ B, with σmin(T) = sep(B,A) = sep(A,B), and its perturbed
version T̂ = (A+ δA)

⊤ ⊗ I − I ⊗ (B + δB), with

σmin(T̂) ≥ σmin(T)− ∥δ⊤A ⊗ I − I ⊗ δB∥ ≥ sep(A,B)− a− b;

the first inequality follows from SVD perturbation results: |σmin(T + E)− σmin(T)| ≤
∥E∥ for any perturbation E.

We can rewrite (1.14) as

vecX = T̂−1 vec(δD −X(C + δC)X)︸ ︷︷ ︸
Φ(vecX)

.

This relation has the form of a fixed-point equation x = Φ(x), where x = vec(X),

for a certain continuous map Φ : Cn2 → Cn2

. We wish to show that there exists
a r > 0 such that Φ sends the ball Br = {x : ∥x∥ ≤ r} into itself. If this holds,
then Φ must have a fixed point by Brouwer’s fixed-point theorem, i.e., there
exists a X with ∥X∥F ≤ r that satisfies (1.14).

Let X be a matrix such that ∥X∥F ≤ r; then, taking norms,

∥Φ(x)∥ =
∥∥∥T̂−1 vec(δD −X(C + δC)X)

∥∥∥
≤
∥∥∥T̂−1

∥∥∥(d+ ∥X∥2F (∥C∥F + c)) =
1

β
(α+ γr2), (1.15)

18

where we have set α = d, β = sep(A,B)− a− b = 1
∥T̂−1∥ , γ = ∥C∥F + c.

Suppose that there is a r > 0 such that 1
β (α+ γr2) = r; then, (1.15) shows

that ∥Φ(x)∥ ≤ r, as we want. We need to show that such a r exists. To do this,
we study the (scalar) quadratic equation α − βr + γr2 = 0 to show that it has
a positive root. In particular, we focus on its smaller root r−, since we want r
to be as small as possible.

We switch to the reverse equation αs2 − βs + γ = 0, whose roots are the
reciprocals s± = 1

r∓
. This gives

1

r∓
= s± =

β ±
√
β2 − 4αγ

2α
.

The smaller root r− corresponds to the larger 1
r−

= s+. If β2 − 4αγ ≥ 0, then

there are two positive solutions, and the largest one satisfies 1
r−

= s+ ≥ β
2α .

After substitution, one sees that the equations β2 − 4αγ ≥ 0 and r− ≤ 2α
β are

precisely the two inequalities (1.12) and (1.13) which appear in the text of our
theorem.

Hence, if (1.12) holds, then the map Φ sends the ball Br into itself, and hence
there exists a vector x ∈ Br, or equivalently a matrix X that satisfies (1.13),

such that (1.14) holds, and thus

[
I
X

]
is an invariant subspace of M + δM .

Remark Here we are using ∥X∥F as a measure of the perturbation between
subspaces. There are ways to define more formally the distance between two
subspaces of Cn, but they do not add much to this discussion.

19

Chapter 2

Matrix functions

2.1 Definition(s) of matrix functions

Polynomials of matrices

Definition 2.1. Given a scalar polynomial p(x) = c0 + c1x+ · · ·+ cdx
d, and a

square matrix A ∈ Cn×n, we set

p(A) := c0I + c1A+ · · ·+ cdA
d.

We want to give an explicit formula for p(A) in terms of a Jordan decompo-
sition A = V blkdiag(J1, J2, . . . , Js)V

−1.

A formula for p(J0) Let

J0 =

0 1

0
. . .

. . . 1
0

 ∈ Ck×k,

the Jordan block with eigenvalue 0. Then,

p(J0) =

c0 c1 . . . ck−1

c0
. . .

...
. . . c1

c0

 .

This follows from evaluating the powers of J0. If d < k − 1, we take cd+1 =
cd+2 = · · · = 0.

20

A formula for p(Jλ) If

Jλ =

λ 1

λ
. . .

. . . 1
λ

 ∈ Ck×k,

then

p(Jλ) =

p(λ) p′(λ) . . . p(k−1)(λ)

(k−1)!

p(λ)
. . .

...
. . . p′(λ)

p(λ)

 .

This follows from writing the polynomial in its Taylor expansion

p(x) = p(λ) + p′(λ)(x− λ) +
p′′(λ)

2!
(x− λ2) + · · ·+ p(d)(λ)

d!
(x− λ)d, (2.1)

which reduces us to the previous case. Note that the formula (2.1) continues to
hold if we evaluate in a matrix argument p(A), since it follows from algebraic
manipulations with powers of A (which commute with each other).

Proposition 2.2. If A = V JV −1 is a Jordan form, and J = blkdiag(J1, J2, . . . , Js)
with each block Ji = Jλi of size ki × ki, then

p(A) = V blkdiag(p(J1), p(J2), . . . , p(Js))V
−1, p(Ji) =

p(λi) p′(λi) . . . p(ki−1)(λi)

(ki−1)!

p(λi)
. . .

...
. . . p′(λi)

p(λi)

 .

(2.2)

Indeed, we have

p(A) =
∑

ci(V JV)−1 = V
(∑

ciJ
i
)
V −1 = V blkdiag(p(J1), p(J2), . . . , p(Js))V

−1,

and we can conclude using the previous results.

Functions of matrices [Higham book, ’08, Ch. 1] We can use the same
formula (2.2) even for scalar functions that are not polynomials, leading to a
definition of matrix functions

Definition 2.3 (attempted). Given a function f : U ⊆ C → C, and a matrix
A with Jordan decomposition as above, we say that f is defined on A if f is

21

defined and differentiable at least ki − 1 times on each eigenvalue λi of A, and
its value is

f(A) := V blkdiag(f(J1), f(J2), . . . , f(Js))V
−1,

f(Ji) :=

f(λi) f ′(λi) . . . f(ki−1)(λi)

(ki−1)!

f(λi)
. . .

...
. . . f ′(λi)

f(λi)

 .

However, there is a problem with this definition: in the Jordan decomposi-
tion J is unique, but V is not. For this definition to be well-posed, f(A) should
be independent of the choice of V . From this formula, it is unclear if that is the
case. To prove this independence, we use another equivalent definition.

Alternate definition: via Hermite interpolation

Definition 2.4. Given f : U ⊆ C → C and A ∈ Cn×n with Jordan decom-
position as above, we define f(A) := p(A), where p(x) is any polynomial such
that

f(λi) = p(λi), f
′(λi) = p′(λi), . . . , f

(ki−1)(λi) = p(ki−1)(λi) for each i. (2.3)

Remarks:

• We shall prove soon that there always exists a polynomial p(x) that sat-
isfies these conditions.

• Note that this definition does not depend on the choice of p(x) among
all the polynomials that satisfy the given conditions, since (2.2) shows
that the value of p(A) depends only on the f (j)(λi): if p and p̂ are two
polynomials that satisfy the interpolation conditions (2.3), then p(A) =
p̂(A).

• This definition coincides with the previous Definition 2.3, again in view
of (2.2), but now it is clear that it is independent of V , as V does not
appear at all in Definition 2.4.

• If A has more than one Jordan block with the same eigenvalue, some
of these conditions are repeated. This is not a problem, because the
conditions are always consistent.

Example: square root

A =

4 1

4 1
4

0

 , f(x) =
√
x.

22

We look for an interpolating polynomial with

p(0) = 0, p(4) = 2, p′(4) = f ′(4) =
1

4
, p′′(4) = f ′′(4) = − 1

32
.

These are four conditions, so it makes sense to look for a degree-3 polynomial
that satisfies them. This produces the linear system

0 0 0 1
43 42 4 1

3 · 42 2 · 4 1 0
6 · 4 2 0 0

p3
p2
p1
p0

 =

0
2
1
4
− 1

32

 , (2.4)

whose solution is

p(x) =
3

256
x3 − 5

32
x2 +

15

16
x.

Hence we have

p(A) =
3

256
A3 − 5

32
A2 +

15

16
A =

2 1

4 − 1
64

2 1
4
2

0

 .

One can check that f(A)2 = A; this fits our intuition of a “matrix square root”.
We will prove in the following that with this definition X = f(A) is always a
solution of the matrix equation X2 = A.

Hermite interpolation We are ready to prove that a suitable polynomial
always exists:

Theorem 2.5. Given distinct points x1, x2, . . . , xn ∈ C and multiplicities m1,m2, . . . ,mn ∈
N, there exists a unique polynomial of degree d < m1 +m2 + · · ·+mn such that

p(xi) = yi,0, p
′(xi) = yi,1, . . . , p

(mi−1)(xi) = yi,mi−1, for all i = 1, . . . , n.

for each choice of the yi,j.

Proof (sketch)

• These interpolation conditions always produce a “Vandermonde-like” square
linear system (like in (2.4)) in the coefficients of the polynomial p(x).

• We need to prove that its matrix V has trivial kernel. If V z = 0 for
a vector z, then the conditions in this linear system tells us that the
associated polynomial z(x) satisfies

z(xi) = 0, z′(xi) = 0, . . . , z(mi−1)(xi) = 0, for all i = 1, . . . , n.

I.e., z(x) has a root at each xi of multiplicity at least mi. By degree
reasons, z(x) must be the zero polynomial.

Note that in our construction we only need a polynomial satisfying the interpo-
lation conditions; not necessarily the one with minimum degree.

23

Example: matrix sign

A = V

−3

−2
1 1

1

V −1, f(x) = sign(x) =

{
1 Rex > 0,

−1 Rex < 0.

f(A) = V

−1

−1
1

1

V −1.

It is interesting to note that this matrix function is not locally constant, unlike
its scalar counterpart: a small change to the matrix V can produce a small,
nonzero change to the matrix f(A).

Example: matrix exponential

A = V

−1

1
1 1

1

V −1, f(x) = exp(x).

exp(A) = V

e−1

e
e e

e

V −1

Since there are 2 blocks with the same eigenvalue 1, there are only 3 interpolation
conditions rather than 4:

p(−1) = e−1, p(1) = e, p′(1) = e.

This is not a problem, though; we can still find a polynomial p(x) that satisfies
these conditions. The conditions appear multiple times, but this process never
produces incompatible conditions like p(1) = e, p(1) = e2. Since there are fewer
conditions, we can even find a polynomial of degree ≤ 2, rather than ≤ 3; but
optimizing this degree has never been our goal.

Note that the matrix B = exp(A) obtained in this way coincides with the
limit of the matrix-valued power series I+A+ 1

2A
2+ 1

3!A
3+ It is simple to

see this for the diagonal terms, since the diagonal entries of this power series are
just the scalar series for e−1 and e, but more complicated to see for B3,4. We
will prove later in more generality that a matrix function can also be computed
as the limit of a Taylor series.

Exercise 2.6. Using the Jordan form of A, show that if each eigenvalue of A
satisfies Re(λ) < 0 then

lim
t→∞

exp(tA) = 0.

(This is an if-and-only-if, and matrices that satisfy this property are called
Hurwitz stable.)

24

Non-Example: square root The matrix function

A =

[
0 1
0 0

]
, f(x) =

√
x

is not defined, using our definition, because f ′(0) does not exist.
Indeed, one can prove that the equation X2 = A has no solution with this

choice of A: since Λ(A) = {0}, any solution X must have Λ(X) = {0} as well.
But then the Jordan form of X is either

X = V

[
0 0
0 0

]
V −1 or X = V

[
0 1
0 0

]
V −1,

and we see that in both cases X2 = 0 ̸= A.
This provides additional evidence that our definition is a good one: it fails

in a case when it should, since X2 = A has no solution.

Example: complex square root In the past examples, we have glossed over
the detail that the square root function is not uniquely defined. We now see an
example in which A has complex eigenvalues. Let

A =

[
0 1
−1 0

]
, f(x) =

√
x.

This matrix has Λ(A) = ±i. To specify f(x) fully, we need to choose which
square root to take for f(i) and f(−i), since there are two possible values: we
shall take f(i) = 1√

2
(1 + i), f(−i) = 1√

2
(1− i), so that both f(i) and f(−i) are

in the right half-plane.
We look for an interpolating polynomial p(x) to f(x), satisfying f(±i) =

1√
2
(1± i); in particular we can take p(x) = 1√

2
(1 + x). Hence

p(A) =
1√
2
(I +A) =

1√
2

[
1 1
−1 1

]
.

Branches of the square root Note that there can be many different ways to
define the square root of scalars, due to the sign ambiguity. One cannot define
a square root function that is continuous on the whole C, or even on C \ {0},
but it is possible to do so locally on smaller sets: for instance, we can define the
so-called principal square root on U = C \ {a+ 0i : a ≤ 0} to be the one of the
two square roots that lies in the right half-plane. This is a continuous function;
geometers call it a branch of the square root, and they say that this function
has a branch cut on the negative reals.

For a matrix A with s non-zero distinct eigenvalues, we can define 2s different
functions f1, . . . , f2s by choosing the sign in each (distinct) eigenvalue. These
can be extended locally to continuous functions fk : U → C, k = 1, . . . , 2s.
We can do so by taking, for instance, U to be the union of s disjoint balls
centered in the eigenvalues. These “local versions” of the square root that are

25

defined continuously on an open set U ⊆ C are called branches. If we apply the
definition of matrix function starting from an appropriate branch of the square
root, we can produce 2s different matrices. They all satisfy the matrix equation
X2 = A.

Exercise 2.7. Let A =
[

0 1
−1 0

]
, as above. Compute g(A), where g(x) is

the branch of the square root function such that g(i) = 1√
2
(1 + i), g(−i) =

1√
2
(−1 + i). Note that, unlike the previous one, g(A) does not have real coeffi-

cients. (Indeed, it can’t be real, because its eigenvalues do not come in complex
conjugate pairs.)

Non-example: nonprimary square root All the matrix functions X =
f(A) that we have constructed starting from different branches of the square-
root function satisfy X2 = A. It is natural to ask if these are all solutions to
this equation. The answer is no: there can be more solutions in cases where A
has multiple Jordan blocks with the same eigenvalue. For instance, take

A = V

1 1
2

V −1

and

X = V

1 −1 √
2

V −1.

It is clear thatX2 = A, but in our definition of matrix function we have to choose
either f(1) = 1, or f(1) = −1, so there is no branch choice that produces the
matrix X.

In general, whenever a function f has multiple branches (like the square root
or the complex logarithm), and a matrix A has multiple Jordan blocks with the
same eigenvalue λ, we can define ‘pseudo-matrix-functions’, like X above, by
taking different values of f(λ) for different Jordan blocks. These are sometimes
called nonprimary matrix functions, even if they are not matrix functions with
our definition. When X is a non-primary function of A, one can see that there
is no polynomial p for which X = p(A). We will not deal with non-primary
functions further in the course, but we just mention their existence.

2.2 Properties of matrix functions

We have proved that for each (sufficiently regular) function f and each matrix
A, there is a polynomial p such that f(A) = p(A). One may be led to think
that “all matrix functions can be reduced to polynomials, so the definition is
not interesting”, but this is misleading: note that the polynomial p(x) that
is used in the definition depends on A! This would be like claiming that “all
scalar functions are polynomials” because given any function f and z ∈ C we

26

can always find a polynomial such that f(z) = p(z) (for instance, a constant
polynomial).

However, this representation as a polynomial is very handy when proving
properties of matrix functions. We list here a few properties of matrix functions;
most of them can be proved by replacing f(A) with a polynomial p(A).

• f(A) commutes with A: Af(A) = f(A)A.

• f(MAM−1) = Mf(A)M−1, since this property holds for polynomials,
and we can use the same p to express both f(MAM−1) and f(A), as they
have the same spectrum.

• f([A 0
0 B]) =

[
f(A) 0
0 f(B)

]
, for the same reason: take a polynomial p that in-

terpolates f on Λ([A 0
0 B]). The same polynomial can be used to interpolate

f on Λ(A) and Λ(B), since it satisfies stricter interpolation conditions.

• If h(x) = f(x)g(x) for three scalar functions f, g, h, then f(A)g(A) =
h(A). Proof: replace f(A), g(A) with polynomials pf (A), pg(A) which
interpolate f on Λ(A). Then, set ph(x) := pf (x)pg(x); pf (A)pg(A) =
ph(A) is true (by expanding), and ph(x) is an Hermite interpolant for
h(x). Analogous properties hold for sums and compositions of functions.

• In particular, from the previous point it follows that for the square root
function f(x) =

√
x (any branch of it) we have f(A)2 = A for each A:

just use the product property on g(x) = f(x) =
√
x, h(x) = x the identity

function.

• More generally, if f(x) satisfies a certain scalar identity built with sums,
products, compositions, then f(A) satisfies the matrix version of the same
identity. For instance, the matrix functions cos(A) and sin(A) satisfy the
identity cos(A)2 + sin(A)2 = I for each A.

Exercise 2.8. Show that the matrix function f(A) corresponding to the scalar
function f(x) = x−1 is the matrix inverse f(A) = A−1.

The following properties instead are simpler to prove relying on the expression
of f(A) using functions of Jordan blocks.

• If the eigenvalues ofA are λ1, . . . , λs, the eigenvalues of f(A) are f(λ1), . . . , f(λs).
Their algebraic multiplicities stay the same, but geometric multiplicities
may increase (when f ′(λi) = 0).

• For a sequence of functions fn such that

lim
n→∞

f (j)
n (λi) j < ki,

(i.e., all the derivatives that appear in the definition of f(A) converge),
then fn(A)→ f(A).

27

• A less trivial property is continuity in the argument A: given a sequence
of matrices An → A, is it true that f(An) → f(A)? We will see a proof
soon; but note that this statement is more complicated because each An

corresponds to a different polynomial pf,An
.

Exercise 2.9. Let f be a function such that |f(x)| ≤ ε for each x in the closed
unit disc D = {z ∈ C : |z| ≤ 1}. Let A ∈ Cn×n be a matrix with Λ(A) ⊆ D. Is
∥f(A)∥ bounded, or can it be arbitrarily large?

Taylor series Another natural way to define matrix functions is via Taylor
series. For instance, you have first defined the matrix exponential as

exp(A) = I +A+
1

2!
A2 +

1

3!
A3 +

We can show that this coincides with the definition that we have given above;
and, more generally, that we can compute matrix functions as limit of Taylor
series.

Theorem 2.10 (Higham book Thm. 4.7). Suppose f(x) =
∑∞

k=0 ck(x − α)k,

with ck = f(k)(α)
k! , is a Taylor series with convergence radius r. Then,

lim
d→∞

d∑
k=0

ck(A− αI)k = f(A)

for each A whose eigenvalues satisfy |λ− α| < r.

Proof. Let pd(x) =
∑d

k=0 ck(x − α)k be the truncated Taylor polynomial of
degree d, i.e., the polynomial obtained by truncating the Taylor series at degree
d.

Let A = V blkdiag(J1, . . . , Js)V
−1 be a Jordan form. We have seen that

f(A) = V blkdiag(f(J1), . . . , f(Js))V
−1

and
pd(A) = V blkdiag(pd(J1), . . . , pd(Js))V

−1,

so it is sufficient to prove our statement for a single Jordan block J with eigen-
value λ.

The matrix pd(J) has pd(λ) on its diagonal, and clearly this converges to
f(λ). On the i-th superdiagonal of pd(J), we have

1

i!
p
(i)
d (λ).

Note that p
(i)
d (x) the Taylor polynomial of degree d−i for the derivative f (i)(x),

since power series can be differentiated term-by-term. We recall from our anal-
ysis courses that the power series for the derivative of a function has the same
radius of convergence as the original power series. (This follows, from instance,
from the so-called “root test” 1/r = lim supn→∞|cn|1/n.) Hence, the terms on
the i-th superdiagonal of pd(J) converge to 1

i!f
(i)(λ).

28

Matrix functions as Cauchy integrals The following result generalizes
Cauchy’s integral formula from complex analysis.

Proposition 2.11. If f is holomorphic on and inside a contour Γ that encloses
the eigenvalues of A,

f(A) =
1

2πi

∫
Γ

f(z)(zI −A)−1dz. (2.5)

Proof. Arguing as in the theorem above on the convergence of Taylor series, we
can reduce to the case of a single Jordan block. Then,

1

2πi

∫
Γ

f(z)(zI − J)−1dz =
1

2πi

∫
Γ

f(z)

z − λ −1

z − λ −1
. . .

. . .

z − λ

−1

dz

=
1

2πi

∫
Γ

f(z)

1

z−λ
1

(z−λ)2 . . . 1
(z−λ)k−1

. . .
. . .

...
. . . 1

(z−λ)2

z − λ

 dz

=

1

2πi

∫
Γ

f(z)
z−λdz

1
2πi

∫
Γ

f(z)
(z−λ)2 dz . . . 1

2πi

∫
Γ

f(z)
(z−λ)k−1 dz

. . .
. . .

...
. . . 1

2πi

∫
Γ

f(z)
(z−λ)2 dz

1
2πi

∫
Γ

f(z)
z−λdz

=

f(λ) f ′(λ) . . . f(k−1)

(k−1)!

. . .
. . .

...
. . . f ′(λ)

f(λ)

The last equality follows from the differentiation version of Cauchy’s integral
formula,

1

k!
f (k)(λ) =

1

2πi

∫
Γ

f(z)

(z − λ)k
dz, k = 0, 1, 2,

Cauchy’s integral formula (2.5) can be considered an alternative definition
of matrix functions. It is surprisingly general, as it works also for infinite-
dimensional operators that do not have a spectrum in the classical sense, and
indeed it is popular in operator theory.

Corollary 2.12. If f is holomorphic, then f(A) is continuous in A, i.e., An →
A implies f(An)→ f(A).

29

Proof. This follows from classical results that you have seen in your analysis
courses, which we can also apply to matrix-valued integrals element-by-element.
The integrand f(z)(zI−A)−1 is a continuous function on C\Λ(A). We can find
a compact set K such that Γ ⊂ K ⊂ C \ Λ(A). Then, maxz∈K∥(A− zI)−1∥ =
M <∞. By continuity and compactness, also maxz∈K∥(An − zI)−1∥ < M + ε
from a certain n onwards. This uniform boundedness property is sufficient to
conclude that ∫

K

f(z)(zI −An)
−1dz →

∫
K

f(z)(zI −A)−1dz.

One can prove that f(A) is continuous in A also in more general settings,
e.g., for a matrix A with real eigenvalues and f that has enough continuous real
derivatives. The proof is more complicated. Here is a sketch:

1. Given a sequence An → A, take for each n an interpolating polynomial
pn(x) of f in the spectrum of An.

2. The coefficients of these interpolating polynomials pn(x) converge to those
of an interpolating polynomial p(x) for A. This result is not obvious from
our proof with a Vandermonde-like matrix, but it follows from other tech-
niques to construct interpolating polynomials, such as divided differences.

3. Now we can write ∥f(A) − f(An)∥ = ∥pn(An) − p(A)∥ ≤ ∥pn(An) −
pn(A)∥+ ∥pn(A)− p(A)∥, and both terms are bounded.

30

Chapter 3

Sensitivity of matrix
functions

Fréchet derivative The Fréchet derivative is an “operator version” of the
Jacobian. It is essentially what you would call “the differential” in geometry.

Definition 3.1. The Fréchet derivative of a matrix function f in A ∈ Cn×n is
the linear operator Lf,A : Cn×n → Cn×n (when it exists) such that

f(A+ E) = f(A) + Lf,A(E) + o(∥E∥).

Example f(x) = x2, f(A) = A2.

(A+ E)2 = A2 +AE + EA+ E2 = A2 +AE + EA︸ ︷︷ ︸
Lf,A(E)

+ E2︸︷︷︸
o(∥E∥)

.

Lf,A is a linear operator that maps matrices to matrices; we can write explicitly
the matrix associated to it, using vectorization. We look for the n2×n2 matrix
such that

K vecE = vecLf,A(E) = AE + EA.

By the properties of Kronecker products, it is easy to see that

K = A⊤ ⊗ I + I ⊗A.

(This is the result that we have seen when studying Sylvester equations, just
with B = −A.)

The n2 × n2 matrix K is the Jacobian matrix of the map vecA 7→ vec f(A).
So this concept of derivative is nothing new with respect to the one you have
studied in multivariate analysis, just a vectorized version of it.

31

A more complex example Let us compute directly the derivative of the
function f(x) = x−1, f(A) = A−1.

(A+ E)−1 =
(
(I + EA−1)X

)−1

= A−1−A−1EA−1︸ ︷︷ ︸
Lf,A(E)

+A−1EA−1EA−1 −A−1EA−1EA−1EA−1 + . . .︸ ︷︷ ︸
o(∥E∥)

K = −A−T ⊗A−1.

Properties Follow from those of Jacobians:

• Lf+g,A = Lf,A + Lg,A.

• Lf◦g,A = Lf,g(A) ◦ Lg,A.

• Lf−1,A = L−1
f,f−1(A).

Example We wish to compute the Fréchet derivative of the matrix square
root, using the fact that it is the inverse function of f(x) = x2. Let f−1 :
U → C be a branch of the square root, defined on a neighborhood of Λ(A), and
A1/2 = f−1(A) be the matrix square root of A.

Then, X = Lf−1,A(E) is the matrix such that Lf,A1/2(X) = E, i.e.,

A1/2X +XA1/2 = E.

Hence, for any B ∈ Cn×n, the derivative of the principal square root Lf−1,A(E)
is the solution of the Sylvester equation

A1/2X +XA1/2 = E

Note that this Sylvester equation is always solvable: indeed, the solvability
condition is that Λ(A1/2)∩Λ(−A1/2) = ∅, i.e., that there is no µ ∈ C such that
µ and −µ are both eigenvalues of A1/2. These must come from an eigenvalue
λ = µ2 ∈ Λ(A). However, when we define f−1, we have to define f−1(µ2) to be
either µ or −µ; these values cannot both appear in the image of f−1.

Trick to compute Lf,A(E) The following formula is a block version of f(
[
λ 1
0 λ

]
) =[

f(λ) f ′(λ)
0 f(λ)

]
, and lets us evaluate Lf,A(E) “as fast as” f(A) for A ∈ C2n×2n.

Theorem 3.2. Let matrices A,E ∈ Cn×n and a function f Fréchet differen-
tiable in A be given. Then, (when these functions are well-defined)

f

([
A E
0 A

])
=

[
f(A) Lf,A(E)
0 f(A)

]
. (3.1)

32

Proof. Set ε > 0. We wish to evaluate f

([
A+ εE E

0 A

])
by block-diagonalizing.

Take a solution of the Sylvester equation (A+ εE)Z − ZA = −E. Then,[
I −Z
0 I

] [
A+ εE E

0 A

] [
I Z
0 I

]
=

[
A+ εE 0

0 A

]
.

By direct verification, one sees that Z = − 1
εI is a solution. Note that we do

not need to prove that the Sylvester equation has a unique solution; even if
it were not unique, taking that particular solution Z always works for block-
diagonalization.

Hence

f

([
A+ εE E

0 A

])
= f

([
I Z
0 I

] [
A+ εE 0

0 A

] [
I −Z
0 I

])
=

[
I Z
0 I

] [
f(A+ εE) 0

0 f(A)

] [
I −Z
0 I

]
=

[
f(A+ εE) f(A+εE)−f(A)

ε
0 f(A)

]
.

(3.2)

By the definition of Fréchet derivative,

f(A+ εE) = f(A) + εLf,A(E) + o(ε∥E∥)

when ε→ 0, hence the (1, 2) block converges to Lf,A(E) when ε→ 0.

Exercise 3.3. Can you find an example of A,E such that the Sylvester equation
(A+ εE)Z − ZA = −E is singular for each ε > 0?

We can use the computation in this proof to give a sufficient condition for
the Fréchet derivative to exist.

Theorem 3.4. Let A ∈ Cn×n, with eigenvalues λi and algebraic multiplicities
mi. If f is of class C2mi−1 in (a neighborhood of) each of the λi, then f(A) is
Fréchet differentiable in A.

Note that each matrix Ã inside a sufficiently small neighborhood B(A, ε) of A

has Jordan block sizes in each λi of size at most mi, and Â =
[
Ã E
0 Ã

]
has Jordan

block sizes at most 2mi. So f(Â) exists and is continuous in Ã = A. Hence, by
the computation (3.2) in the above proof, we see that all directional derivatives
exist and are continuous in A. By a standard result in multivariate analysis (in
Italy it is called “the total differential theorem”), then f is differentiable.

Fréchet derivative and condition number Recall: the absolute condition
number of a differentiable multivariable function f : Rm → Rn is the norm of
its Jacobian. Indeed, f(x̃) = f(x+ h) = f(x) +∇xf · h+ o(h) implies

33

κabs(f, x) = lim
ε→0

sup
∥x̃−x∥≤ε

∥f(x̃)− f(x)∥
∥x̃− x∥

= ∥∇f∥

κrel(f, x) = lim
ε→0

sup
∥x̃−x∥
∥x∥ ≤ε

∥f(x̃)−f(x)∥
∥f(x)∥
∥x̃−x∥
∥x∥

= κabs(f, x)
∥x∥
∥f(x)∥

.

The same result applies to matrix functions: κabs(f,A) = ∥Lf,A∥; however, we
need some attention to which norms can be used here.

If the norm used for ∥Ã−A∥ is any matrix norm on n×n matrices, we must
measure ∥Lf,A∥ with the operator norm (on n2 × n2 matrices) induced by it.

Easy case If we take ∥Ã− A∥F , it corresponds to ∥vecA∥2, so κabs(f,A) =
∥Kf,A∥2.

Harder cases For all other norms (∥Ã−A∥2 in particular), there is no simple
expression for the induced operator norm.

Even with the “easy norm”, computing ∥Kf,A∥2 isn’t immediate, because it
is a huge n2 × n2 matrix. In [Higham book, Ch. 3], there are methods based on
applying the power method, relying on the fact that we can compute the action
Kf,A(E) without forming a n2 × n2 matrix. This is not trivial, because in the
power method for the norm we need also to compute the action of its transpose
conjugate K∗

f,A.
The eigenvalues Λ(Kf,A) are simpler to compute, and can give us at least

some partial insight on when these derivatives are large.

Eigenvalues of Fréchet derivatives [Higham book ’08, Ch. 3]

Theorem 3.5. Let A ∈ Cn×n have eigenvalues λ1, . . . , λn (with their algebraic
multiplicity). Then, the n2 eigenvalues of Lf,A (with multiplicity) are

f [λi, λj] :=

{
f(λi)−f(λj)

λi−λj
λi ̸= λj ,

f ′(λi) λi = λj .

for all i, j = 1, 2, . . . , n.

Proof. First of all, replace f(x) with a polynomial that interpolates A with
sufficiently high multiplicities, so that for each E

f

([
A E
0 A

])
= p

([
A E
0 A

])
and hence Lf,A(E) = Lp,A(E).

p(A+ E) = c0 + (A+ E) + c1(A+ E)2 + c2(A+ E)3 + . . .

= c0 + c1(A+ E) + c2(A
2 + EA+AE + E2) + c3(A

3 + . . .)

= p(A) + c1E + c2(EA+AE) + c3(A
2E +AEA+A2E)

+ · · ·+O(∥E∥2)

34

Vectorizing,

Kf,A = c1I + c2(I ⊗A+A⊤ ⊗ I) + c3(I ⊗A2 +A⊤ ⊗A+ (A2)⊤ ⊗ I) + . . .

i.e.,

Kf,A =

d∑
k=1

ck

k∑
h=1

(Ak−h)⊤ ⊗Ah−1

Now take Schur forms X = U1T1U
∗
1 , X

T = U2T2U
∗
2 .

Kf,X = (U2 ⊗ U1)

(
d∑

k=0

pk

k∑
h=1

T k−h
2 ⊗ Th−1

1

)
︸ ︷︷ ︸

:=T

(U2 ⊗ U1)
∗.

This is a Schur decomposition (unitary-triangular-unitary), so we can read off
the eigenvalues on the diagonal: if i ̸= j we have

Ti+n(j−1),i+n(j−1) =

d∑
k=0

pk

(
k∑

h=1

λk−h
i λh−1

j

)
=

d∑
k=0

pk
λk
i − λk

j

λi − λj

=
p(λi)− p(λj)

λi − λj
=

f(λi)− f(λj)

λi − λj
.

Similarly, if i = j we get f ′(λi).

Unfortunately, the same trick don’t work to compute the SVD, because A
and its powers do not have the same singular vectors and values. There is no
simple formula for the singular values of K.

Condition number bound If A is diagonalizable, we can replace the Schur
form with an eigendecomposition, and obtain a bound.

Proposition 3.6. Let A = V ΛV −1 be diagonalizable. Then, for the Frobenius
norm,

κabs(f,A) = ∥Kf,A∥ ≤ κ2(V)2 max
i,j
|f [λi, λj]|.

Then, as usual, κrel(f,A) = κabs(f,A)
∥A∥

∥f(A)∥ .

This bound displays two possible causes of ill-conditioning:

• |f [λi, λj]| is large, or

• κ2(V) is large, i.e., A is very non-normal.

35

Example Let f(x) =
√
x (principal square root): for which choices of Λ(A)

do we encounter a large |f [λi, λj]|?

• λi’s close to 0, and

• Pairs of close-by eigenvalues on opposite sides of the branch cut (negative
real axis).

More generally, a large f [λi, λj] may come from

• Large f ′,

• pairs of eigenvalues close to a discontinuity in f .

36

Chapter 4

Computational methods for
general matrix functions

Matrix functions arise in several areas: exp(A) when solving ODEs, A1/2 in
matrix analysis, many “special” functions in physics, etc.

Our next topic: how to compute them, in practice on a computer? We start
from methods for matrix functions in general, not restricting to specific choices
of f . [Higham book, Ch. 4]

4.1 Diagonalization vs. Taylor series: between
Scylla and Charybdis

Diagonalization If A diagonalizable, then we can simply write

f(A) = f(V ΛV −1) = V f(Λ)V −1 = V

f(λ1)
. . .

f(λn)

V −1.

If A is symmetric, Hermitian, or in general normal, then V can be taken unitary,
and this method is perfectly stable: one can show that this computation is
backward stable, provided that the scalar values f(λi) are computed using a
backward stable method. This is a fine strategy, and if we only cared about
normal matrices, this chapter could stop here.

However, for non-normal matrices, trouble may arise due to the ill-conditioning
of the matrix V . Even if we ignore the error in the eigendecomposition, the ap-
proximate computation of the diagonal values |f(λi) − f̃(λi)| < ε, causes an
error

∥f(A)− f̃(A)∥ = ∥V (f(Λ)− f̃(Λ))V −1∥ ≤ κ(V)ε,

so we may expect numerical issues, especially if A is non-diagonalizable (again!)
or close to it.

37

Matlab example We take a matrixA that is very close to the non-diagonalizable
matrix:

[
3 −1
1 1

]
, which has a Jordan block of size 2 with eigenvalue λ = 2.

>> A = [3 -1; 1 1+1e-15]

A =

3.0000 -1.0000

1.0000 1.0000

>> [V, D] = eig(A);

>> cond(V)

ans =

6.7109e+07

>> X = V * sqrt(D) / V;

>> norm(X^2 - A)

ans =

1.5500e-08

The fact that X2 is not close to A shows that we have incurred in an error of
order O(

√
u).

For this matrix, we can do much better with a Taylor series, instead. We
already know that the eigenvalues of this matrix are close to 2, hence α = 2 is
a good choice for the centre of the Taylor expansion.

f(x) = f(2)+f ′(2)(x−2)+O((x−2)2) =⇒
√
x =
√
2+

1

2
√
2
(x−2)+O((x−2)2).

>> Y = 1/sqrt(8) * A + 1/sqrt(2) * eye(2);

>> norm(Y^2 - A)

ans =

4.4409e-16

In this case, we obtain

>> alpha = trace(A) / 2;

>> I = eye(2);

>> Z = alpha^(1/2)*I + 1/2*alpha^(-1/2)*(A-alpha*I) ...

- 1/4*alpha^(-3/2)*(A-alpha*I)^2

>> norm(Z^2 - A)

ans =

4.4409e-16

In the case of our matrix, the series converges spectacularly fast because A is
approximately a Jordan block and hence (A− 2I)2 ≈ 0.

Taylor series (and variants, such as rational approximants f(x) = p(x)
q(x) +

O(xdeg p+deg q+1), which we will see in more detail) work best when the eigen-
values of A are in a small region. But one can come up also with examples
where diagonalization fares much better than Taylor expansion.

38

Drawbacks of Taylor series Example: Let us use Taylor series to compute
the following matrix exponential, whose result is simple to determine exactly

A =

[
0 30
−30 0

]
, exp(A) =

[
cos 30 sin 30
− sin 30 cos 30

]
(note that these are 30 radiants!). The matrix A is a multiple of an orthogo-
nal matrix, hence it is normal: its eigenvector matrix V is orthogonal. Thus
computing exp(A) by diagonalization works very well.

>> A = [0 30; -30 0];

>> [V, D] = eig(A);

>> X = V * [exp(D(1,1)) 0; 0 exp(D(2,2))] / V

X =

0.1543 -0.9880

0.9880 0.1543

>> norm(X - expm(A))

ans =

0

Comparing with Matlab’s built-in expm, we get the exact same result. (Atten-
tion: in Matlab exp(A) computes the elementwise exponential; do not mix up
those two Matlab functions!)

The eigenvalues of A are ±30i, hence a natural choice for the centre of the
Taylor expansion is their average 0. (In general, the average of the eigenvalues
is always available without diagonalizing the matrix: 1

n Trace(A).)
We can write a simple function to compute the matrix exponential with its

Taylor series.

function X = exptaylor(A, d)

% matrix exponential via Taylor series truncated to degree d

X = eye(2); % partial sums

T = eye(2); % 1/k! A^k, updated at each step

for k = 1:d

T = 1/k * A * T;

X = X + T;

end

We can check that our implementaion is correct by comparing it to Matlab’s
expm for some simple matrices. However, the results on the matrix A above are
very poor.

A = [0 30; -30 0];

exact_exp = [cos(30) sin(30); -sin(30) cos(30)];

X = eye(2);

T = eye(2);

results = table();

for k = 1:120

39

T = 1/k * A * T;

X = X + T;

results.term_norm(k) = norm(T);

results.error(k) = norm(X - exact_exp);

end

semilogy(results.error)

We see that the method needs about 90 terms of the series to converge; this is
already bad news, because we need a large number of terms for a fairly simple
problem. More importantly, though, when the method converges, it computes
a matrix X such that ∥X − exp(A)∥ ≈ 10−5, an abysmally large error for the
standards of numerical linear algebra.

The reason for this bad accuracy is the intermediate growth in the sum-
mands: if we plot

semilogy(results.term_norm)

we see that the terms have a huge intermediate growth, reaching ∥T∥ ≈ 1011

for k ≈ 30. A clear “hump” is visible on the plot.
This plot explains perfectly the source of the large error that we observe:

we need to compute the sum of intermediate values of magnitude ≈ 1011, which
cancel out to compute a final result of magnitude ≈ 1. The largest terms are
computed with an error ≈ 1011u ≈ 10−5, and this is precisely the error that we
observe in the final result.

You may have seen in your undergraduate numerical analysis courses a sim-
ilar example when computing the scalar exponential exp(−30) with its Taylor
series. In that case, we can avoid the issue by switching to the alternative for-
mula exp(−30) = 1/ exp(30); but in this matrix case there is not an equally
simple fix.

For a normal matrix A, we can at least estimate the growth in coefficients:
thanks to A = UDU∗, with U unitary, one sees that ∥A∥k2 = ∥A∥k2 = ρ(A)k for
each k. So computing exp(A) with its Taylor series is as accurate as computing
exp(∥A∥) with its scalar version.

For non-normal matrices, however, the intermediate growth in coefficients
can be worse. Even on a nilpotent matrix, the entries may become arbitrarily
large:

A =

0 10

0 10
0 10

0

 , A2 =

0 0 100

0 0 100
0 0

0

 , A3 =

0 0 0 1000

0 0 0
0 0

0

 .

To sum up, the main issues with Taylor series are:

• Convergence is poor when the eigenvalues of A are not clustered around
a certain α, and the intermediate growth in coefficients may cause loss of
accuracy.

40

• Slow convergence comes with another issue: the cost to evaluate a polyno-
mial of degree d is O(n3d), with the Horner rule. There are more efficient
methods that reduce the cost to O(n3

√
d), but still the cost of this method

may be more-than-cubic if many terms are required.

4.2 Extras: Polynomial evaluation

How to evaluate polynomials in a matrix argument? Two obvious strategies
exist:

• Direct evaluation: compute powers of X by successive products, take a
linear combination of them).

• Horner method : (. . . ((cdX + cd−1)X + cd−2)X + . . .)X + c0I

Unlike the scalar case, the two methods are essentially equivalent in terms of
cost: d− 1 matrix products, in both cases.

However, we can obtain a cheaper algorithm if we divide the terms into
‘chunks’ of size approximately

√
d, e.g., for d = 8, we have

(c8A
2 + c7A+ c6)(A

3)2 + (c5A
2 + c4A+ c3)A

3 + (c2A
2 + c1A1 + c0).

We can compute this quantity with the algorithm

B = A2 (4.1)

C = AB = A3 (4.2)

D = C2 = A6 (4.3)

E = c2B + c1A1 + c0 (4.4)

F = c5B + c4A+ c3 (4.5)

G = c8A
2 + c7A+ c6 (4.6)

H = GD + FC +D, (4.7)

which requires 5 products rather than 7. More in general, this strategy (the
Paterson-Stockmayer method) has complexity O(n3

√
d). It requires fewer mul-

tiplications, but more storage for the intermediate values. Its stability properties
are similar to those of the other two methods. We do not see much in this course,
but you can read more on Higham’s book.

4.3 Parlett recurrence

What Jordan can do, Schur can do better. Can one compute matrix functions
using the Schur form of A?

If A = UTU−1, f(A) = Uf(T)U−1, so we reduce to the triangular case.
Example

T =

[
t11 t12
0 t22

]
, f(T) = S =

[
s11 s12
0 s22

]
.

41

Clearly, s11 = f(t11), s22 = f(t22). But how to compute the remaining term
s12?

Trick: expanding Af(A) = f(A)A gives an equation for s12:

t11s12 + t12s22 = s11t12 + s12t22 =⇒ s12 = t12
s11 − s22
t11 − t22

.

If t11 = t22, the equation is not solvable and we already know (at least when
t12 = 1) that the finite difference should be replaced by a derivative.

The same idea works for larger blocks (provided we compute things in the
correct order):

T =

t11 t12 t13
t22 t23

t33

 , f(T) = S =

s11 s12 s13
s22 s23

s33

 ,

t11s13 + t12s23 + t13s33 = s11t13 + s12t23 + s13t33.

This formula requires elements from the first subdiagonal s12 and s23, which we
have already computed. More generally,

tiisij − sijtjj =
∑

i≤k<j

siktkj −
∑

i<k≤j

tikskj ,

and the RHS includes only elements from lower subdiagonals which have already
been computed.

Hence we can set up a back-substitution very similar to the Bartels–Stewart
algorithm.

(In essence, we are solving the (singular) Sylvester equation TX −XT = 0
with the back-substitution technique that we have already seen, after computing
the diagonal elements by hand to obtain the unique solution with Xii = f(Aii).)

To turn this into Matlab code, we need a few more observations. Each term
sij depends only on terms on below it on the same column and terms to its left
on the same row. Hence we can solve column-by-column starting from the first
rather than superdiagonal-by-superdiagonal; this is easier to write and more
efficient.

function S = funm_parlett(f, T)

% computes f(T) for upper triangular T

% with the Parlett recurrence

n = size(T, 1);

S = zeros(n, n);

for j = 1:n

S(j,j) = f(T(j,j));

for i = j-1:-1:1

S(i,j) = S(i, i:j-1) * T(i:j-1, j) ...

- T(i, i+1:j) * S(i+1:j, j);

42

S(i,j) = S(i,j) / (T(i,i) - T(j,j));

end

end

Problem: due to the T (i, i)−T (j, j) denominator, this formula becomes very
unstable when there are equal, or close-by, eigenvalues.

>> T = triu(ones(8) + 1e-5*randn(8));

>> S = funm_parlett(@sqrt, T);

>> norm(S^2 - T)

ans =

1.7648e+21

Solution: the previous formulas also work blockwise, and they become Sylvester
equations. If we can partition the eigenvalues into well-separated clusters, then
we can use Taylor expansion on each cluster.

Algorithm (Schur–Parlett method)

1. Compute Schur form A = QTQ∗;

2. Reorder T so that it can be partitioned into blocks with ‘well-separated
eigenvalues’ (with a configurable threshold);

3. Compute f(Tii) for each block (e.g., with a Taylor series centered in the
average of the cluster);

4. Use recurrences to compute off-diagonal blocks of f(T);

5. Return f(A) = Qf(T)Q∗.

This algorithm tries to sail between Scylla and Charybdis: we use Taylor
expansion when the eigenvalues are close, and recurrences when they are dis-
tant. This algorithm is implemented in Matlab’s funm (at least for some matrix
functions).

>> T = triu(ones(8) + 1e-5*randn(8));

>> [S, ~, details] = funm(T, @sin);

>> details

struct with fields:

terms: 10

ind: {[1 2 3 4 5 6 7 8]}

ord: [1 1 1 1 1 1 1 1]

T: [8x8 double]

>> T = triu(randn(10));

>> [S, ~, details] = funm(T, @sin);

>> details

struct with fields:

43

terms: [1 1 8 1 1 1 1 1]

ind: {8x1 cell}

ord: [6 8 6 7 5 4 3 2 1 6]

T: [10x10 double]

Problems with Schur–Parlett This method is more or less the state-of-
the-art method for generic functions, and performs well in most cases, but it is
not free of problems.

• What happens if the eigenvalues are not naturally divided into clusters?
E.g., a single big cluster, or a long line of very close eigenvalues. Applying
a degree-d Taylor polynomial to a k × k block (with k up to n) costs
O(n3d) (or O(n3

√
d) with better algorithms), so if d ∼ n the cost is more

than cubic.

• The correct metric to use to predict accuracy is not the difference between
eigenvalues, but sep(Tii, Tjj), which is more complicated to handle.

• Derivatives must be known (or computable). Note that the Matlab im-
plementation of funm cheats: it has hard-coded derivatives for a small
number of standard functions like @exp or @sin, and for all other func-
tions one must provide explicit derivatives. (Indeed, computing derivatives
automatically is more complicated.)

Unfortunately, not much can be said in general on the stability of this method.
For sure, the method is not backwards stable, because of the same issues that
make Sylvester equations not (structurally) backward stable.

Extras: Parlett recurrence and block diagonalization The Parlett re-
currence is very similar to computation via block diagonalization.

Consider the case of 2 blocks for simplicity. T can be block-diagonalized via

W−1TW =

[
I −X
0 I

] [
T11 T12

0 T22

] [
I X
0 I

]
=

[
T11

T22

]
where X solves T11X −XT22 + T12 = 0 (Sylvester equation). Then

f(T) = W

[
f(T11)

f(T22)

]
W−1 =

[
f(T11) Xf(T22)− f(T11)X

f(T22)

]
.

(Note indeed that S = Xf(T22) − f(T11)X solves the Sylvester equation
appearing in the Parlett recurrence.)

So both methods solve a Sylvester equation with operator Z 7→ T11Z−ZT22

and separation sep(T11, T22).

Exercise 4.1 (American Mathematical Monthly, Problem 12451). Show that

exp

([
A B
0 0

])
=

[
exp(A)

∫ 1

0
exp(tA) dt ·B

0 I

]
.

44

Chapter 5

Intermezzo: Automatic
differentiation

In this chapter, we say some words on automatic differentiation: a method
that allows one to compute accurately derivatives of arbitrary functions on a
computer. This is a topic that has become very popular in recent years, be-
cause of interest in machine learning and because of better support from many
programming languages (Julia in the first place).

Problem
Given the code for function y = f(x) to compute a function f : R→ R, how
does one compute (or approximate) f ′(x) in a given point?

function y = f(x)

z = x * x;

w = x + 5;

y = z * w;

We can assume that only basic arithmetic operations and standard functions
such as exp, log, sin,√, . . . are used in the code.

5.1 Numerical differentiation

First attempt : numerical differentiation: compute g = f(x+h)−f(x)
h , with a fixed

h > 0.
Problem: Two sources of error:

• analytical error: Using a Taylor expansion, we can see that g − f ′(x) =
1
2f

′′(ξ)h for a point ξ between x and x+ h.

• numerical error: because of machine arithmetic, even with perfect code
we can compute only f(x)(1 + δ1) and f(x+ h)(1 + δ2) with |δi| < u. So

45

the computed value g̃ of g = f(x+h)−f(x)
h is affected by an error that we

can bound with u |f(x)|+|f(x+h)|
h

So we can bound the total error as

|g̃ − f ′(x)| ≤ | 12f
′′(ξ)|h+ u

|f(x)|+ |f(x+ h)|
h

.

Assuming | 12f
′′(ξ)|, |f(x)|, |f(x+h)| = O(1), this error bound is minimized when

h ≈ u1/2 and is O(u1/2).
Hence when computing derivatives numerically with the forward difference

f ′(x) ≈ f(x+ h)− f(x)

h
,

the best accuracy is attained when h ≈ u1/2, and the error is O(u1/2). Impor-
tantly, this means that this method is not able to compute derivatives to full
precision.

We can verify this also in Matlab.

>> x = 5

x =

5

>> h = 1e-4; g = (f(x+h) - f(x)) / h

g =

1.250020000097152e+02

% error ≈ 10−4

>> h = 1e-8; g = (f(x+h) - f(x)) / h

g =

1.250000025265763e+02

% error ≈ 10−8

>> h = 1e-12; g = (f(x+h) - f(x)) / h

g =

1.249986780749168e+02

% error ≈ 10−4

Exercise 5.1. Prove that an analogous estimate holds for the centered differ-
ence

f ′(x) ≈ f(x+ h)− f(x− h)

2h
.

In this case, the minimum error is O(u2/3), and it is attained for h = O(u1/3).

46

Extras: complex step differentiation A similar trick: if f is the restriction
to R of a holomorphic function, and our code to compute it works also for
complex inputs, then for x ∈ R one can write

f(x+ ih) = f(x) + f ′(x)ih− f ′′(x)

2
h2 +O(h3),

so g = Im f(x+ih)
h is an approximation of the derivative f ′(x) with error g −

f ′(x) = O(h2).
Typically, the numerical error on Im f(x+ ih) is ∼ |Im f(x+ ih)|u = O(h)u

(but if real/imaginary parts are ’mixed’ in computation, it may get as large as
∼ |f(x)|u = O(u)). Hence

|g̃ − f ′(x)| ≤ O(h2) +
O(h)
h

u.

The total error is O(u) as long as h ≤ O(u1/2).

>> x = 5

x =

5

>> h = 1e-4; g = imag(f(x+1i*h)) / h

g =

1.249999999900000e+02

>> h = 1e-8; g = imag(f(x+1i*h)) / h

g =

1.250000000000000e+02

>> h = 1e-12; g = imag(f(x+1i*h)) / h

g =

1.250000000000000e+02

Key idea
We obtained a better bound by exploiting the fact that our code runs also for
a more general type (complex numbers).

Still, this method does not solve every problem: it only works if f is the
restriction of a holomorphic function, and it is real-valued. For instance, a
limitation is that you cannot use this method recursively to compute second
derivatives, because the outer instance would like to call the inner instance for
z ̸= R, while it only works for z ∈ R.

5.2 Automatic differentiation

47

Automatic differentiation via matrix functions Suppose our code works
also formatrix arguments x, which we can achieve in Matlab with minor changes:

function y = f(x)

n = size(x, 1);

z = x * x;

w = x + 5*eye(n);

y = z * w;

Then,

f

λ 1
λ 1

λ

 =

f(λ) f ′(λ) f ′′(λ)
2

f(λ) f ′(λ)
f(λ)

 .

No “small h” and subtractions are needed this time =⇒ the derivative can be
computed with error O(u).

Automatic differentiation What we have seen is a form of automatic dif-
ferentiation. It is something fundamentally different from numerical differen-
tiation; it is more similar to symbolic differentiation with a computer algebra
system, but easier to do algorithmically.

• This strategy can (typically) compute derivatives up to machine precision
error O(u), by running the code with more general types.

• It can be used also to compute also higher derivatives.

• It works also if your code to compute f includes loops, conditionals, and
more complicated functions.

function y = somefunction(x)

a = x*x + 1;

z = 2 / a;

while z < 5

z = z^2;

end

y = exp(z);

This function is not continuous at certain decision points: when z = 5 at
some iteration of the while. However, in all other points it is differentiable, and
we can compute its derivative with the same method.

function y = somefunction(x)

n = size(x, 1);

a = x*x + eye(n);

z = 2 * inv(a);

while z(1,1) < 5

z = z^2;

end

y = expm(z);

48

A better implementation Actually, we do not need matrices here: all op-
erations are on triangular Toeplitz matrices, i.e., polynomials in

E :=

0 1 0
0 0 1
0 0 0

 .

So a b c
0 a b
0 0 a

 = aI + bE + cE2.

To compute operations between matrices with this form, we can just treat them
as polynomials in an indeterminate E, with the relation E3 = 0; i.e., we can just
work in the polynomial algebra R[E]/(E3); exactly like the complex numbers
are isomorphic to R[x]/(x2 + 1).

This observation suggests another enlightening interpretation: what we are
really doing is propagating expansions involving an “infinitesimal” quantity ε =
E: instead of the input x, for instance x = 5, we start from 5+ ε, and whenever
we compute a quantity we compute alongside it the first n coefficients of its
power series expansion in ε ; for instance given code

function y = f(x) % input: x=5

z = x * x; % z is 25

w = x + 5; % w is 10

y = z * w; % y is 250

we can use it to compute two derivatives (n = 3) alongside it:

function y = f(x) % input: x̂ = 5 + ε = 5 + 1ε+ 0ε2 +O(ε3)
z = x * x; % ẑ = x̂2 = (5 + 1ε+ 0ε2 +O(ε3))(5 + 1ε+ 0ε2 +O(ε3))
% = 25 + 10ε+ 1ε2 +O(ε3)
w = x + 5; % ŵ = x̂+ 5 = (5 + 1ε+ 0ε2 +O(ε3)) + 5
% = 10 + 1ε+ 0ε2 +O(ε3)
y = z * w; % ŷ = ẑŵ = (25 + 10ε+ 1ε2 +O(ε3))(10 + 1ε+ 0ε2 +O(ε3))
% y = 250 + 125ε+ 20ε2 +O(ε3)

From this Taylor expansion we can read off the first two derivatives of y = f(x)
in x = 5.

Implementation via OOP We can get the computer to do all this auto-
matically without changing our code, with a technique called object oriented
programming. Matlab is not the best language in the world for this kind of
programming, but it will suffice for our example.

The idea behind object-oriented programming is defining new types, or
classes, that represent structured data, and together with them implement new
functions / operations to operate on these types (in OOP jargon, these functions
are called class methods).

49

In our case, we shall write a class Taylor that represents a Taylor expansion
truncated to order 3. The data we need to save can be represented by length-
3 vector, and we will define how Matlab operates on these vectors when one
writes a + b or a * b with objects of type Taylor (operator overloading). This
is done in Matlab by defining inside the class the methods plus and mtimes

(the m stands for matrix, exactly like in expm). Indeed, when one writes a + b,
Matlab converts it internally to the function call plus(a, b).

function y = f(x) % input: x = Taylor[5 1 0]

z = x * x; % z = Taylor[5 1 0] * Taylor[5 1 0]

% z = Taylor[25 10 1]

w = x + 5; % w = Taylor[5 1 0] + Taylor[5 0 0]

% w = Taylor[10 1 0]

y = z * w; % y = Taylor[25 10 1] * Taylor[10 1 0]

% y = Taylor[250 125 20]

The rules that we need to implement to make our example works are the
following:

• Taylor[a0, a1, a2] + Taylor[b0, b1, b2] = Taylor[a0+b0, a1+b1, a2+b2]

• Taylor[a0, a1, a2] * Taylor[b0, b1, b2] = Taylor[a0*b0, a1*b0+a0*b1, a2*b0+a1*b1+a0*b2]

• For a constant k, Taylor[a0, a1, a2] + k = Taylor[a0, a1, a2] + Taylor[k, 0, 0]

(we need this rule for the operation x + 5).

classdef Taylor

properties

coeffs %length-3 vector

end

methods

function obj = Taylor(v) %constructor

obj.coeffs = v;

end

function c = plus(a, b)

if isa(b, ’double’), b = Taylor([b 0 0]); end

c = Taylor(a.coeffs + b.coeffs);

end

function c = mtimes(a, b)

c = Taylor([a.coeffs(1)*b.coeffs(1), ...

a.coeffs(1)*b.coeffs(2) + a.coeffs(2)*b.coeffs(1), ...

a.coeffs(1)*b.coeffs(3) + a.coeffs(2)*b.coeffs(2) + a.coeffs(3)*b.coeffs(1)]);

end

end

end

50

Automatic differentiation, generically What if our code contains more
complicated operations, such as a / b, or exp(a), . . . ?

For any elementary operation z = f(a, b, . . .) that appears in our code, we
can write the corresponding rules to compute the derivatives of z from those of
a, b, . . . :

z′ =
∂f

∂a
a′ +

∂f

∂b
b′ + . . . (5.1)

z′′ =
∂2f

∂a2
(a′)2 +

∂f

∂a
a′′ +

∂2f

∂b2
(b′)2 +

∂f

∂b
b′′ + . . .

...
...

These formulas get lengthy for higher derivatives.
Global derivatives are computed together with each variable, and they are

updated according to local rules for each line of code. Each operation that we
use needs to be extended to specify how it acts on derivatives. If we define for
our type Taylor each operation appearing in our code (ab, a/b, exp(a), . . .), we
can effectively compute derivatives algorithmically.

For instance, if we have a framework to compute only the first derivative,
and we wish to extend it to work also with the division between two scalar
variables z = a / b, we need to implement the rule to compute z′ (knowing
a, a′, b, b′) as

z′ =
1

b
a′ − a

b2
b′.

If we wish to include scalar exponentiation z = exp(a), we have to implement

z′ = exp(a)a′

which follows from the chain rule.

Special case: dual numbers The most common case is when one only needs
the first derivative. The algebraic structure that reflects the formalism for this
case is the ring of dual numbers, R[ε]/(ε2).

• Each member of the ring can be written as a + εb, for a, b ∈ R (or any
other base ring).

• Operations are performed with usual algebraic rules plus ε2 = 0; for in-
stance, a * b when its argument are dual numbers becomes (a+ εa′)(b+
εb′) = ab+ (a′b+ ab′)ε.

• f ′(x) is equal to the “epsilon part” of f(x+ ε).

Julia and automatic differentiation the language Julia has a great ecosys-
tem for automatic differentiation. Differentiation rules like (5.1) are defined in
the standard libraries for many common library functions (such as eigvals to

51

compute eigenvalues), and when writing native Julia code one is encouraged to
use idioms that work on multiple types automatically: in the example above,
instead of writing x + 5 above, one would typically use x + 5*one(x), so that
the correct ring identity is used depending on the type of x. The result is
that in most cases it is sufficient to load one of several packages for automatic
differentiation to get it to work out of the box:

julia> using LinearAlgebra # for eigvals

julia> using Zygote # a popular autodiff package

julia> spectralradius(A) = maximum(abs.(eigvals(A)));

julia> gradient(spectralradius, [1 2; 3 4])

([0.23888351606645317 0.5222329678670934;

0.3481553119113956 0.7611164839335467],)

5.3 Reverse mode

The one we have seen in the previous section is called the forward mode of
automatic differentiation. There is also a reverse mode which is more popular
in some contexts; most notably machine learning, where it is known as back-
propagation.

We give an idea of how it works, to compute only the first derivative.
General idea: After having computed y = f(x), we revisit our code line-by-

line backwards, and for each intermediate variable a we compute dy
da , starting

from dy
dy = 1.

This manipulation requires more complicated transformations to the source
code than forward-mode; introducing new types is not sufficient. Typically it is
performed in some way via a computational graph representation of the opera-
tions to perform. We see it at work in our running example. A computational
graph for it is

x

w

z

y

1

10 10

25

function y = f(x) % input: x=5

z = x * x; % ∂z
∂x = 2x = 10

w = x + 5; % ∂w
∂x = 1

y = z * w; % ∂y
∂w = z = 25, ∂y

∂z = w = 10

Using these edge derivatives, we work our way right-to-left and compute
starting from dy

dy = 1:

dy

dw
=

dy

dy

∂y

∂w
= 25,

dy

dz
=

dy

dy

∂y

∂z
= 10,

52

dy

dx
=

dy

dw

∂w

∂x
+

dy

dz

∂z

∂x
= 25 · 1 + 10 · 10 = 125.

The multivariate case The same ideas (both for forward and reverse mode)
work also in the multivariate case, when the input x and the output y are vectors.
Jacobian matrices take the place of scalar derivatives. All products above like
∂f
∂aa

′ or dy
dw

∂w
∂x become matrix multiplications, and we start from dx

dx = I or
dy
dy = I.

For a function f : Rn → Rm:

Forward mode: for each intermediate variable w ∈ Rp, store its Jacobian
dw
dx ∈ Rp×n. Whenever an instruction computes z from w, multiply on the left:
dz
dx = ∂z

∂w
dw
dx .

Reverse mode: for each intermediate variable w ∈ Rp, store its Jacobian
dy
dw ∈ Rm×p. During the reverse part, for each z on which w depends, multiply

on the right: dy
dz = dy

dw
∂w
∂z .

Forward mode can also compute only a directional derivative dy
dv in the direc-

tion of a given vector v ∈ Rn, i.e., the matrix-vector product dy
dxv: we just need

to change the initial value. Instead of starting from dx
dx = I, we start dx

dv = v

and then compute for each intermediate variable z the quantity dz
dv , using the

exact same recursions.
Similarly, reverse mode can be used to compute only vT dy

dx .

Computational complexity Which is cheaper, forward mode or reverse
mode? This depends on the dimension of your data.

• For a function f : Rn → Rm with n≪ m that is the composition of many
steps, the forward mode is faster because all intermediate Jacobians are
tall-thin, with the second dimension equal to n.

• For a function f : Rn → Rm with n≫ m that is the composition of many
steps, the reverse mode is faster, because all intermediate Jacobians are
short-fat, with the first dimension equal to m.

Machine learning is, essentially, fitting functions with a large number of
parameters (weights) β ∈ Rn to given training data, by minimizing a certain
scalar error function E(β) ∈ R. Since n is very large (possibly of the order of
billions!) and m = 1, reverse mode is much faster. In modern applications,
neural network training is performed via gradient descent, and reverse-mode
automatic differentiation (known in the field as back-propagation) is one of the
main ingredients.

More applications Another field where automatic differentiation is becom-
ing common is optimization, where it is used to compute Jacobians and some-
times Hessians automatically. Implicit methods for ODEs are another area
where one can benefit from knowing the Jacobian of the function f(t, y).

53

We will not see more in this direction, but these applications are too inter-
esting not to mention automatic differentiation.

Remark: complex autodiff Extending this concept of automatic differ-
entiation to complex functions is not immediate. We could restrict ourselves
to holomorphic functions, but this would leave out common operations such as
z 7→ |z|. In several applications, we can identify Cn with R2n and work with real
Jacobians. A starting point to find out something more is the documentation
inside the Julia automatic differentiation framework, e.g., https://fluxml.ai/
Zygote.jl/dev/complex/, https://juliadiff.org/ChainRulesCore.jl/stable/
maths/complex.html.

54

https://fluxml.ai/Zygote.jl/dev/complex/
https://fluxml.ai/Zygote.jl/dev/complex/
https://juliadiff.org/ChainRulesCore.jl/stable/maths/complex.html
https://juliadiff.org/ChainRulesCore.jl/stable/maths/complex.html

Chapter 6

The matrix exponential

We now discuss specialized algorithms for some specific important matrix func-
tions. The first one:

exp(A) = I +A+
1

2
A2 +

1

3!
A3 +

An important remark: in Matlab, exp(A) does entrywise exponentiation;
one must use expm to compute the matrix function. It is very easy to mix up
the two.

Differential equation solution A common application of the matrix expo-
nential is the solution of the ODE initial value problem

d

dt
v(t) = Av(t), v(0) = v0, (6.1)

which is v(t) = exp(At)v0. Proof : we can differentiate term-by-term

v(t) = v0 + tAv0 +
t2

2
A2v0 +

t3

3
A3v0 +

For this application, often we are concerned with computing exp(At) for several
values of t ∈ R, or exp(A)v0 for a certain vector v0.

Shifting Note that exp(A + B) ̸= exp(A) exp(B), in general; this equality
holds only if A and B commute. In particular, this holds for B = βI is a
multiple of the identity:

exp(A+ βI) = eβ exp(A) (6.2)

This fact has an interesting consequence.

Theorem 6.1. Let A be a matrix with non-negative off-diagonal entries, i.e.,
Aij ≥ 0 for all i ̸= j. Then, all entries of exp(A) are nonnegative, i.e.,(
exp(A)

)
ij
≥ 0 for all i, j.

55

Proof. For a sufficiently large β > 0, all the entries of A+ βI are non-negative.
Hence,

exp(A) = e−β exp(A+ βI) = e−β
∞∑
k=0

1

k!
(A+ βI)k (6.3)

is a sum of non-negative terms.

This subtraction-free formulation is useful also numerically: there is no nu-
merical cancellation due to subtraction in the computation of (6.3). Hence
algorithms based on this formula are extremely stable. [Shao, Gao, Xue ’14]

Matrices that satisfy the hypothesis of this theorem are known as essentially
non-negative matrices, or Metzler matrices, or −Z-matrices. They appear some-
times in Markov chain applications, together with their exponentials.

Another computational application of (6.2) is so-called argument reduction:
sometimes, we can find β such that ∥A + βI∥ is much smaller than ∥A∥; in
this case, it is convenient to “factor out” β and compute exp(A) via exp(A) =
e−β exp(A+ βI).

Some infinite series expressions relating exp(A), exp(B), exp(A+B) are used
in the physics literature; see [Higham book, Section 10.1] if you are interested.

How to compute exp(A)? It is easy to come up with ways that turn out to
be unstable. There is a famous paper that studies this problem, titled Nineteen
dubious ways to compute the exponential of a matrix [Moler, Van Loan, ’78, with

a ’03 update]. We have already seen several pitfalls of Taylor series. Some other
computational methods for exp(A) include solving the ODE (6.1), possibly with
v0 = I, so that we get the whole matrix exp(At). In particular, if we use the
explicit Euler method we obtain the approximation exp(A)v0 ≈ (I + 1

nA)nv0.
The main source of the problem is the growth in intermediate results in all

these methods. We have already seen one instance of this phenomenon with the
Taylor series. We see another.

“Hump” phenomenons Even for a matrix with Λ(A) ⊂ LHP , exp(tA) may
grow for small values of t before settling down and converging to 0.

Example [Higham book, Ch. 10]

>> A = [-0.97 25; 0 -0.3];

>> t = linspace(0,20,100);

>> for i = 1:length(t); y(i) = norm(expm(t(i)*A)); end

>> plot(t, y)

Note that this A is highly non-normal, because of the large off-diagonal entry
A12.

This example shows that we can expect intermediate growth and cancellation
if we use methods that “go through” other values exp(At) with t < 1, for
instance by solving the ODE problem

X ′(t) = AX(t), X(0) = I.

56

Since the intermediate results are much larger than the final result, there must
occur some cancellation at some point, and this reduces accuracy.

Exception: again, everything works well for normal matrices. Since

∥exp(A)∥2 = max
λ∈Λ(A)

|eλ| = emaxRe(λ),

we have ∥exp(tA)∥ = ∥exp(A)∥t. So if we plot the norm we see an exponential
decrease (or increase) without “humps”.

Fréchet derivative of the matrix exponential Using the same argument
that we have used to compute the eigenvalues of Fréchet derivatives in Theo-
rem 3.5, we can obtain

Lexp,A[E] = E +
1

2!
(EA+AE) +

1

3!
(EA2 +AEA+A2E) + . . .

and the associated n2 × n2 matrix

K = In2 +
1

2
(A⊤ ⊗ I + I ⊗A) +

1

3!
((A2)⊤ ⊗ I +A⊤ ⊗A+ I ⊗A2) +

This time we have a converging series rather than a finite sum as in Theorem 3.5.
We can use this series to obtain a bound on ∥K∥:

∥K∥ ≤ ∥In2∥+ 1

2
∥A⊤ ⊗ I + I ⊗A∥+ 1

3!
∥(A2)⊤ ⊗ I +A⊤ ⊗A+ I ⊗A2∥+ . . .

≤ 1 +
1

2
2∥A∥+ 1

3!
3∥A∥2 + . . .

=

∞∑
k=0

1

(k + 1)!
(k + 1)∥A∥k = e∥A∥.

This shows that
κabs(exp, A) = ∥Lexp,A∥ ≤ e∥A∥.

This is not good news, because we have seen that e∥A∥ may be much larger
than ∥exp(A)∥; indeed, in the worst case the matrix exponential can be quite
ill-conditioned.

The picture gets much better if A is normal. In that case, Proposition 3.6
shows that

∥Lexp,A∥ = max
λi,λj∈Λ(A)

|exp[λi, λj]|.

We can use Lagrange’s theorem to estimate the magnitude of |exp[λi, λj]|:

|exp[λi, λj]| =
∣∣∣∣eλj − eλi

λj − λi

∣∣∣∣ = |eξ| ≤ max
λ∈Λ(A)

|eλ| = emaxRe(λ) = ∥exp(A)∥,

since for each i, j ξ is in the convex hull of the eigenvalues of A. So we get

κabs(exp, A) ≤ ∥exp(A)∥,

57

which can be a large improvement over e∥A∥. Note that this implies that for the
relative condition number κrel(exp, A) ≤ ∥A∥ (again, only in the normal case!).

A similar discussion based on different arguments is in [Higham book, Section

10.2].

6.1 Scaling and squaring

We now describe the method used in Matlab’s expm, which is the state-of-the-art
one.

Padé approximants Padé approximants A Padé approximant of degree (p, q)

to a function f (in x = 0) is a rational function N(x)
D(x) of degree (p, q) such that

f(x) =
N(x)

D(x)
+O(xp+q+1)

when x→ 0. This idea generalizes Taylor series (q = 0).
We can typically find polynomals N(x) and D(x) that satisfy this equality

(we will see how), since N(x) and D(x) have p + q + 1 coefficients, once we
normalize setting D(0) = 1 (to account for common scaling: N and D can be
multiplied by the same factor). So we can impose p+ q + 1 conditions.

We see an example of the computation of a Padé approximant to the matrix
exponential of degrees p = q = 2, using Matlab’s symbolic toolbox.

>> syms x a b c d e

>> T = taylor(exp(x), x, 0, ’Order’, 5)

T =

x^4/24 + x^3/6 + x^2/2 + x + 1

>> D = a*x^2+b*x+1;

>> N = c*x^2 + d*x + e;

>> collect(expand(T*D-N))

ans =

(a*x^6)/24 + (a/6 + b/24)*x^5 + (a/2 + b/6 + 1/24)*x^4 + (a + b/2 + 1/6)*x^3 + ...

(a + b - c + 1/2)*x^2 + (b - d + 1)*x - e + 1

>> C = coeffs(collect(expand(T*D-N)),x)

C =

[1 - e, b - d + 1, a + b - c + 1/2, a + b/2 + 1/6, a/2 + b/6 + 1/24, a/6 + b/24, a/24]

>> S = solve(C(1:5)==0, [a,b,c,d,e]);

>> [S.a, S.b, S.c, S.d, S.e]

ans =

[1/12, -1/2, 1/12, 1/2, 1]

Here we used the fact that

f(x)− N(x)

D(x)
= O(xp+q+1) ⇐⇒ f(x)D(x)−N(x) = O(xp+q+1),

58

since D(0) ̸= 1. With this trick we could reduce the computation to the solution
of a system of p+ q+1 linear equations. For most choices of f, p, q, this system
of equations has a unique solution, but this is by no means a guarantee: some
functions f do not admit a Padé approximant for certain (p, q).

Padé approximants for the exponential exist and are known in closed form:

Npq(x) =

p∑
j=0

(p+ q − j)!p!

(p+ q)!j!(p− j)!
xj ,

Dpq(x) = Npq(−x).

When approximating functions, Padé approximants often achieve a smaller
error than a Taylor series with the same number of degrees of freedom. We
can check numerically that the polynomial function N(x)/D(x) that we have
computed approximates ex with lower error than the Taylor series T (x) with
the same order:

fplot([T-exp(x), subs(N/D,S)-exp(x)], [-1,1])

We can frame this approximation property as a sort of “backward error”:
for each x, there is a δ such that

N(x)

D(x)
= ex+δ,

i.e., the Padé approximation N(x)/D(x) computes the exact exponential of a
perturbed input x+ δ.

Some easy manipulations show that

δ(x) = log

(
e−xN(x)

D(x)

)
.

We have

ex−N(x)

D(x)
= O(xp+q+1) =⇒ 1−e−xN(x)

D(x)
= O(xp+q+1) =⇒ log

(
e−xN(x)

D(x)

)
= O(xp+q+1),

so the function δ(x) is very flat around zero: it grows as xp+q+1.

>> delta = log(exp(-x) * subs(N/D,S));

>> taylor(delta, x, 0, ’Order’, 20)

ans =

- x^19/98035826688 - x^17/7309688832 + x^13/38817792 + x^11/2737152 - x^7/12096 - x^5/720

>> fplot(delta, [-1,1])

When x gets larger, the quality of this approximation degrades.

Padé approximations of the matrix exponential When A has small
norm, we can use a Padé approximation to compute an approximation to exp(A):

exp(A) ≈ (Dpq(A))−1Npq(A).

59

Since D(0) = 1, if A has a small norm then D(0) ≈ I is well-conditioned, so we
do not expect the inversion to be troublesome.

Note that the order of the two factors does not matter: since these are
polynomials in A, (Dpq(A))−1Npq(A) = Npq(A)(Dpq(A))−1.

Can we give an error bound for this matrix approximation, relying on the
scalar one? We define the matrix version of the “backward error” function δ(x)
that we have defined above:

∆ = δ(A) = log
(
exp(−A)D(A)−1N(A)

)
.

Thanks to the properties of matrix functions, ∆ and A commute, and then
direct computation shows that

D(A)−1N(A) = exp(A) exp(∆) = exp(A+∆).

If we determine that ∥∆∥/∥A∥ is of the order of machine precision, thenD(A)−1N(A)
is the exact exponential of a perturbed matrix, and the error we make in re-
placing exp(A) with D(A)−1N(A) is comparable to the one we make when we
represent A with floating-point numbers (which is of the order of κ(exp, A)u).
We cannot do better, numerically: this approximation is backward stable.

We have seen that the scalar function δ(x) is very small, in practice; for
instance, our plot showed that for p = q = 2 we have |δ(x)| < 1.5 · 10−8

whenever |x| < 0.1. But does this imply that the corresponding matrix function
∆ = δ(A) is small? This is a very interesting question that is related to an open
problem we will see later in our course (Crouzeix’s conjecture). For now, we
only give a worse bound based on the Taylor expansion of δ(x):

δ(x) =

∞∑
k=p+q+1

ckx
k =⇒ ∥∆∥ =

∥∥∥∥∥∥
∞∑

k=p+q+1

ckA
k

∥∥∥∥∥∥ ≤
∞∑

k=p+q+1

|ck|∥A∥k.

Unfortunately, the coefficients ck have mixed signs, so the right-hand side is
not δ(∥A∥), but something larger. We can see this also in our running example
p = q = 2:

>> TD = taylor(delta/x, x, 0, ’Order’, 20)

TD =

- x^18/98035826688 - x^16/7309688832 + x^12/38817792 ...

+ x^10/2737152 - x^6/12096 - x^4/720

>> c = coeffs(TD, ’all’)

c =

[-1/98035826688, 0, -1/7309688832, 0, 0, 0, 1/38817792, 0, ...

1/2737152, 0, 0, 0, -1/12096, 0, -1/720, 0, 0, 0, 0]

>> double(abs(c) * (0.1 .^ (18:-1:0))’)

ans =

1.3897e-07

60

In the last line, we compute

∞∑
k=p+q+1

|ck|0.1k < 1.39 · 10−7.

Hence this computation shows that ∥∆∥ < 1.39 · 10−7 when ∥A∥ < 0.1. This
computation is not fully rigorous, because we truncated the series after x19, but
both the coefficients ck and the powers 0.1k decrease quite sharply, so we should
not be too far from the truth. A fully rigorous approach that bounds the tail
of this series is in [[Moler, Van Loan ’03]].

Researchers obtained similar bounds for higher degrees p and q, for instance
the following:

Proposition 6.2 ([Higham book ’08, Table 10.2]). If p = q = 13 and ∥A∥ ≤ 5.4,

then ∥H∥
∥A∥ ≤ u ≈ 2.2 · 10−16 (machine precision). Moreover, ∥D(A)−1∥ ≤ 17.

The bound on ∥D(A)−1∥ can be obtained with similar techniques, and en-
sures that the inversion is well-conditioned.

The degree 13, in particular, was chosen because it achieves a good ratio
between accuracy and number of required operations. Thanks to the fact that
D(x) = N(−x), one can evaluate both N13,13 and D13,13 at the same time
with only 6 matmuls. (For more details on this evaluation, see the Paterson–
Stockmeyer method in Section 4.2.)

Remark 6.3. Padé approximants are the classical approach used in Matlab’s
expm; however, in more recent years, faster techniques to evaluate matrix poly-
nomials have been found, making Taylor expansions more competitive with
respect to Padé expansions [Sastre et al, 2009].

Remark 6.4. The same techniques to construct Padé approximants and to eval-
uate their backward stability can be applied to other functions as well; the
exponential is just a nice example. In general, though, rational approximation
methods work well only when the eigenvalues are in a sufficiently small region.

6.2 Scaling and squaring

What if ∥A∥ > 5.4? Idea: let us use the identity exp(A) = (exp(1sA))s.

Algorithm (scaling and squaring)

1. Find the smallest s = 2k such that ∥ 1sA∥ ≤ 5.4.

2. Compute F = D13,13(B)−1N13,13(B), where D13,13 and N13,13 are given
polynomials and B = 1

sA.

3. Compute F 2k by repeated squaring.

This algorithm is used in Matlab’s expm, currently (plus one minor optimiza-
tion: an approximant of degree smaller than 13 may be used when ∥A∥ ≤ 5.4
already holds).

61

Is scaling and squaring provably stable? No! ‘Humps’ may still give

problems: exp(B) may be much larger than exp(A) = exp(B)2
k

, leading to
cancellation when one computes the squares.

Scaling and squaring does not avoid entirely the intermediate growth prob-
lem entirely, but it is still the best algorithm available. And, in the end, our
earlier theoretical results show that for large A computing the matrix exponen-
tial is an ill-conditioned problem: computing the ‘tail’ end of exp(tA) to high
precision is impossible.

62

Chapter 7

The matrix sign function

In this chapter, we show how to compute the matrix function sign(M) associated
to the scalar function

sign(x) =

1 Rex > 0,

−1 Rex < 0,

undefined Rex = 0.

We shall see that this matrix function is much more interesting than its scalar
counterpart.

We assume in this chapter that the matrix M has no purely imaginary
eigenvalues, so that sign(M) is well-defined.

Suppose the Jordan form of M is reblocked as

M =
[
V1 V2

] [J1
J2

] [
V1 V2

]−1
,

where J1 contains the Jordan blocks with eigenvalues in the LHP (left half-
plane) and J2 those in the RHP. Then,

sign(M) =
[
V1 V2

] [−I
I

] [
V1 V2

]−1
.

In particular, sign(M) is always diagonalizable with eigenvalues Λ(M) ⊆ {−1, 1}.
If M has all its eigenvalues in the LHP, then sign(M) = −I, and analogously

if Λ(M) ⊂ RHP then sign(M) = I.

Application: projector on the leftmost part of the spectrum In some
physics problem, one must compute a few of the leftmost (in the complex plane)
eigenvalues of a given matrix M . These correspond to certain electronic states
with lowest energy, and in particular one is interested in the projector on the
invariant subspace spanned by them.

63

A possible way to compute them is the following. Take µ ∈ R, and note that
the eigenvalues in the LHP of M − µI correspond to the eigenvalues of M with
real part smaller than µ; in particular, the associated eigenvectors and Jordan
blocks are the same.

If one computes S = sign(M − µI), then

Im(S − I) = Im
[
V1 V2

] [−2I
0

] [
V1 V2

]−1
= ImV1,

and ImV1 is precisely the invariant subspace corresponding to the eigenvalues
of M that have real part smaller than µ. Similarly, ker(S − I) = ImV2.

Application: computing eigenvalues by bisection We can expand the
same idea to compute eigenvalues by bisection.

Given M ∈ Cn×n, set C := αM + βI for suitable α, β ∈ C, and compute
S = sign(C). Then, with the same notation as above, ImV1 is the invariant
subspace corresponding to the half-plane H = {λ : αλ+ β ∈ LHP}. If we let Q
be the orthogonal factor in qr(S − I), then

Q∗MQ =

[
A ∗
0 B

]
,

where A and B contain the eigenvalues of M inside and outside H respectively.
This can be seen as the first step of a bisection procedure to compute the

eigenvalues and eigenvectors of M : we have split the spectrum into two subsets;
now we can repeat the procedure on A and B with new values of α, β.

7.1 The Schur-Parlett method

Schur–Parlett method A first algorithm to compute sign(M) comes from
the Schur–Parlett strategy. Compute a Schur decomposition M = UTU∗, re-
ordered so that eigenvalues in the LHP come first, to obtain

U∗MU =

[
A C
0 B

]
, Λ(A) ⊂ LHP, Λ(B) ⊂ RHP.

hence

f(M) = Uf

([
A C
0 B

])
U∗ = U

[
−I Z
0 I

]
U∗

for a certain Z. We can compute Z by solving the Sylvester equation

AZ − ZB = f(A)C − Cf(B) = −2C. (7.1)

We can then summarize the Schur–Parlett algorithm for the matrix sign as
follows.

1. Compute a Schur decomposition M = UTU∗.

64

2. Reorder it so that eigenvalues in the LHP come first.

3. Compute Z by solving the Sylvester equation (7.1) (which has triangular
coefficients).

4. sign(M) = U
[−I Z

0 I

]
U∗.

function S = sign_schurparlett(M)

% Computes the matrix sign function with the Schur-Parlett method

n = size(M, 1);

[Q, U] = schur(M, ’complex’);

% overwrite Q, U with their reordered version

[Q, U] = ordschur(Q, U, "lhp");

% count the number of eigenvalues in the LHP

p = sum(real(diag(U)) < 0);

A = U(1:p, 1:p);

B = U(p+1:n, p+1:n);

C = U(1:p, p+1:n);

% Matlab function to solve a Sylvester equation

% Note that Matlab’s syntax has different signs

Z = lyap(A, -B, 2*C);

S = zeros(n, n);

S(1:p, 1:p) = -eye(p);

S(1:p, p+1:end) = Z;

S(p+1:end, p+1:end) = eye(n-p);

S = Q*S*Q’;

% If M is real, S=sign(M) is supposed to be real,

% but the computed one will have a tiny nonzero imaginary part,

% due to complex arithmetic in the Schur form.

% We remove it if that is the case.

if isreal(M)

S = real(S);

end

Note that this algorithm is not useful for our application of computing eigen-
values via bisection, because it requires the Schur form, which reveals the eigen-
values already. Before seeing a different algorithm, we expand on perturbation
theory.

65

7.2 Perturbation theory

The general results that we have obtained for perturbation of functions of ma-
trices show that for a diagonalizable matrix M = V DV −1 the condition number
of the matrix sign satisfies

κabs(sign,M) ≤ κ(V)2 max
λ∈Λ(M)∩LHP
µ∈Λ(M)∩RHP

2

|λ− µ|
.

This result is slightly misleading, though, because of two reasons:

• The factor κ(V)2 may be an overestimate, because if we think in terms
of invariant subspaces we see that the difficulty is separating the two
invariant subspaces relative to the LHP and RHP, which in general is a
more well-conditioned task than a full diagonalization.

• For matrices with small separation, another source of error amplification
comes from the fact that ∥sign(M)∥ is itself large. Indeed, taking norms
in the vectorized form of (7.1) gives

∥Z∥ ≤ ∥(I ⊗A−BT ⊗ I)−1∥∥2C∥ = 2∥C∥
sep(A,B)

.

A more accurate result is the following.

Theorem 7.1 ([Byers He Mehrmann ’97]). Let M = Q[A C
0 B]Q∗ as above, with

sep(A,B) = δ, and let ∥E∥F = ε be sufficiently small. Then,

1.
∥sign(M + E)− sign(M)∥F

∥sign(M)∥F
= O

(ϵ

δ2

)
.

2. However, the Hurwitz stable invariant subspace of M +E is Q[I
X], where

∥X∥F = O(ϵδ).

So the sign is highly ill-conditioned in presence of a small separation δ, but
the Hurwitz stable invariant subspace that we can compute with it is better
conditioned. This is good news for our application.

Proof. Assume Q = I, up to a change of basis. Part 2 follows from the pertur-

bation result for invariant subspaces: if M + E =
[
Ã C̃
D̃ B̃

]
, there exists X with

∥X∥F = O(εδ) such that[
I 0
−X I

]
(M + E)

[
I 0
X I

]
=

[
Ã+ C̃X C̃

0 B̃ −XC̃

]
︸ ︷︷ ︸

:=T̃

.

We can continue from here to compute the sign.

66

If ε is sufficiently small, Λ(Ã + C̃X) ⊂ LHP , Λ(B̃ − XC̃) ⊂ RHP , hence

sign(M̃) =

[
I Z̃
0 I

]
for a certain matrix Z̃. Arguing as in the Schur-Parlett

method, we must have sign(M̃)M̃ = M̃ sign(M̃), hence Z̃ solves

(Ã+ C̃X)Z̃ − Z̃(B̃ −XC̃) = 2C̃.

Then,

sign(M + E) =

[
I 0
X I

] [
I Z̃
0 I

] [
I 0
−X I

]
. (7.2)

The coefficients of the Sylvester equation for Z̃ are a perturbation of magnitude
O(εδ) of those of AZ − ZB = 2C. We can apply the following classical result
for perturbation of linear systems.

Lemma 7.2. Let x be the solution to Tx = c, and x̃ be the solution to (T +
δT)x̃ = c. Then,

∥x̃− x∥
∥x∥

.
≤ κ(T)

∥δT ∥
∥T∥

.

Note that, unlike its counterpart for a perturbation of the RHS vector c,
this result for a perturbation of the matrix T holds only up to terms of order(

∥δT ∥
∥T∥

)2
: indeed, the symbol

.
≤ stands for a first-order inequality.

Applying this result to the vectorization of AZ − ZB = C, we get

∥Z̃ − Z∥F
.
≤ 1

sep(A,B)︸ ︷︷ ︸
= 1

δ

O(ε
δ
)∥Z∥F = O(ε

δ2
)∥Z∥F .

Plugging this into (7.2) shows that ∥sign(M + E)− sign(M)∥ = O(ε
δ2)∥Z∥F =

O(ε
δ2)∥sign(M)∥F .

Even without going through the full proof, we can get an idea of the reason
behind this result by thinking about the Schur–Parlett method: the invari-
ant subspace of sign(A) is ImU1, that is, the same invariant subspace that is
produced by the (backward stable) Schur factorization, and we have proved
earlier that this invariant subspace has a condition number of 1

sep(A,B) . The

computation of Z may introduce some more ill-conditioning of its own, since
it is produced by solving a Sylvester equation with small separation sep(A,B).
However, inaccuracies in the computation of Z have no effect on the invariant
subspace Im(sign(A)− I).

7.3 Newton for the matrix sign

We wish to see that the iteration

Xk+1 =
1

2
(Xk +X−1

k), X0 = M (7.3)

67

satisfies limk→∞ Xk = sign(M).
To study the behavior of this iteration, let us start from the case when

M = V diag(λ1, . . . , λn)V
−1 is diagonalizable. Then it is easy to see that

X1 = V diag(f(λ1), . . . , f(λn))V
−1,

where f(x) = 1
2

(
x+ 1

x

)
, the map that corresponds to the scalar version of the

iteration (7.3). Similarly, by induction,

Xk = V diag(f◦k(λ1), . . . , f
◦k(λn))V

−1

(we use the symbol f◦k to denote the composition of f with itself k times).
The map f(x) is the one obtained by applying Newton’s method to solve

the equation x2 − 1 = 0; this explains the name of the method. The map f(x)
has two fixed points ±1, with (locally) quadratic convergence.

Convergence analysis of the scalar iteration

Theorem 7.3. Let x0 ∈ C, with Re(x0) ̸= 0. Then, the limit of the sequence

xk+1 = 1
2

(
xk + 1

xk

)
is sign(x0).

Proof. We make a change of variables (Cayley transform)

y =
x− 1

x+ 1
, with inverse x =

1 + y

1− y
.

If x ∈ RHP, then |x+ 1| > |x− 1| =⇒ y inside the unit disk.
If x ∈ LHP, then |x− 1| > |x+ 1| =⇒ y outside the unit disk.
If yk = xk−1

xk+1 for each k, then we can check with an explicit computation

that yk+1 = y2k.
Hence

x0 ∈ RHP =⇒ |y0| < 1 =⇒ lim
k→∞

yk = 0 =⇒ lim
k→∞

xk = 1;

x0 ∈ LHP =⇒ |y0| > 1 =⇒ lim
k→∞

yk =∞ =⇒ lim
k→∞

xk = −1.

Rational approximations of the step function Let g(x) = 1
2 (x + 1/x);

then its iterates g◦k are rational approximations of the step function sign(x)
around −1 and 1.

>> syms x

>> g = 1/2*(x + 1/x);

>> g2 = simplify(subs(g, x, g))

>> g3 = subs(g2, x, g)

>> fplot(g, [-2,2])

>> axis([-2 2 -2 2]);

>> hold on

>> fplot(g2, [-2,2])

>> fplot(g3, [-2,2])

68

(They diverge badly around 0, though.)

Exercise 7.4. Can you guess a general formula for g◦k from the first iterates
g, g2, g3? (Hint: it involves binomial coefficients.) Prove this formula by
induction.

This rational approximant can also be obtained by imposing approximation
properties in two different points, unlike one point for Padé approximant: g◦k(x)
is the only degree-(k, k − 1) rational function that satisfies g◦k(x) − sign(x) =

O(x2k) for both x→ ±1.

Convergence analysis of the matrix iteration A modification of the con-
vergence proof for the scalar case works in the matrix case.

Theorem 7.5. Let X0 = M have no purely imaginary eigenvalues. Then, the
sequence Xk+1 = 1

2

(
Xk +X−1

k

)
converges to sign(M).

Proof. Set S = sign(M). Note that all the iterates Xk are rational functions of
M , so they commute with M , with S, and with each other. We can assume (up
to a change of basis) that M is upper triangular, in Schur form. Then S and
Xk are upper triangular, too.

Set
Yk = (Xk − S)(Xk + S)−1. (7.4)

Analyzing the diagonal entries of this expression involving upper triangular
matrices, we see that the inverse (Xk + S)−1 always exists, and that we have
ρ(Yk) < 1.

We can now compute

Yk+1 = (X−1
k (X2

k + I − 2SXk))Xk(X
2
k + I + 2SXk)

−1 = Y 2
k .

Hence Yk = Y 2k

0 → 0.
We can now express Xk as a function of Yk: from (7.4), since everything

commutes,

YkXk + YkS = Xk − S =⇒ Xk = S(I + Yk)(I − Yk)
−1.

hence Xk → S.

The algorithm

1. X0 = M .

2. Repeat Xk+1 = 1
2 (Xk +X−1

k), until convergence.

We really need to compute a full matrix inverse here; this is unusual in
numerical linear algebra.

69

Scaling Unfortunately, this iterative method requires a large number of iter-
ations if the starting matrix M has a norm that is particularly large or small.
Indeed, if xk ≫ 1, then

xk+1 =
1

2

(
xk +

1

xk

)
≈ 1

2
xk,

and “the iteration is an expensive way to divide by 2” [Higham]. A similar
behavior happens if x0 ≪ 1: x1 ≫ 1, and then convergence is very slow.

Solution: we can replace M with µM for any scalar µ > 0, since sign(M) =
sign(µM). A good choice of µ will avoid this initial phase in which the method
spends iterations just to get the eigenvalues close to 1.

Choices of scaling Ideally, we want to choose µ so that the eigenvalues of
M are “as close to 1 as possible”.

Possibility 1 : (determinantal scaling): choose µ = (detM)−1/n, so that
detM = 1. This choice reduces the “mean distance” from 1. This determinant
is cheap to compute, since we already need to invert M , and methods to do it
(e.g., PLU factorization) typically produce the determinant as a byproduct.

Possibility 2 : (spectral scaling): choose µ so that |λmin(µM)λmax(µM)| = 1.
We can use a few steps of the power method on M and M−1 to obtain cheaply
estimate of these two extremal eigenvalues.

Possibility 3 : (norm scaling): choose µ so that σmin(µA)σmax(µA) = 1.
Again we can use the power method to get cheap estimates.

All these methods work reasonably well in practice. It is important to use
one, at least at the first iteration, but which one does not matter much.

>> rng(0); X0 = randn(5, 5);

>> X = X0; for k = 1:8; X = 1/2 * (X + inv(X)); eig(X), max(abs(eig(X) - sign(eig(X)))), end

ans =

-1.4434e+00 + 0.0000e+00i

-6.4772e-01 + 1.2086e+00i

-6.4772e-01 - 1.2086e+00i

1.1809e+00 + 0.0000e+00i

1.9607e+00 + 0.0000e+00i

ans =

9.6068e-01

ans =

-1.0681e+00 + 0.0000e+00i

-4.9611e-01 + 2.8288e-01i

-4.9611e-01 - 2.8288e-01i

1.0139e+00 + 0.0000e+00i

1.2354e+00 + 0.0000e+00i

ans =

4.2891e-01

ans =

70

-1.0086e+00 + 2.9222e-01i

-1.0086e+00 - 2.9222e-01i

-1.0022e+00 + 0.0000e+00i

1.0001e+00 + 0.0000e+00i

1.0224e+00 + 0.0000e+00i

ans =

5.0101e-02

ans =

-9.6165e-01 + 1.3610e-02i

-9.6165e-01 - 1.3610e-02i

-1.0000e+00 + 0.0000e+00i

1.0000e+00 + 0.0000e+00i

1.0002e+00 + 0.0000e+00i

ans =

3.8256e-02

ans =

-1.0007e+00 + 5.5212e-04i

-1.0007e+00 - 5.5212e-04i

-1.0000e+00 + 0.0000e+00i

1.0000e+00 + 0.0000e+00i

1.0000e+00 + 0.0000e+00i

ans =

6.6082e-04

ans =

-1.0000e+00 + 3.6449e-07i

-1.0000e+00 - 3.6449e-07i

-1.0000e+00 + 0.0000e+00i

1.0000e+00 + 0.0000e+00i

1.0000e+00 + 0.0000e+00i

ans =

6.5977e-08

ans =

1.0000e+00 + 0.0000e+00i

1.0000e+00 + 0.0000e+00i

-1.0000e+00 + 2.4195e-14i

-1.0000e+00 - 2.4195e-14i

-1.0000e+00 + 0.0000e+00i

ans =

6.4171e-14

ans =

1.0000e+00 + 1.2465e-16i

1.0000e+00 - 1.2465e-16i

-1.0000e+00 + 0.0000e+00i

-1.0000e+00 + 0.0000e+00i

-1.0000e+00 + 0.0000e+00i

ans =

71

4.4409e-16

Thanks to quadratic convergence, the iteration is fast even on large matrices.

>> rng(0); X0 = randn(500, 500);

>> X = X0; for k = 1:20; X = 1/2 * (X + inv(X)); max(abs(eig(X) - sign(eig(X)))), end

ans =

1.0385e+01

4.6593e+00

1.9126e+00

1.0053e+00

1.6457e+00

7.1975e+00

3.0520e+00

9.3412e-01

6.1630e-01

4.4063e-01

7.1573e-01

7.2528e-01

1.2337e-01

1.1769e-01

5.1907e-03

2.8347e-05

7.1731e-10

2.7978e-14

3.0198e-14

2.7089e-14

If the initial matrix X has large entries, convergence is slow:

>> X = X0; for k = 1:10; X = 1/2 * (X + inv(X)); max(abs(eig(X) - sign(eig(X)))), end

ans =

1.8236e+06

9.1179e+05

4.5590e+05

2.2795e+05

1.1397e+05

5.6986e+04

2.8493e+04

1.4246e+04

7.1224e+03

3.5607e+03

But we can speed it up again with determinantal scaling:

>> X = X0; for k = 1:10; X = X * det(X)^(-1/size(X,1)); X = 1/2 * (X + inv(X)); max(abs(eig(X) - sign(eig(X)))), end

ans =

1.3678e+00

3.5660e-01

72

9.9525e-02

4.1457e-03

5.3582e-06

4.4126e-12

8.8818e-16

4.4409e-16

6.6613e-16

4.4409e-16

Remarks:

• In practice, we can use the same LU decomposition to compute det(X)

and inv(X). Matlab does not offer a convenient library function to do
this. Julia has a convenient factorize function.

julia> using LinearAlgebra

julia> X = randn(5, 5);

julia> F = factorize(X)

LU{Float64, Matrix{Float64}, Vector{Int64}}

L factor:

5x5 Matrix{Float64}:

1.0 0.0 0.0 0.0 0.0

-0.0375111 1.0 0.0 0.0 0.0

0.328631 -0.624587 1.0 0.0 0.0

-0.137578 -0.266761 -0.373021 1.0 0.0

-0.573464 -0.948448 0.555985 -0.575514 1.0

U factor:

5x5 Matrix{Float64}:

1.61843 0.496628 1.90895 0.92813 0.611563

0.0 0.556946 -1.41037 1.46116 -2.0252

0.0 0.0 -1.42944 -0.571146 0.276043

0.0 0.0 0.0 -1.57252 -0.266344

0.0 0.0 0.0 0.0 -0.901631

julia> det(F)

1.8268274679235024

julia> inv(F)

5x5 Matrix{Float64}:

2.26607 0.354967 1.99599 1.96638 0.659751

-5.25826 0.88547 -2.8292 -3.51083 -0.714405

-0.289239 -0.506074 -0.56704 -0.00877184 0.087627

0.187853 -0.301328 -0.150836 0.128479 -0.527811

-1.1091 0.378543 -0.985766 -0.885224 -0.638303

• When the matrices are larger, some care must be taken to ensure that the
determinant does not overflow.

Stability of the Newton iteration The analysis of (floating point) stability
of the Newton iteration is complicated. [Byers He Mehrmann ’97 and Bai Demmel ’98]

73

obtain some partial results.
Even though the algorithm contains only sums and inversions, it is difficult

to propagate the impact of numerical errors in the first steps, which are the
most ill-conditioned ones.

The stability analysis reflects the results of our conditioning analysis above:
while the sign in itself is unstable because of the Z block, it produces invari-
ant subspaces as good (numerically) as those computed via a reordered Schur
decomposition.

7.4 Extra: Inversion-free sign

Suppose that we are given M,N such that A = M−1N . Can we compute
sign(A) without inverting M? Yes: the following algorithm shows how to do it.

Idea: suppose that we can find M̂, N̂ such that MN−1 = M̂−1N̂ . Then we
can write

X1 =
1

2
(A+A−1) =

1

2
(M−1N +N−1M)

=
1

2
M−1(N +MN−1M)

=
1

2
M−1(N + M̂−1N̂M)

=
1

2
M−1M̂−1(M̂N + N̂M)

= (M̂M)
1

2
(M̂N + N̂M) =: M−1

1 N1.

Similarly one can produce M2, N2,M3, N3, . . .
How do we actually find M̂, N̂ such that MN−1 = M̂−1N̂? We can rewrite

this relation as M̂M = N̂N , or
[
M̂ N̂

] [M
−N

]
= 0. The rightmost matrix has

full column rank, if M is invertible; hence we can obtain M̂, N̂ from any basis

of ker

[
M
−N

]
.

Hence we have replaced the inversion with a kernel computation. In some
cases, this can be a much more well-conditioned task than inverting M and/or
N , e.g., when [

M
−N

]
=

1 0
0 ε
ε 0
0 1

 .

In the worst case, this problem is as ill-conditioned as the inversion of M , since
one can always take the special solution[

M̂ N̂
]
=
[
NM−1 I

]
.

74

In an article by Benner and Byers, this trick is extended to a ‘linear algebra
on matrix pencils’: we can compute operations that involve a matrix A by
representing it as a pair (N,M) such that A = M−1N . With suitable tricks,
these operations can be computed without ever needing to invert M . There is
a final project on this topic.

75

Chapter 8

The matrix square root

Next (and last, for us) matrix function: the square root.
When A has no negative or zero eigenvalues, it is always possible to choose

(uniquely) a branch so that Λ(f(A)) lies in the right half-plane. The matrix
function produced by this choice is called the principal square root of A:

f : ρeiθ 7→ ρ1/2ei
θ
2 , θ ∈ (−π, π), ρ ≥ 0.

We set f(0) = 0, but we leave f(x) undefined when x is a negative real number.
We denote this function with x1/2, and the corresponding matrix function with
A1/2.

Hence A1/2 is well-defined unless A has:

• Real eigenvalues λi < 0, or

• Non-trivial Jordan blocks at λi = 0 (because f(x) = x1/2 is not differen-
tiable at 0).

Condition number / sensitivity We have already computed the Fréchet
derivative of this function in an earlier example. Let us recall the argument:
the Fréchet derivative of g(Y) = Y 2 is

Lg,Y (E) = Y E + EY, K = I ⊗ Y + Y T ⊗ I.

The Fréchet derivative of f(X) = X1/2 is its inverse,

Kf,X = (I ⊗X1/2 + (X1/2)T ⊗ I)−1.

In particular,

∥Kf,X∥ = sep(X1/2,−X1/2) = sep(f(X),−f(X)).

As we noted earlier, Lf,X has eigenvalues with 1

λ
1/2
i +λ

1/2
j

, i, j = 1, . . . , n.

This shows that f is necessarily ill-conditioned for matrices that either:

76

• have a small eigenvalue (taking i = j), or

• have two complex conjugate eigenvalues close to the negative real axis

(because then λ
1/2
i ≈ ai, λ

1/2
j ≈ −ai).

8.1 The modified Schur method

Let us recall the Schur-Parlett method to compute matrix functions:

1. Reduce to a triangular U = Q∗AQ using a Schur form;

2. Compute the diagonal of S = f(U);

3. Compute the off-diagonal entries of S from SU = US. The resulting
formula involves a denominator uii − ujj ; if this quantity is small or 0,
trouble ensues, and to avoid it we must work blockwise.

4. Return f(A) = QSQ∗.

In the case of A1/2, we have another option: rather than SU = US, we can
use S2 = U to get the off-diagonal entries of S:

siisij + si,i+1si+1,j + · · ·+ sijsjj = uij . (8.1)

The advantage is that now the denominator sii+ sjj , which is guaranteed to be
nonzero because sii + sjj ∈ RHP .

The method:

1. Reduce to a triangular U = Q∗AQ using a Schur form;

2. Compute the diagonal of S = f(U);

3. For each j = 1, 2, . . . , n and i = j−1, j−2, . . . , 1, compute the off-diagonal
entry sij of S by solving the equation (8.1).

4. Return f(A) = QSQ∗.

function B = sqrtm_schurparlett(A)

[Q, U] = schur(A, ’complex’);

n = size(A, 1);

S = zeros(n, n);

for j = 1:n

S(j,j) = sqrt(U(j,j));

for i = j-1:-1:1

num = U(i,j) - S(i,i+1:j-1)*S(i+1:j-1,j);

S(i,j) = num / (S(i,i)+S(j,j));

end

end

B = Q*S*Q’;

77

if isreal(A)

% removes the tiny imaginary part

B = real(B);

end

Matlab does something similar in sqrtm, but in a divide-and-conquer fashion:
it splits U into four blocks of the same size, computes S11 = f(U11) and S12 =
f(U22) recursively, and then solves the Sylvester equation S11S12+S12S22 = U12

to obtain the missing block S12.

Stability of the modified Schur method In general, not much can be
said about the stability of the Schur-Parlett method; for a generic function one
cannot easily obtain backward stability results. However, in the case of the
square root we can prove a stability result.

Theorem 8.1. Let U ∈ Cn×n be an upper triangular matrix. Then, the matrix
S̃ computed with machine precision u using the Schur-Parlett variant described
above satisfies

S̃2 = U + δU , |δU | ≤ |S|2O(nu).

Here, |M | is componentwise absolute value.

Combining this bound with a Schur form and converting it into a normwise
bound, we get for a generic matrix A

∥X̃2 −A∥F ≤ ∥X∥2FO(n3u).

Note that this bound is weaker than backward stability, because in the RHS
we have ∥X∥2F instead of ∥A∥F = ∥X2∥F : and, due to cancellation, the former
may be significantly larger.

Proof. We use standard forward error analysis, in which we replace the result of
an operation a⊛ b performed on the machine with its floating-point approxima-
tion (a ∗ b)(1+ε), with |ε| ≤ u; this holds for the four operations ∗ ∈ {+,−, ·, /}.

Let p denote the scalar product between s̃i,i+1:j−1 and s̃i+1:j−1,j ; it is a
standard result that a scalar product can be computed with error

|p̃− p| ≤ nu (|s̃i,i+1||s̃i+1,j |+ · · ·+ |s̃i,j−1||s̃j−1,j |) +O(u2).

In machine arithmetic, we have

s̃ij = (uij ⊖ p̃)⊘ (s̃ii ⊕ s̃jj) =
uij − p̃

s̃ii + s̃jj
(1 + ε1 + ε2 + ε3 +O(u2)),

where ε1, ε2, ε3 account for these three additional operations. Rearranging,

uij − p̃− (s̃iis̃ij + s̃ij s̃jj)(1− ε1 − ε2 − ε3 +O(u2)).

78

Combining with the analysis of the scalar product, we arrive to

|uij − s̃iis̃ij − s̃i,i+1s̃i+1,j − · · · − s̃ij s̃jj |
≤ nu (|uij |+ |s̃ii||s̃ij |+ |s̃i,i+1||s̃i+1,j |+ · · ·+ |s̃ij ||s̃jj |) +O(u2).

We can remove all tildes, since this introduces an error of the same order as the
term O(u2) that we already have, and use

|uij | = |siisij + · · ·+ sijsjj | ≤ |sii||sij |+ · · ·+ |sij ||sjj |

to get rid of the term |uij |. This gives a bound on the (i, j) entry of U −S2.

8.2 Relation to the sign function and matrix it-
erations

The following result relates the sign function and the matrix square root, show-
ing that we can use one to compute the other and viceversa.

Proposition 8.2. 1. For A ∈ Cn×n with no real negative eigenvalues, sign(A) =
A(A2)−1/2, where A−1/2 denotes the inverse of the principal square root
A1/2.

2. For A,B ∈ Cn×n such that AB has no real negative eigenvalues, (and
hence neither does BA),

sign

[
0 A
B 0

]
=

[
0 C

C−1 0

]
, C = A(BA)−1/2.

Proof. 1. It is enough to prove the corresponding scalar identity, sign(x) =
x

(x2)1/2
, since algebraic identities between scalar functions extend to the

corresponding matrix functions. The quantity x2 has two square roots,
+x and −x; the principal square root is x if x ∈ RHP and −x ∈ LHP ,
and from here we conclude easily.

2. Use sign(A) = A(A2)−1/2, and then use the relation sign(A)2 = I to show
that the (2, 1) block does indeed contain C−1.

In particular,

sign

[
0 A
I 0

]
=

[
0 A1/2

A−1/2 0

]
.

This relationship suggests using similar iterations to those used for the matrix
sign.

In fact, the first method we start from is another classical method, which
(we will see) can be transformed into a variant of the matrix sign iteration.

Newton method on X2 −A

79

We can run the Newton method on the map G(X) = X2 − A, G : Cn×n →
Cn×n.

Its Jacobian is the Fréchet derivative LG,X [E] = EX +XE, hence we have

Xk+1 = Xk − L−1
G,Xk

[G(Xk)],

i.e.,
Xk+1 = Xk − E, where E solves EXk +XkE = X2

k −A. (8.2)

On paper, using this iteration is much more expensive than the Schur method:
we must solve a Sylvster equation at each step, and in turn this requires a Schur
factorization. Clearly a method that requires computing one Schur factorization
per step cannot be better than a method that requires only one Schur factor-
ization plus a (cheap) back-substitution step. However, we can find a cheap
closed-form solution to those Sylvester equations.

Lemma 8.3. Suppose the method (8.2) is run with an initial matrix X0 that
commutes with A, for instance X0 = αI or X0 = αA, for α > 0. Then,

1. A and Xk commute;

2. we can take E = (2Xk)
−1(X2

k −A) at each step.

Proof. We prove both points at the same time by induction. Point 1 is obvious
for k = 0. Once point 1 is established, (2Xk)

−1(X2
k −A) commutes with A, and

we can plug it into the Sylvester equation to check that it satisfies it. This not
only proves 2, but shows that E commutes with A and hence alsoXk+1 = Xk−E
does.

After plugging in this formula for E, we obtain the following cheaper algo-
rithm, the Modified Newton iteration (MN).

Xk+1 =
1

2
(Xk +X−1

k A), X0 = αI or X0 = αA.

We still have to prove that the Newton method converges to the principal square
root rather than to another solution of X2 = A.

Theorem 8.4. Assume A has no eigenvalues in R−. Then, the MN and TN
iterations converge to the principal square root A1/2 for each starting point of
the form X0 = αI or X0 = αA, with α > 0.

Proof. We start from MN. Pre-multiply by A−1/2, and use commutativity:

A−1/2Xk+1 =
1

2

(
A−1/2Xk + (A−1/2Xk)

−1
)
.

This is the Newton iteration for the matrix sign! HenceA−1/2Xk → sign(A−1/2X0) =
I.

As the two formulas produce the same sequence of matrices Xn, the same
property holds for TN.

80

Theory and practice Problem All of this holds in exact arithmetic, but MN
often doesn’t work in practice in machine arithmetic!

format short e; % for better error display

rng(0); M = randn(10); M = M*M’;

X = eye(size(M));

Y = eye(size(M));

T = table();

for k = 1:15

X = X - lyap(X, X, M-X^2); % TN

Y = 1/2*(Y + Y\M); % MN

T.TNres(k) = norm(X^2-M)/norm(M);

T.MNres(k) = norm(Y^2-M)/norm(M);

T.difference(k) = norm(X-Y)/norm(Y);

T.TNcommute(k) = norm(X*M-M*X)/norm(M)/norm(X);

T.MNcommute(k) = norm(Y*M-M*Y)/norm(M)/norm(Y);

end

T

TNres MNres difference TNcommute MNcommute

__________ __________ __________ __________ __________

1.2716e+01 1.2716e+01 0.0000e+00 4.5914e-17 4.5914e-17

2.9472e+00 2.9472e+00 9.4733e-16 2.8536e-16 9.2812e-17

5.5013e-01 5.5013e-01 1.9541e-15 6.8206e-16 4.4933e-16

4.8810e-02 4.8810e-02 3.3700e-15 3.5178e-16 3.1431e-15

5.6788e-04 5.6788e-04 2.4031e-14 9.0480e-17 2.3496e-14

8.0577e-08 8.0577e-08 1.8106e-13 1.0374e-16 1.7888e-13

1.5991e-15 1.4569e-12 1.3761e-12 5.7152e-17 1.3656e-12

8.2069e-17 1.1128e-11 1.0497e-11 8.2657e-17 1.0438e-11

9.9611e-17 8.5061e-11 8.0189e-11 1.1024e-16 7.9815e-11

9.1823e-17 6.5044e-10 6.1301e-10 6.9810e-17 6.1043e-10

8.7288e-17 4.9746e-09 4.6877e-09 8.7521e-17 4.6690e-09

1.0434e-16 3.8049e-08 3.5853e-08 6.9442e-17 3.5713e-08

5.8770e-17 2.9104e-07 2.7423e-07 1.0662e-16 2.7318e-07

8.5101e-17 2.2262e-06 2.0976e-06 6.9301e-17 2.0896e-06

8.5801e-17 1.7029e-05 1.6045e-05 6.1899e-17 1.5984e-05

There is nothing apparently wrong with our matrix M , apart with moderate
ill-conditioning κ(M) ≈ 266, but we see that already in this simple example MN
reaches residual 10−12 at best, but then starts to diverge. On the other hand,
TN gives good results.

The final two columns TNcommute and MNcommute hint to a possible reason
for this notable discrepancy with the results in exact arithmetic: the matrices
computed by MN no longer commute with A, as they were supposed to.

The geometric picture TN and MN coincide on the manifold of matrices
that commute with A, {X ∈ Cn×n : AX = XA}, but not on the rest of Cn×n.

81

Numerical perturbations cause the iterates to fall outside of the manifold, where
the two methods do not coincide anymore.

From the general theory if Newton methods, it follows that TN is quadrati-
cally convergent. However, MN does not have a stable fixed point in A1/2: there
are starting points arbitrarily close to A1/2 for which the sequence diverges. To
prove this formally, we need to recall a few facts from the theory of (discrete-
time) dynamical systems.

Discrete-time dynamical systems Consider the discrete-time dynamical
system induced by a sufficiently regular map F : Cn → Cn, i.e.,

xk+1 = F (xk).

Starting from x0 = x∗ + e close to a fixed point x∗ = F (x∗),

x1 = F (x∗ + e) = x∗ + F ′
x∗
e+O(∥e∥2),

xk = x∗ + (F ′
x∗
)ke+O(∥e∥2).

If ρ(F ′
x∗
) < 1, then xk converges to x∗; we call x∗ a stable fixed point. If

ρ(F ′
x∗
) > 1, the iterates (for almost all starting points) diverge away from x∗;

we call it an unstable fixed point.
This kind of convergence is known as linear convergence in numerical linear

algebra:

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

→ ρ(F ′
x∗
),

but other fields use the term exponential convergence (yes, this is confusing).
We can study our maps MN and TN in this framework, after vectorization.

The Jacobian F ′
x∗

then becomes the Fréchet derivative of the map Xk 7→ Xk+1.

Local stability We can study the local stability of the MN map h(X) =
1
2 (X +X−1A). Its Fréchet derivative is

Lh,X(E) =
1

2
(E −X−1EX−1A).

Hence, Lh,A1/2 = 1
2 (E−A

−1/2EA1/2), orKh,A1/2 = 1
2

(
I − (A1/2)T ⊗A−1/2

)
.

The n2 eigenvalues of Kh,A1/2 are given by 1
2 −

1
2λ

1/2
i λ

−1/2
j , where λ1, . . . , λn

are the eigenvalues of A.
It is easy to construct an example in which one of these eigenvalues is larger

than 1, by taking a matrix A with two eigenvalues λi, λj that are sufficiently
far apart; hence A1/2 is an unstable fixed point of h(X).

On the other hand, TN has quadratic (or in other fields “doubly exponen-
tial”) convergence. This follows from the fact that it is a multivariate Newton
method, and the multivariate Newton method is defined so that the Jacobian
of the iteration map is 0.

Together, these results explain the surprising difference between these two
apparently equivalent methods.

82

Extras: Denman–Beavers iteration However, the stability properties are
significantly different for slight variations of the modified Newton’s method. If
we set Yk = A−1Xk, we can get the coupled iteration

Xk+1 =
1

2
(Xk + Y −1

k),

Yk+1 =
1

2
(Yk +X−1

k),

known as Denman–Beavers iteration [Denman–Beavers, ’76]. The same iteration
can be obtained by expanding blocks in the Newton iteration for sign ([0 A

I 0]),
which we have seen above to produce A1/2.

Local stability of the DB iteration Theorem
The DB iteration satisfies lim(Xk, Yk) = (A1/2, A−1/2), and it is locally stable.

We have

LDB,(X,Y)

([
E
F

])
=

1

2

[
E − Y −1FY −1

F −X−1EX−1

]
Using the fact that X∗Y∗ = I, one can verify that the Jacobian is idempotent,
i.e., (KDB,(B,B−1))

2 = KDB,(B,B−1). Hence it has bounded powers, and this
implies a weaker form of stability: the perturbations coming from machine
arithmetic produce an error that stays bounded after each step (at least in the
first-order).

Exercise 8.5. Perform a local stability analysis of the Newton method for the
matrix sign. You should be able to conclude that it has the same stability
properties as the DB iteration.

Other variants of the MN method are studied on [Higham book, Ch. 6], if you
are interested.

83

Chapter 9

Functions of large-scale
matrices

Functions of large-scale matrices How do we compute f(A) if A is large
and sparse? This is a topic of recent research. We can consider it as an extension
of methods to solve large-scale linear systems, which is the case f(x) = x−1.

Most of the time, one wants f(A)b rather than f(A), because f(A) is full.
Some of the main techniques are the following:

1. Replace f with an approximating polynomial/rational function on a region
U that includes the spectrum of A. This might be challenging if the
spectrum of A is spread across a large region, or if it is unknwon to begin
with.

2. Contour integration paired with a numerical quadrature formula:

f(A)b =
1

2πi

∫
Γ

f(z)(zI −A)−1bdz ≈
N∑

k=1

wkf(xk)(xkI −A)−1b.

This is an interesting approach that uses our Cauchy integral formula.
Unfortunately, the convergence is typically linear with the number of
quadrature nodes N . In the end, this formula also produces a rational
approximant for f in the RHS, so the problem of choosing the quadrature
formula to use is equivalent to the one of choosing a rational approximant.

3. Ad-hoc methods for special problems, e.g., discretization of differential
equations: exp(A)b = v(1) where v̇(t) = Av(t), v(0) = b. We have already
outlined the drawbacks of using differential equations to compute the ma-
trix exponential; moreover, the classical discretization methods for ODEs
produce once again polynomial or rational functions of A, so we are led
back to the same problem.

84

9.1 Arnoldi for matrix functions

A different possibility, which contains a way to construct a well-suited approx-
imation function, is using the “Swiss-army knife” algorithm for large matrices:
Arnoldi.

Krylov spaces and their effectiveness Let us recall the Arnoldi algorithm,
with matrix functions in mind. Let A ∈ Cm×m, and n ≤ m. We define the
Krylov subspace

Kn(A, b) = span(b, Ab,A2b, . . . , An−1b)

= {p(A)b : p polynomial of degree < n}.

The interesting feature of Krylov spaces is that in a problem with a matrix
A and a vector b, such as a linear system, most of the “action” often happens
inside the subspace Kn(A, b), so we can replace the problem with its projection
on the space Kn(A, b), and in many cases the solution of the projected problem
converges quickly (as n grows) to that of the original problem. Let us describe
this idea more formally. Take an orthonormal basis Vn of Kn(A, b), and define
the orthogonal projection matrix P = VnV

∗
n . The projection of b is Pb = b,

while the projected version of A is

PAP = Vn (V
∗
nAVn)︸ ︷︷ ︸

An∈Cn×n

V ∗
n ,

So, for instance, to compute an approximation of the solution of the linear
system Ax = b we can search for x̂ = Vny that solves the projected problem
V ∗
n (Ax− b) = 0.
The effectiveness of Krylov spaces is related to their eigenvalue approxima-

tion property: for most choices of A and b, one sees that Λ(An) approximates
well the outer eigenvalues of A, i.e., those with larger absolute value. A very nice
visual example is on https://en.wikipedia.org/wiki/Arnoldi_iteration#

/media/File:Arnoldi_Iteration.gif. We will not elaborate on why this hap-
pens (also because it does not hold for all matrices), but the intuition is that if
(λi, vi) are the eigenpairs of a diagonalizable A, and b is written in the eigen-
vector basis as

b = v1α1 + · · ·+ vnαn,

then
Akb = v1α1λ

k
1 + · · ·+ vnαnλ

k
n,

and the largest components here are those with large |λi|: so Akb lies approx-
imately in the span of the outer eigenvectors. Hence the space of the vectors
Akb and that of the leading eigenvectors are “close”. In the context of Krylov
methods, the eigenvalues of An are called Ritz values of A.

The Arnoldi algorithm is an algorithm to compute (in a more stable way)
an orthonormal basis Vn of Kn(A, b), and together with it an expression for

85

https://en.wikipedia.org/wiki/Arnoldi_iteration#/media/File:Arnoldi_Iteration.gif
https://en.wikipedia.org/wiki/Arnoldi_iteration#/media/File:Arnoldi_Iteration.gif

the projected operator An = V ∗
nAVn and one for the vector V ∗

n b (Actually, in
Arnoldi, V ∗

n b = e1β, where e1 is the first vector of the canonical basis, and
β = ∥b∥.)

Formula for p(A)b

Lemma 9.1. For all polynomials of degree d < n,

p(A)b = Vnp(An)V
∗
n b = Vnp(An)V

∗
n b.

Proof. By linearity, it is sufficient to show that Ajb = VnH
j
nV

∗
n b for j < n.

VnH
j
nV

∗
n = VnV

∗
nAVnV

∗
nA · · ·VnV

∗
nAVnV

∗
nAVnV

∗
n b

Let us start from the right. VnV
∗
n is the orthogonal projection matrix onto

the Krylov space. Since b ∈ Kn(A, b), VnV
∗
n b = b.

Now the rightmost part of this expression reads VnV
∗
nAb; but this equals Ab

because Ab ∈ Kn(A, b), and so on.

Arnoldi, matrix functions, and polynomial approximations We al-
ready know that f(A) = p(A) for a certain polynomial p of degree deg p < m,
the interpolating polynomial; however, since its degree is so high, there is no
advantage in using this p. But the previous lemma suggests an idea: we can
take c = Vnf(An)V

∗
n b as an approximation of f(A), for an arbitrary f .

Note that the vector c is actually a polynomial approximation of f(A)b:

c = Vnf(An)V
∗
n b = Vnp̃(An)V

∗
n b = p̃(A)b,

where pn(x) is the interpolating polynomial to f on Λ(An), of degree n; this is
different from the approximating polynomial p(x) Λ(A), which has much higher
degree m. But recall that often the eigenvalues of An (Ritz values) approximate
the outer eigenvalues of A.

We can sketch an informal argument to explain why (and when) this ap-
proximation should work well.

For a diagonalizable A = WΛW−1, we are computing c = Wpn(λ)W
−1b

instead of f(A)b = Wf(λ)W−1b;

• for “outer” eigenvalues, we can expect that f(λ) ≈ pn(λ) because f(µ) =
pn(µ) for a nearby Ritz value µ ∈ Λ(An), µ ≈ λ.

• for “inner” eigenvalues, we have no guarantees. However, we can expect
that the contributions of these inner eigenvalues is smaller, if our function
is chosen so that |f(λ)| is larger for the outer eigenvalues. This happens,
for instance, for exp(A), or for A1/2.

The assumption that |f(λ)| is larger for “outer” eigenvalues is not too far-
fetched: it reminds us of the maximum modulus principle in complex analysis:
if f is a holomorphic function defined on a connected closed domain D ⊆ C,
then |f(z)| takes its maximum on the boundary ∂D.

86

A more precise error bound, for Hermitian A We can prove an actual
bound here, and it is a strong one: the polynomial pn produced by Arnoldi is
at most a factor 2 away from the best possible one.

Theorem 9.2. Let A be Hermitian, and consider the interval I = [λmin, λmax].
Let a(x) be the best-approximation polynomial to f on I, i.e., the one that
attains the minimum of δ = maxx∈I |f(x) − a(x)| among all polynomials of
degree d < n. Then,

∥f(A)b− c∥ ≤ 2δ∥b∥.

(And, magically, Arnoldi can achieve this error without even computing
a(x)!)

Proof. Since the Arnoldi approximation is exact on the polynomial a(x), we can
sum and subtract a(A)b to obtain

∥f(A)b− c∥ = ∥f(A)b− Vnf(An)V
∗
b b∥

= ∥(f − a)(A)b− Vn(f − a)(An)V
∗
n b∥

≤ ∥(f − a)(A)∥∥b∥+ ∥Vn∥∥(f − a)(An)∥∥V ∗
n ∥∥b∥.

We would now like to show that both summands in the last line are bounded
by δ∥b∥. For the first one, the result follows by diagonalization: applying the
function f−a to A = QΛQ∗, with Q orthogonal, we get (f−a)(A) = Qf(Λ)Q∗,
where f(Λ) is the diagonal matrix that has (f−a)(λi) on its diagonal; as λi ∈ I,
we have

|(f − a)(λi)| ≤ δ i = 1, . . . ,m,

and hence ∥(f − a)(A)∥ = ∥(f − a)(Λ)∥ ≤ δ.
To conclude, we use the same argument to bound ∥(f−a)(An)∥ ≤ δ; however,

to do this, we have to show that the eigenvalues of An = A∗
n are in I, too. Let

µ be a Ritz value; then Anx = xµ =⇒ µ = x∗Anx
x∗x =

x∗V ∗
nAVnx

x∗V ∗
n Vnx

= y∗Ay
y∗y , where

y = Vnx; hence µ is a Rayleigh quotient for A. We use again the diagonalization
A = QΛQ∗ and set z = Q∗y, to get

µ =
y∗Ay

y∗y
=

z∗Λz

z∗z
=

∑
|zi|2λi∑
|zi|2

,

i.e., µ is a convex combination of the eigenvalues of A. Since I is convex and
λi ∈ I for each i, we also have µ ∈ I.

It is easy to extend this result to any normal matrix A: the only change is
that we need to replace the interval I with hull(Λ(A)), the convex hull of the
eigenvalues of A.

Is there any hope to generalize this bound to a non-normal matrix A? We
see it in the next section, since there are several interesting points.

87

Towards an error bound for non-normal matrices To prove a similar
bound also for non-normal A, there are two hurdles. First of all, it is no longer
true that the eigenvalues of An lie in the convex hull of the eigenvalues of A.
However, there is a way to generalize this inclusion.

Define the field of values or numerical range

W(A) =

{
x∗Ax

x∗x
: x ∈ Cn \ {0}

}
= {set of Rayleigh quotients of A}.

Clearly Λ(A) ⊆W(A), but this region is not simple to describe in general.

Exercise 9.3. 1. If A is a normal matrix, show that W(A) = hull(Λ(A)).

2. If A = [0 1
0 0], show that W(A) = B(0, 1/2), the disc in the complex plane

with center 0 and radius 1/2.

It is simple to see that for each A

Λ(A) ⊂W(A) ⊂ B(0, ∥A∥)

(where in the right-hand side we have the ball centered in 0 of radius ∥A∥);
moreover, a theorem due to Hausdorff and Toeplitz tells us that W(A) is a
closed convex set.

Note that W(An) ⊆ W(A), since each Rayleigh quotient for An is also a
Rayleigh quotient for A, as we have seen above. Hence we can try to use W(A)
to replace the interval I in the normal case.

The other hurdle is that A and An are not normal anymore, so the expression
∥f(A)∥ = maxλ∈Λ(A)|f(λ)| is not true anymore.

The following technical result, whose proof is far from easy, provides a gen-
eralization, which relies again on the numerical range.

Theorem 9.4 (Crouzeix-Palencia theorem [Crouzeix, Palencia 2017]). Let γ =
1 +
√
2. Then, for any matrix A and any function f that is holomorphic on

W(A) we have the inequality

∥f(A)∥ ≤ γ max
z∈W(A)

|f(z)|.

For a short (but not easy) proof, see also [Crouzeix, Palencia 2017, Ransford,

Schwenninger 2018].
Crouzeix’s conjecture, which is still an open problem, states that we can

replace γ = 1 +
√
2 with the smaller constant γ = 2.

An error bound for non-normal matrices We now have all the ingredients
to give the following bound.

Theorem 9.5. Let A ∈ Cn×n, and let a(z) be the best-approximation polyno-
mial to f in W(A), i.e., the one that attains the minimum of

δ = max
z∈W(A)

|f(z)− a(z)|

88

over all polynomials of degree d < n. Then,

∥f(A)b− c∥ ≤ 2γδ∥b∥,

where γ is the constant in the Crouzeix-Palencia theorem.

Proof. As we noted above, W(An) ⊆ W(A), so ∥(f − a)(An)∥ ≤ γδ. Now we
can follow the same strategy as in the normal case:

∥f(A)b− c∥ = ∥f(A)b− Vnf(An)V
∗
n b∥

= ∥(f − a)(A)b− Vn(f − a)(An)V
∗
n b∥

≤ ∥(f − a)(A)∥∥b∥+ ∥Vn∥∥(f − a)(An)∥∥V ∗
n ∥∥b∥

≤ γδ∥b∥+ γδ∥b∥.

9.2 Arnoldi for matrix function: experiments

We use the following implementation of Arnoldi.

function [V, H] = arnoldi(A, b, n)

% Arnoldi algorithm

%

% Compute a nested orthogonal basis V for K_{n+1}(A,b)

% as well as the n+1 x n matrix of scalar products H

% note that V(:,1:n)’ * A * V(:,1:n) = H(1:end-1, :)

H = zeros(n+1,n);

V = zeros(length(b), n+1);

V(:, 1) = b / norm(b);

for j = 1 : n

w = A * V(:, j);

% Modified Gram-Schmidt: the following loop

% is equivalent to the orthogonal projection

% w = w - V(:,1:i)*V(:,1:i)’*w

% but the order of operations in the loop

% is more stable

for i = 1:j

H(i,j) = V(:, i)’ * w;

w = w - V(:, i) * H(i,j);

end

% the following loop is the so-called

% "reorthogonalization", which improves

% numerical stability.

% In exact arithmetic, it would do nothing,

% since w is already orthogonal to all

% columns of V(:,1:j)

89

for i = 1:j

betai = V(:, i)’ * w;

w = w - betai * V(:, i);

end

H(j+1,j) = norm(w);

V(:, j+1) = w / H(j+1,j);

end

Using this implementation, we can test matrix function computation with dif-
ferent values of n.

rng(0);

m = 2000;

A = randn(m, m); b = randn(m, 1);

nmax = 100;

[V, H] = arnoldi(A, b, nmax);

v = expm(A)*b; % the exact result

errors = [];

for n = 1:nmax-1

% this produces the same matrices as re-running Arnoldi

% with n <= nmax steps, due to the "nested" property

Vn = V(:, 1:n);

An = H(1:n, 1:n);

c = Vn * expm(An) * eye(n,1)*norm(b);

errors(n) = norm(c-v) / norm(v);

end

semilogy(errors);

After 100 iterations, the relative error is down to 10−12; hence we have have
computed (the action of) the exponential of a 2000×2000 matrix by only running
expm on a 100× 100 one.

The result is slightly better if we replace A with the Hermitian M = A+AT ;
in this case the error has a plateau around n = 90 at the order of 10−14. This
order of magnitude is the best we can expect, since the condition number of the
exponential on a Hermitian M is ∥M∥ ≈ 125.8.

Improving on Arnoldi Our intuition from the paragraphs above is that
Arnoldi approximates the “outer” eigenvalues; and the approximation is effec-
tive to compute f(A) = exp(A) because the eigenvalues that have the largest
|f(λi)| = |eλi | = eRe(λi) are the rightmost ones. However, one might think that
it was wasteful of Arnoldi to approximate the eigenvalues on the left of the
spectrum accurately, since their exponential is very small and unlikely to have a
noticeable effect in the approximation. If we recall the functioning of the power
algorithm and orthogonal iteration, we can try to fix the issue in the same way,
with a “shift-and-invert Arnoldi”: we compute Vn not as a basis of Kn(A, b),
but as a basis of Kn((A−αI)−1, b), where α is a suitable shift value. If α is real

90

and lies to the right of the spectrum of A, the largest eigenvalues of (A−αI)−1

are obtained from the rightmost eigenvalues of A. We see an example here.

rng(0);

m = 2000;

A = randn(m, m); b = randn(m, 1);

M = inv(200*eye(m) - A);

nmax = 100;

[V, H] = arnoldi(M, b, nmax);

v = expm(A) * b; % the exact result

errors = [];

for n = 1:nmax-1

% this produces the same matrices as re-running Arnoldi

% with n <= nmax steps, due to the "nested" property

Vn = V(:, 1:n);

% there is no convenient formula for An anymore

An = Vn’ * A * Vn;

c = Vn * expm(An) * eye(n,1)*norm(b);

errors(n) = norm(c-v) / norm(v);

end

clf;

figure(1);

semilogy(errors);

figure(2);

lambda = eig(A);

mu = eig(An);

plot(real(lambda), imag(lambda), ’x’, real(mu), imag(mu), ’o’);

This method displays faster convergence, taking only 60 iterations to reach a
plateau of about 10−14. Plotting the eigenvalues of A and the Ritz values
supports our intuition that this method approximates the eigenvalues in the
right part of Λ(A). With a more careful implementation than our one, the only
additional cost with respect to standard Arnoldi would be the one to compute
a sparse LU factorization of A− αI.

The idea can be generalized to more than one pole, obtaining so-called
rational Arnoldi.

9.3 Extras: the Arnoldi algorithm (in a gener-
alizable way)

Computing Krylov spaces To work with Krylov subspaces efficiently, one
must compute an orthogonal basis Vn.

The first idea is computing Vn = [v1, v2, . . . , vn] as the (thin) Q factor of

qr([b, Ab, . . . , Aj−1b]).

91

Unfortunately this idea is doomed to fail, because the condition number of this
matrix is typically very large: indeed, by the power method, for large k we
expect the vectors Akb to be very close to multiples of the leading eigenvector
of A.

As Krylov spaces are nested one into the other

K1(A, b) ⊂ K2(A, b) ⊂ K3(A, b) ⊂ . . .

span(b) ⊂ span(b, Ab) ⊂ span(b, Ab,A2b), . . . ,

it makes sense to compute a set of nested orthonormal bases, i.e., a sequence
v1, v2, . . . such that (v1, . . . , vj) is a basis of Kj(A, b) for every j.

The problem we wish to solve is the following then: given an orthonormal
basis (v1, v2, . . . , vj) of Kj(A, b), can we find one additional vector vj+1 so that
(v1, v2, . . . , vj , vj+1) is an orthonormal basis of Kj+1(A, b)?

Arnoldi iteration Idea: to compute vj+1, it is sufficient to take any vector
w ∈ Kj+1(A, b) \Kj(A, b) and orthogonalize it against all the previous vectors,
using the Gram-Schmidt process.

w = A*V(:,j); % the continuation vector

for i = 1:j

alpha(i,j) = V(:,i)’ * w;

w = w - V(:,i) * alpha(i,j);

end

alpha(j+1,j) = norm(w);

V(:,j+1) = w / alpha(j+1,j);

As a starting point for the iteration, we take v1 = b
β , with β = ∥b∥, so that

∥v1∥ = 1.
Remark : the above form for the loop is called modified Gram–Schmidt

(MGS): we compute coordinates αij one by one, and we subtract the com-
ponent viαij from w immediately. This is more stable than the alternative form
in which replace the whole for loop with

alpha(1:j,j) = V(:,1:j)’ * w;

w = w - V(:,1:j) * alpha(1:j, j);

(traditional Gram–Schmidt).

Remarks on Arnoldi This algorithm computes nested bases for the Krylov
subspaces:

Kj(A, b) = Im
[
v1 v2 . . . vj

]
, j = 1, 2, . . . , n.

Why did we choose w = Avj here? Because with this choice we can prove
that αj+1,j ̸= 0.

Lemma 9.6. Suppose Kj+1(A, b) has maximal dimension j + 1. Then,

92

1. vj ∈ Kj(A, b) \Kj−1(A, b)

2. αj+1,j ̸= 0.

Proof. We prove the two statements together by induction on j. We can start
from j = 1, as long as we set K0(A, b) = {0}, and then the first statement
is obvious. Note that 1. means that the relation vj = p(A)b holds with a
polynomial p of degree exactly j − 1. This polynomial is uniquely determined
because Kj+1(A, b) has maximal dimension.

Hence, before the for cycle, we have w = Avj = q(A)b with q(x) = xp(x)
of degree exactly j, i.e., w ∈ Kj+1(A, b) \ Kj(A, b). Again, this polynomial is
unique. The same property holds for the value of the variable w after the for

cycle, since at each step we subtract from it an element of Kj(A, b), i.e., a vector
of the form q(A)b, where deg(q) < j. Thus, after the loop w ∈ Kj+1(A, b) \
Kj(A, b); in particular αj+1,j = ∥w∥ ≠ 0.

Arnoldi: the associated matrix Gathering all the relations involving the
Avj in a matrix, we get

A
[
v1 . . . vn

]︸ ︷︷ ︸
Vn

=
[
v1 . . . vn+1

]︸ ︷︷ ︸
Vn+1

α1,1 α1,2 α1,3 . . . α1,n

α1,2 α2,2 α2,3 . . . α2,n

0 α3,2 α3,3 . . . α3,n

0 0
. . .

. . .
...

...
...

. . .
. . . αn,n

0 0 αn+1,n

︸ ︷︷ ︸

Hn

.

When αn+1,n = 0 (breakdown), AVn = VnHn, where Hn is Hn without the last
row. This is an invariant subspace relation.

Note that Hn = V ∗
nAVn = An. The matrix Hn plays a double role here: it

gives the action of A : Kj → Kj+1 on the Krylov subspace, and it is a projected
version of A.

9.4 Extras: rational Arnoldi [Güttel ’13]

Idea: we can use a variant of Arnoldi to compute bases for other spaces related
to rational functions rather than polynomials in A. In particular, we wish
to replace the polynomials p(z) that appear in Krylov spaces with rational
functions with a fixed denominator q(z) of degree n − 1: this leads to the
definition of the rational Krylov subspaces

Kq,n(A, b) = q(A)−1Kn(A, b) = Kn(A, q(A)−1b)

= {r(A)b : r(z) = p(z)/q(z), p any polynomial of degree d < n}

93

It is important that the denominator q(z) here is the same one for all vectors,
because otherwise we would not get a vector space: the sum of two rational
functions p1(z)/q1(z) + p2(z)/q2(z) is a rational function of degree larger than
that of the two summands, in general.

In the following, we shall write q as a product of linear factors

q(z) = (z − ξ1)(z − ξ2) . . . (z − ξn−1).

The ξj are called poles, since they are the poles of the rational function p(z)/q(z).
When the poles ξj are distinct, for any p(z) of degree d ≤ n one can find
coefficients γj such that

p(z)

q(z)
= γ0 +

γ1
z − ξ1

+
γ2

z − ξ2
+ · · ·+ γn−1

z − ξn−1
;

this is often a convenient representation to work with.

Rational Arnoldi A basis for Kq,n(A, b) can be computed with a loop similar
to the classical Arnoldi one: we construct a sequence of nested bases for

span(b) = K1,1(A, b) ⊆ K(z−ξ1),2(A, b) ⊆ K(z−ξ1)(z−ξ2),3(A, b) ⊆

In each iteration, we add one more pole ξi, and at the same time we increase
by 1 the degree of the numerator.

The only detail we need to change with respect to classical Arnoldi is the
choice of the “continuation vector” w = Avj .

To add a pole ξj , we choose w of the form

w = (A− ξjI)
−1v ∈ Kq(z)(z−ξj),j+1(A, b) \Kq(z),j(A, b),

where v is a suitable vector in Kq(z),j(A, b). We do not go into detail on how
one can find such a v; we just note that, if ξj is different from all previous poles,
we can take v = b: this follows from the fact that 1

z−ξj
does not belong to the

space of rational functions with denominator q(z).
One can also combine steps of rational Arnoldi and classical Arnoldi, i.e.,

take w = Av at certain iterations and w = (A − ξjI)v in certain others. A
step of classical Arnoldi has the effect of raising by 1 the allowed degree of the
numerator j, while not raising the degree of the denominator q(z); it can be
interpreted as adding a “pole at infinity”, projectively.

Putting together all orthogonalization relations yields an equality of the form

AVn+1Kn = Vn+1Hn.

Again, it is not immediate to obtain an expression for An = V ∗
nAVn from Kn

and Hn; we will not go into details on how to do it.
Many of the results that we have proved for classical Arnoldi continue to

hold, replacing polynomials with rational functions. In particular, we can con-
sider the approximation

f(A)b ≈ Vnf(An)V
∗
n b = Vnf(An)V

∗
n b, An = V ∗

nAVn. (9.1)

94

Lemma 9.7. Let Vn be the basis matrix produced by rational Arnoldi, which
we suppose to have full rank. If f is a rational function with denominator q(z),
then

f(A)b = Vnf(An)V
∗
n b.

Proof. Use Kq,n(A, b) = Kn(A, q(A)−1b) to reduce to the previous case.

Costs and benefits With Rational Arnoldi, one needs to solve several linear
systems with (A − ξiI)

−1, so a sparse LU is needed for each (distinct) pole.
This is significantly more expensive than Arnoldi, which only relies on matrix
products, but it can be compensated by having additional degrees of freedom
in the choice of the poles.

The key issue is how much more effective is rational interpolation (for a given
f and A) than polynomial interpolation, so that this trade-off is convenient. How
to choose good poles ξj?

There are many classical and current research results on these aspects. No
details here; I am not an expert myself. For a good overview, check the review
paper [Güttel ’13].

Matlab examples Using Rktoolbox by S. Güttel http://guettel.com/rktoolbox/.

>> rng(0); A = randn(100) + 10*eye(100);

>> v = eig(A); plot(real(v), imag(v), ’x’);

>> b = randn(size(A,1), 1);

>> poles = [-20:-1, inf]; % inf as last pole

>> [V, K, H] = rat_krylov(A, b, poles);

>> An = H(1:end-1,:) / K(1:end-1,:);

>> v = eig(A); w = eig(An);

>> plot(real(v), imag(v), ’x’, real(w), imag(w), ’o’);

>> c = V(:, 1:end-1)*expm(An) * V(:, 1:end-1)’*b;

>> norm(expm(A)*b - c) / norm(c)

Try again with poles = [21:40, inf], or inf*ones(1,21) (classical Arnoldi),
[0*ones(1,10), inf*ones(1,10)] (extended Arnoldi), . . .

The choice of poles directs which eigenvalues are best approximated and
influences performance greatly.

95

http://guettel.com/rktoolbox/

Chapter 10

Lyapunov equations

Before turning to control systems, we go back to matrix equations, and study
in more detail a special case of the Sylvester equation.

Given A,Q ∈ Cn×n with Q = Q∗ ⪰ 0, the Lyapunov equation is the matrix
equation

A∗W +WA+Q = 0 (10.1)

in the unknown W ∈ Cn×n. From the theory of Sylvester equations, we already
know that there is a unique solution if and only if Λ(A∗) ∪ Λ(−A) = ∅. An
important case when this holds if when Λ(A) ⊂ LHP (the open left half-plane).
Matrices that have all their eigenvalues in the left half-plane are called Hurwitz
stable.

We start by showing a few properties of the solution.

Lemma 10.1. Suppose (16.2) has a unique solution W ; then W is Hermitian.

Proof. Transpose everything; W ∗ is another solution.

Lemma 10.2. Suppose Λ(A) ⊂ LHP (open). Then, the (unique) solution
of (16.2) can be written as

W =

∫ ∞

0

eA
∗tQeAt dt. (10.2)

Proof. First of all, note that the integral converges: since Λ(A) ⊂ LHP ,
exp(tA) → 0 (as shown in Exercise 2.6), and we can show that the decrease
is exponential: exp(tA) = O(etα), where α = maxλ∈Λ(A) Re(λ) (the so-called
spectral abscissa of A).

To prove the formula, compute d
dte

A∗tQeAt = A∗eA
∗tQeAt + eA

∗tQeAtA,
then integrate both sides.

Lyapunov equation: positivity

Lemma 10.3. Suppose Λ(A) ⊂ LHP (open). Then, Q ⪰ 0 implies W ⪰ 0,
and Q ≻ 0 implies W ≻ 0.

96

Proof. This follows from the integral formula (10.2).

Lemma
Suppose Q ≻ 0 and W ≻ 0. Then, Λ(A) ⊂ LHP .

Proof. Let Av = λv; then

0 < v∗Qv = −v∗(A∗W +WA)v = −(λ+ λ)v∗Wv;

hence, 2Re(λ) = λ+ λ = − v∗Qv
v∗Wv < 0.

Remark 10.4. In this lemma, we cannot replace the ≻ symbols with ⪰. This is
easy to see by considering a special case: obviously from 0 · A + A · 0 = 0 we
cannot deduce anything on A!

Relation to linear dynamical systems Consider the continuous-time linear
dynamical system {

ẋ(t) = Ax(t), x : [0,∞]→ Cn

x(0) = x0.

We know that the solution to this ODE is x(t) = exp(At)x0. This system is
called asymptotically stable if

lim
t→∞

x(t) = 0 for all choices of x0 ∈ Cn,

and this happens if and only if Λ(A) ⊂ LHP .
In view of the lemmas above, it is sufficient to exhibit W ≻ 0 such that

A∗W + WA ≺ 0 to prove that A has all its eigenvalues in the LHP and the
system is asymptotically stable.

At the time of Lyapunov (1857–1918), doing this (together with factoriza-
tions to show that W,Q ≻ 0) was easier than computing the full spectrum Λ(A)
(without a computer!).

Example 10.5. Consider the matrix

A =

−1 −2 0
0 −2 1
1 0 −3

 .

With Matlab, we can compute the eigenvalues and show that

>> eig(A)

ans =

-3.5214 + 0.0000i

-1.2393 + 0.8579i

-1.2393 - 0.8579i

97

hence A is Hurwitz stable. Without a computer, however, it might be simpler
to choose

W =

2 0 0
0 1 0
0 0 1

and compute the LDL factorization

Q = −(A∗W+WA) =

 4 4 −1
4 4 −1
−1 −1 6

 = LDL∗, L =

 1 0 0
1 1 0
− 1

4 0 1

 , D =

4 0 0
0 0 0
0 0 23

4

 .

Since we have Q ≻ 0,W ≻ 0, this shows that A is Hurwitz stable.

Remark One can also show directly that x(t) → 0 without speaking about
eigenvalues: note that the matrix W that solves (16.2) is an energy function
for the system: if V (x) = x∗Wx, then d

dtV (x(t)) < 0, by direct verification.
Hence V (x(t)) decreases. With a little more care with the bounds, we can show
that it decreases exponentially, and in particular V (x(t)) → 0, which implies
∥x(t)∥ → 0.

Discrete-time version These results, as well as many of the following ones,
also come in a discrete-time variant.

Discrete-time linear dynamical system{
x0 ∈ Cn

xk+1 = Axk, k = 0, 1, 2, . . .

The system is asymptotically stable, i.e., limk→∞ xk = 0 for each x0, if and
only if A has its eigenvalues in the open unit disc D.

The analogue of the Lyapunov equation is the Stein equation

W −A∗WA = Q, Q ≻ 0 (10.3)

IfW ≻ 0 solves (16.3), then V (x) = x∗Wx is an energy function, i.e., V (xk+1) <
V (xk).

Lemma
Λ(A) ⊂ D iff (16.3) holds with W,Q ≻ 0.

Proof Analogous to the continuous-time one. Closed formula:

W =

∞∑
k=0

(A∗)kQAk.

Proof. Vectorizing, (16.3) becomes (I − AT ⊗ A∗) vec(W) = vec(Q). Then use
the Neumann series (I −M)−1 = I +M +M2 +

Remark (16.3) can be solved with a Bartels-Stewart-like method. More
generally, Bartels-Stewart-type methods can be obtained for all equations of
the form AXB + CXD = E, using QZ factorizations of (A,C) and (DT , BT).

98

Chapter 11

Introduction to control
theory

11.1 Examples of control systems

Control theory [Datta, Ch. 5] is the study of dynamical systems with controllers;
it is an important topic in engineering.

Example can we keep an ‘inverted pendulum’ of length 1 in the unstable
upright position (12 o’ clock) by applying a steering force?

We suppose that the pendulum is a massless stiff bar of length 1 with with
weight at the end, so that there is only one degree of freedom, the angle θ that
the bar makes with the vertical (12 o’ clock ↔ θ = 0).

The equation of motion is θ̈ = g sin θ ≈ gθ. We can rewrite it in terms of

the state x(t) =

[
θ

θ̇

]
, to obtain the matrix version

ẋ =

[
θ̇

θ̈

]
=

[
x2

gx1

]
=

[
0 1
g 0

]
x.

The system is not stable: A =

[
0 1
g 0

]
has one positive and one negative eigen-

value.

Example: controlling an inverted pendulum Now we apply an additional
steering force u (control): we have θ̈ = gθ + u, or in matrix form

ẋ = Ax+Bu, B =

[
0
1

]
.

Can we choose u(t) so that the system is stable? Yes: we can even choose one
of the form u(t) = Fx(t), F ∈ R1×2

99

We can literally build a contraption (engine + camera) that sets the appro-
priate force according to the current state only (feedback control). u =

[
f1 f2

]
x

gives the closed-loop system

ẋ = (A+BF)x =

[
0 1

f1 + g f2

]
x.

Choosing f1, f2, we can move the eigenvalues of A+BF arbitrarily.

Remark : A (linear) ‘controller’ that observes only the position and not the
velocity corresponds to f2 = 0. It is easy to see that this is not enough to
stabilize the system: if f2 = 0, there is no choice of f1 for which Λ(A+BF) ⊂
LHP .

Example: heating a long corridor with a window Heat equation: in a
bar of uniform material (the segment [0, 1]), one endpoint 1 is kept at constant
temperature 0◦C, and we apply a variable temperature (amount of ‘heat’) u(t)
at the other endpoint 0.

The temperature x(y, t) at position y and time t follows

∂

∂t
x(y, t) = α

∂2

∂y2
x(y, t), x(0, t) = u(t), x(1, t) = 0.

We discretize in space: x(t) is a vector of temperatures at equi-spaced points
h, 2h, . . . , (n− 1)h (those at 0 and (n+ 1)h = 1 are prescribed).

d

dt
x(t) = Ax(t) +Bu(t),

A = αh2 tridiag(1,−2, 1), B = αh2e1.

Other examples in [Datta, Ch. 5], e.g. electrical circuits.

Another impressive example of a control system is the triple pendulum on a
cart; see e.g. the video youtu.be/cyN-CRNrb3E. This is a system with 3 degrees
of freedom.

11.2 Controllability

We now consider control systems in their standard form

ẋ = Ax+Bu, A ∈ Cn×n, B ∈ Cn×m.

There are two basic questions that we can ask ourselves:

Q1 Can we stabilize the system around 0, i.e., choose u(t) = Fx(t) so that
the system is asymptotically stable?

Q2 Can we control the system, i.e., choose u(t) to reach a given value of x(tF)
at a target time tF ?

100

youtu.be/cyN-CRNrb3E

Not always: counterexample:[
A11 A12

0 A22

]
, B =

[
B1

0

]
. (11.1)

No matter what u(t) we choose, we cannot change the dynamics of the second
block x2(t). If A22 has eigenvalues outside the LHP, the system will always be
unstable.

We shall see that this is essentially the only case when a system is not
controllable, but this structure may be hidden behind a change of basis for the
state A←MAM−1, B ←MB, so it might be more difficult to identify. The key
to analyze it is invariant subspaces: in the situation (11.1), all columns of B1

belong to a nontrivial invariant subspace Im[I0] of A. The concept of invariant
subspaces does not depend on the basis.

Hence, to identify a structure like (11.1) we can construct the smallest in-
variant subspace for A that contains the columns of B. We can give a formula
for this subspace.

Lemma 11.1. Let A ∈ Cn×n, B ∈ Cn×m. The smallest A-invariant subspace
that contains the columns of B is

K(A,B) := Im[B,AB,A2B, . . .].

Proof. It is simple to check that K(A,B) is in fact invariant, and that every
invariant subspace must contains the columns of B,AB,A2B,

Note the connection with Krylov subspaces: if B is a single vector, K(A,B)
is the union of all Krylov subspaces Kn(A,B).

(In fact, this K does not stand for Krylov but for Kalman, another key figure
in control theory.)

Definition 11.2. The space K(A,B) is called the controllability space of
(A,B). A matrix pair (A,B) ∈ Cn×n × Cn×m is called controllable when
K(A,B) = Cn.

Properties

• Controllability depends only on ImB, hence (A,B) controllable ⇐⇒
(A,BK) controllable, for any invertible K.

• Similarly, (A,B) controllable ⇐⇒ (A,BR−1B∗) controllable for any
positive definite R ∈ Cm×m; we will use this property in future.

• (A,B) controllable ⇐⇒ (A − αI,B) controllable, since the powers of
A− αI are linear combinations of the powers of A.

101

Controllability [Datta, Ch. 6, with more streamlined proofs] We shall show
that indeed the controllability space reveals the structure we were interested in.

Lemma 11.3 (Kalman decomposition). For each pair (A,B), there exists a
nonsingular M ∈ Cn×n such that the following block decomposition holds, and
(A11, B1) is controllable.

M−1AM =

[
A11 A12

0 A22

]
, M−1B =

[
B1

0

]
.

The blocks must be of the same size, i.e., B1 ∈ Cn1×m if A11 ∈ Cn1×n1 .
Moreover, n1 = dimK(A,B), and in particular we have n1 = n if and only

if (A,B) is controllable.

Proof. It is sufficient to take M = [M1 M2] such that M1 is a basis of K(A,B);
then, the blocksB2 andA21 must be zero, becauseK(A,B) contains the columns
of B and is A-invariant.

If (A11, B1) were not controllable, then K(A11, B11) (extended with zeros)
would be a smaller invariant subspace of M−1AM that contains the columns of
M−1B, contradicting minimality.

We now need to prove that this concept that we dubbed controllability of
a matrix pair is indeed related to the controllability of the dynamical system
ẋ = Ax+Bu.

Theorem 11.4. The following are equivalent.

1. The system ẋ = Ax+Bu, x(0) = x0 is controllable, i.e., given any target
state xF and time tF we can choose a control function u(t) such that
x(tF) = xF .

2. The pair (A,B) is controllable.

3. The matrix

Wt =

∫ t

0

exp(Aτ)BB∗ exp(A∗τ)dτ

is invertible (for a specific t > 0, or, equivalently, for all of them).

Before starting the proof, we remark that the expression of Wt resembles the
integral formula for the solution of the Lyapunov equation that we have proved
earlier. Indeed, we see that W = limt→∞ Wt. In particular, this equivalence
shows that W ≻ 0 if and only if (A,B) is controllable.

Proof. 1 =⇒ 2 Suppose, by contradiction, thatK(A,B) is not the whole space.
Recall the ugly closed formula for the solution of a linear differential equation

ẋ(t) = Ax(t) + f(t), where in our case f(t) = Bu(t). We have

x(t) = exp(At)x0 +

∫ t

0

exp(A(t− τ))Bu(t)dt. (11.2)

102

Since exp(A(t− τ)) is a matrix function and hence a polynomial in A, one sees
that the integral always takes values in K(A,B). Hence, independently of u(t),
we cannot obtain all possible values of x(t); it is sufficient to take xF such that

xF − exp(AtF)x0 ̸∈ K(A,B)

to get a vector that cannot be reached.
2 =⇒ 3 Suppose Wtv = 0 for a certain t > 0. Then, 0 = v∗Wtv =∫ t

0
∥v∗ exp(Aτ)B∥2dt. This must mean that the (continuous) function ϕ(τ) =

v∗ exp(Aτ)B = 0. Hence, in particular.

0 = ϕ(0) = v∗B,

0 = ϕ′(0) = v∗AB,

0 = ϕ′′(0) = v∗A2B,

...
...

and this shows that v∗[B,AB,A2B, . . .] = 0, so the controllable space is not
the whole Cn. 3 =⇒ 1 Take a control u(t) of the form

u(t) = B∗ exp(A∗(tF − t))y,

with y ∈ Cn. Plugging it into (11.2), and recognizing the matrix Wt inside the
expression (up to a change of variables τ = tF − t), we obtain

x(tF) = exp(AtF)x0 +WtF y.

Since WtF is invertible, with a suitable choice of y we can obtain any value of
x(tF) ∈ Cn.

Other controllability criteria

Lemma 11.5 (Popov (or Hautus) criterion). (A,B) controllable ⇐⇒ rank[A−
λI, B] = n for all λ ∈ Λ(A) ⇐⇒ rank[A− λI,B] = n for all λ ∈ C.

It is sufficient to test the condition on λ ∈ Λ(A), because for all other λs we
already have rank(A− λI) = n.

Proof. ⇐ We can assume (up to a change of basis) that (A,B) is in a Kalman
decomposition, with a non-trivial block A22. Take a left eigenpair v∗A22 = λv∗:
then, [0, v∗][A− λI, B] = 0.
⇒ If v∗[A− λI,B] = 0 for some λ ∈ Λ(A), then we get 0 = v∗B = v∗AB =

v∗A2B = . . . , and hence K(A,B) ̸= Cn as in the proof of the previous theorem.

103

How to test controllability numerically? Numerically, almost any pair
(A,B) is controllable, exactly like almost any n×n matrix is singular: a certain
quantity needs to be exactly zero for controllability to fail.

Anyway, various options:

• Compute rank[B,AB,A2B, . . . , An−1B]. We can stop at n − 1, because
An is a linear combination of I, A,A2, . . . , An−1 by the Cayley-Hamilton
theorem.

• If B is a single vector, you can also run a Krylov algorithm until the final
iteration, and check for breakdown.

• Compute Λ(A) and check that rank[A− zI,B] = n for each z ∈ Λ(A).

• Assume (up to replacing it with A − αI) that Λ(A) ⊂ LHP . Solve the
Lyapunov equation AW +WA∗ +BB∗ = 0 and check if W ≻ 0.

Note that all these methods rely on a rank decision: are certain singular
values, or certain computed values, zero or not?

Remark There are methods to compute the distance of a certain matrix pair
(A,B) to the nearest uncontrollable pair, exactly like the condition number of
a matrix M is a measure of the distance of M to the nearest singular matrix.
They are somewhat more complex, and research is still active on the best one.

Remark The criterion with the Lyapunov equation actually corresponds to a
physical quantity: x∗

0W
−1x0 is the minimal amount of energy

∫ tF
0

u(τ)∗u(τ)dτ
that we need to reach x(tF) = 0 starting from x(0) = x0. We won’t prove it
here. Hence, the closer to uncontrollable a system is, the more energy you need
to put in to actually control it.

(Matlab examples: construct a numerically non-controllable (A,B) from a
Kalman decomposition, and apply the various methods.)

11.3 Stabilizability

If a system is controllable, then it is also stabilizable: we can find F such that
Λ(A + BF) ⊂ LHP . The following result gives us a practical way to compute
one such choice of F .

Theorem (Bass algorithm)
Let (A,B) be controllable, α > ρ(A), and W the solution of

(−A− αI)W +W (−A− αI)∗ + 2BB∗ = 0. (11.3)

Then, W ≻ 0 and F = −B∗W−1 is a stabilizing feedback.

Note that (−A − αI,B) is controllable because (A,B) is so, that Λ(−A −
αI) ⊂ LHP , and that Q := 2BB∗ ⪰ 0. By Lyapunov eq. results, this implies
W ≻ 0. Rearranging (11.3) gives

(A+BF)W +W (A+BF)∗ + 2αW = 0.

104

By Lyapunov eq. results, W ≻ 0, Q := 2αW ≻ 0 implies Λ(A+BF) ⊂ LHP .
Remark We can actually find F such that A+BF has any chosen spectrum.

(We won’t prove it here.) [Datta, Ch. 11]

Stabilizability Sometimes, even if a system is not controllable, we can still
ensure that the solution converges to 0. Example: take a system already in
Kalman decomposition

A =

[
A11 A12

0 A22

]
, B =

[
B1

0

]
, x(t) =

[
x1(t)
x2(t)

]
with Λ(A22) ⊂ LHP . Then, the control does not act on x2(t), but x2(t) → 0
already by itself!

To stabilize this system with a feedback control, just take F = [F1 0], where
F1 is chosen so that Λ(A11 + B1F1) ⊂ LHP (it exists because (A11, B1) is
controllable by definition of Kalman decomposition).

Stabilizability conditions Theorem
The following conditions are equivalent; if they hold, (A,B) is called stabilizable.

1. Λ(A22) ⊂ LHP in the Kalman decomposition;

2. rk[A− αI,B] = n for all α ̸∈ LHP ;

3. We can find u(t) such that limt→∞ x(t) = 0;

4. We can find F such that Λ(A + BF) ⊂ LHP (hence we can take u(t) =
Fx(t) to satisfy the previous point).

We won’t see a full proof, but it mostly follows from things we have already
stated.

Some Matlab examples

% the inverted pendulum

% (dubious example because the true sys is nonlinear)

A = [0 1; 1 0]; B = [0;1]; x0 = [0.1; -0.05];

% open-loop system

[t, x] = ode45(@(t,x) A*x, [0,5], x0);

plot(t,x);

% feedback that observes the position and tries to push it back

F = [-1.5 0];

[t, x] = ode45(@(t,x) (A+B*F)*x, [0,5], x0);

plot(t,x);

105

% random feedback (try several)

F = randn(1,2);

[t, x] = ode45(@(t,x) (A+B*F)*x, [0,5], x0);

plot(t,x);

% heat equation on a steel bar

n = 10; y = linspace(h,n*h,n);

h = 1/(n+1); x0 = rand(n, 1);

A = h^2*(-2*eye(n) + diag(ones(n-1,1),1) ...

+ diag(ones(n-1,1),-1));

B = h^2*eye(n,1);

% open-loop system

[t, x] = ode45(@(t,x) A*x, [0,1000], x0);

surf(y, t, x);

% constant stream of heating

[t, x] = ode45(@(t,x) A*x + B*1, [0,1000], x0);

surf(y, t, x);

% feedback

F = rand(1,n);

[t, x] = ode45(@(t,x) A*x + B*F*x, [0,1000], x0);

surf(y, t, x);

% thermal sensor midway along the bar

F = zeros(1,n); F(end/2) = -1000*h^2;

[t, x] = ode45(@(t,x) A*x + B*F*x, [0,1000], x0);

surf(y, t, x);

% thermal sensor with wrong sign

F = zeros(1,n); F(end/2) = 1000*h^2;

[t, x] = ode45(@(t,x) A*x + B*F*x, [0,1000], x0);

surf(y, t, x);

% controlling to a specified position

tf = 1000; xf = rand(n,1);

Winf = lyap(A, B*B’);

W = integral(@(t) expm(A*(tf-t))*B*B’*expm(A’*(tf-t)), ...

0, tf, ’ArrayValued’, true);

eig(Winf), eig(W) % system barely controllable

y = W \ (xf - expm(A*tf)*x0);

106

[t, x] = ode45(@(t,x) A*x + B*B’*expm(A’*(tf-t))*y, ...

[0,1000], x0);

surf(y, t, x); % hard-to-control system

[x(end,:); xf’] % not too accurate!

[t, x] = ode45(@(t,x) A*x + B*B’*expm(A’*(tf-t))*y, ...

[0,1000], x0, odeset(’RelTol’, 1e-8, ’AbsTol’, 1e-10));

[x(end,:); xf’] % but it was just an ode45 accuracy issue

% Bass’s algorithm

alpha = 1.1*max(abs(eig(A)))

W = lyap(-A-alpha*eye(n), 2*B*B’)

F = -B’/W; eig(A+B*F) %all in LHP!

[t, x] = ode45(@(t,x) A*x + B*F*x, [0,1000], x0);

surf(y, t, x);

107

Chapter 12

Optimal control

Optimal control Several choices available for stabilizing feedback F : for
instance, you can choose different α’s in Bass algorithm.

Is there an ‘optimal’ one? One possible way to formalize this: the control
that uses the minimum energy, defined by a quadratic form (R ⪰ 0, Q ⪰ 0).

Linear-quadratic optimal control
Find u : [0,∞)→ Cm (piecewise C0, let’s say) that minimizes

V (u) =

∫ ∞

0

x∗Qx+ u∗Ru dt

s.t. ẋ = Ax+Bu, x(0) = x0, lim
t→∞

x(t) = 0.

We assume here that R ≻ 0: control is never free. Optimal control becomes
a trickier problem otherwise.

Linear-quadratic regulator theorem [Datta, Thm 10.5.1] A solution fol-
lows from calculus of variations principles; here is a self-contained version.

Theorem
Let Q ⪰ 0, R ≻ 0, (A,B) controllable. Set G = BR−1B∗ ⪰ 0.

There exists a unique X = X∗ ∈ Cn×n such that

1. A∗X +XA+Q−XGX = 0,

2. Λ(A−GX) ⊂ LHP .

The optimal value of the minimum problem

min

∫ ∞

0

x(t)∗Qx(t) + u(t)∗Ru(t) dt,

s.t. ẋ(t) = Ax(t) +Bu(t), lim
t→∞

x(t) = 0

108

is x∗
0Xx0, attained with the feedback control u(t) = Fx(t) obtained with

F = −R−1B∗X.

Note that indeed A+BF = A−GX is stable by the conditions we imposed
on X. The equation

A∗X +XA+Q−XGX = 0

is called continuous-time algebraic Riccati equation, and X that satisfies 1-2 is
called its stabilizing solution.

Proof. Proving the existence of X with those properties will be long, and it is
the topic of the rest of this chapter. We shall now conclude assuming it exists.

Note that Λ(A−GX) ⊂ LHP implies limt→∞ x(t) = 0, so this u is admis-
sible. Take a generic stabilizing control u, and compute

d

dt
x∗Xx = ẋ∗Xx+ x∗Xẋ

= (Ax+Bu)∗Xx+ x∗X(Ax+Bu)

= x∗(A∗X +XA)x+ u∗B∗Xx+ x∗XBu

= x∗(XBR−1B∗X −Q)x+ u∗B∗Xx+ x∗XBu

= (u+R−1B∗Xx)∗R(u+R−1B∗Xx)︸ ︷︷ ︸
≥0

−x∗Qx− u∗Ru.

Integrating from 0 to ∞,∫ ∞

0

x∗Qx+ u∗Ru dt ≥ x∗
0Xx0 − x(∞)∗Xx(∞)︸ ︷︷ ︸

=0

,

with equality if u+R−1B∗Xx ≡ 0.

Riccati equation and subspaces The equation

A∗X +XA+Q−XGX = 0, Q ⪰ 0, G ⪰ 0

is called algebraic Riccati equation (ARE). It is an invariant subspace problem
in disguise, because if X satisfies the equation then[

A −G
−Q −A∗

] [
I
X

]
=

[
I
X

]
(A−GX).

Hence the problem of finding X can be recast as finding a suitable invariant
subspace of H. The road to proving the existence of our solution X passes
through studying the properties of the matrix H.

109

Hamiltonian matrices A matrix of the form

H =

[
A −G
−Q −A∗

]
, Q = Q∗, G = G∗

is called Hamiltonian matrix.

Lemma 12.1. Let H be Hamiltonian, and λ ∈ Λ(H). Then, −λ ∈ Λ(H), too,
and the two have the same multiplicity.

In other words, the spectrum ofH is symmetric with respect to the imaginary
axis.

Proof. Let J =

[
I

−I

]
. One can verify directly the equality J−1HJ = −H∗.

Hence, H and −H∗ are similar, and they have the same spectrum (also counted
with multiplicities).

We can say more.

Theorem 12.2. Assume Q ⪰ 0, G = BR−1B∗ ⪰ 0, (A,B) (or, equivalently,
(A,G)) stabilizable, and (A∗, Q) stabilizable. Then, H has no eigenvalues with
Reλ = 0.

Proof. Suppose instead H[z1z2] = ıω[z1z2]. Writing the blocks out explicitly, we
get

Az1 −Gz2 = ıωz1,

−Qz1 −A∗z2 = ıωz2.

We can eliminate A − ıω from these equations: multiply the first equation by
z∗2 , transpose the second, and multiply it by z1. Then we are left with

z∗1Qz1 + z∗2Gz2 = 0.

Since Q and G are positive semidefinite, it must be the case that Qz1 = Gz2 = 0.
Substituting it above, we get (A− ıωI)z1 = 0, (A− ıω)∗z2 = 0. We then obtain

z∗1 [A
∗ + ıω Q] = 0, z∗2 [A− ıω G] = 0.

Since at least one of z1 and z2 is nonzero, we contradict one of the two stabiliz-
ability conditions (Popov test).

Hence, H has n eigenvalues in the LHP and n in the RHP, counted with
multiplicity. In particular, it has a (unique) n-dimensional invariant subspace

associated to its eigenvalues in the LHP, i.e., there is U =

[
U1

U2

]
∈ C2n×n such

that [
A −G
−Q −A∗

] [
U1

U2

]
=

[
U1

U2

]
S, Λ(S) ⊂ LHP. (12.1)

We call this invariant subspace the stable invariant subspace. We can prove a
particular property.

110

Lemma 12.3. Let H be Hamiltonian, and

[
U1

U2

]
be a basis matrix for its stable

invariant subspace. Then,[
U1

U2

]∗
J

[
U1

U2

]
= U∗

2U1 − U∗
1U2 = 0.

Proof. Consider a Jordan basis for H, partitioned into a set of Jordan chains in
the LHP and one in the RHP.

H = V

[
JLHP 0
0 JRHP

]
V −1. (12.2)

Note that the first n columns of V are a basis for the stable invariant subspace
of H. By transposing and negating (12.2), one sees that the last n rows of V −1

are a basis for the stable invariant subspace of −H∗. In particular, these two
subspaces must be orthogonal, because V −1V = I.

We know that U is a basis for the stable invariant subspace ofH, and, thanks
to the relation J−1HJ = −H∗, we see that JU is a basis for the stable invariant
subspace of H∗. Hence, in particular, U and JU are orthogonal.

A subspace such that U and JU are orthogonal is called Lagrangian subspace.

Existence of X We are now very close to proving the existence of X. If we
can prove that U1 is invertible, then we can take a different basis[

U1

U2

]
U−1
1 =

[
I

U2U
−1
1

]
for that invariant subspace, and get (with X = U2U

−1
1)[

A −G
−Q −A∗

] [
I
X

]
=

[
I
X

]
Ŝ, Ŝ = U1SU−1

1 . (12.3)

Expanding out the blocks we get

−Q−A∗X = XŜ = X(A−GX),

which is the Riccati equation, and Λ(A−GX) = Λ(Ŝ) ⊂ LHP .

Theorem 12.4. Suppose (A,B) and (A∗, Q) stabilizable, Q ⪰ 0, G ⪰ 0. Then,
U1 is invertible.

Proof. The key is proving that kerU1 is an invariant subspace for S. Let v ∈
kerU1,

−v∗U∗
2GU2v =

[
v∗U∗

2 0
]
H
[

0
U2v

]
= v∗

[
U∗
2 −U∗

1

] [U1

U2

]
︸ ︷︷ ︸

=0

Sv = 0

111

implies GU2v = 0. Then looking at the first block row of[
A −G
−Q −A∗

] [
U1

U2

]
v =

[
U1

U2

]
Sv

we get U1Sv = 0 as needed.
If kerU1 is nontrivial, we can find v, λ ∈ LHP such that U1v = 0, Rv = λv.

Now the second block row gives −A∗U2v = λU2v. This (together with GU2v = 0
from above) contradicts stabilizability.

Symmetry of the solution

X∗ −X = U−∗
1 U∗

2 − U2U
−1
1 = U−∗

1 (U∗
2U1 − U∗

1U2)U
−1
1 = 0.

Positive definiteness of the solution Note that

ARE ⇐⇒ (A−GX)∗X +X(A−GX) +Q+XGX = 0.

So X solves the Lyapunov equation

Â∗X +XÂ+ Q̂ = 0, Â = A−GX, Q̂ = Q+XGX.

And we know that Λ(Â) ⊂ LHP, Q̂ ⪰ 0 =⇒ X ⪰ 0.

Under slightly stronger assumptions one can also show that (Â∗, Q̂) control-
lable =⇒ X ≻ 0.

Factorization Once we know X exists, we can write the factorization[
I 0
−X I

]
H
[
I 0
X I

]
=

[
A−GX −G

0 −(A−GX)∗

]
,

which displays clearly the eigenvalue pairing λ,−λ.

How to solve Riccati equations

• Newton’s method (historically the first option).

• Invariant subspace computation: via unstructured methods (QR), ‘semi-
structured’ methods (Laub trick), or fully structured methods (URV).

• Sign iteration (and variants).

112

Chapter 13

Newton’s method for AREs

Historically, the first method used to solve algebraic Riccati equations is the
Newton method.

Each iterate of Newton’s method is a Lyapunov equation:

F (X) = A∗X +XA+Q−XGX

LF,X(E) = A∗E + EA− EGX −XGE = E(A−GX) + (A−GX)∗E.

KF,X = (A−GX)T ⊗ I + I ⊗ (A−GX)∗.

If X∗ is the stabilizing solution then Λ(A − GX∗) ⊂ LHP =⇒ LF,X∗ is
nonsingular.

Newton’s method
For k = 0, 1, 2, . . .

1. Solve the Lyapunov equation E(A −GXk) + (A −GXk)
∗E = F (Xk) for

E;

2. Set Xk+1 = Xk − E.

Newton’s method Note that H(A − GXk) + (A − GXk)
∗H = F (Xk) is

equivalent to

Xk+1(A−GXk) + (A−GXk)
∗Xk+1 = −Q−XkGXk ⪯ 0.

If Λ(A−GXk) ⊂ LHP , then Xk+1 ⪰ 0, by the results on Lyapunov equations.

Actually, something stronger holds.

Theorem
Suppose X0 is chosen such that Λ(A−GX0) ⊂ LHP . Then, X1 ⪰ X2 ⪰ X3 ⪰
· · · ⪰ X∗ ⪰ 0. Moreover, Xk → X∗ quadratically.

113

Remark 13.1. The thesis does not include X0 ⪰ X1: anything could happen in
the first iteration!

The proof is tedious, using many times the lemmas relating Lyapunov equa-
tions, stability, and positive definiteness. We give only a sketch.

Proof. (sketch) Coupled induction. Set Ak := A−GXk. Some algebra gives

(Xk −Xk+1)Ak +A∗
k(Xk −Xk+1) = −(Xk −Xk−1)G(Xk −Xk−1)

(X∗ −Xk+1)Ak +A∗
k(X∗ −Xk+1) = −(X∗ −Xk)G(X∗ −Xk)

hence Ak stable =⇒ Xk ⪰ Xk+1 ⪰ X∗.

(Xk+1 −X∗)Ak+1 +A∗
k+1(Xk+1 −X∗)

= −(Xk+1 −Xk)G(Xk+1 −Xk)− (Xk+1 −X∗)G(Xk+1 −X∗)

This does not prove immediately that Ak+1 is stable, because the RHS is not
≺ 0; but plugging in Ak+1v = λv with Reλ ≥ 0 we get B(Xk+1 − Xk)v = 0,
hence also Akv = λv.

function X = care_newton(A, G, Q, k, X0)

% k steps of Newton’s method to s, starting from X0

X = X0;

for it = 1:k

F = A’*X+X*A+Q-X*G*X;

E = lyap((A-G*X)’, -F);

X = X - E;

end

Newton: wrap-up To solve a Riccati equation with this method, we can
proceed as follows.

Algorithm

• Use Bass’s algorithm to find X0 such that A−GX0 is stable

• Run Newton iterations until convergence.

This method is expensive: each iteration requires a Schur form.
Standard results on the quadratic convergence of the multivariate New-

ton method hold: if the solution is simple (which is the case whenever the
Hamiltonian has no imaginary eigenvalues ⇐⇒ LF,X is invertible), then
∥X∗ −Xk+1∥ ∼ ∥X∗ −Xk∥2.

Defect correction / iterative refinement Newton’s method is expensive
on its own, but one way we can use it is to improve the quality of an approxi-
mate solution computed with another method. This typically requires only 1-2
iterations, thanks to its quadratic convergence.

114

Chapter 14

Invariant subspace methods
for CAREs

Invariant subspace methods for CAREs Recall thatX solves the CARE
A∗X +XA+Q = XGX if and only if[

A −G
−Q −A∗

] [
I
X

]
=

[
I
X

]
R, R = A−GX.

One can find X through an invariant subspace of the Hamiltonian.

function X = care_schur(A, G, Q)

H = [A -G; -Q -A’];

[U, T] = schur(H, ’complex’);

[U2, T2] = ordschur(U, T, ’lhp’);

n = size(A,1);

X = U2(n+1:2*n, 1:n) / U2(1:n, 1:n);

We show an example, which relies on the carex test suite, a collection of
benchmark examples for algebraic Riccati equations.

>> [A,G,Q] = carex(4);

>> X = care_schur(A, G, Q)

X =

0.8919 0.7366 0.6023 0.5212 0.5929 0.3488 0.2199 0.1415

0.7366 1.3795 1.0765 0.8039 0.7005 0.5191 0.3348 0.1744

0.6023 1.0765 1.4920 1.0138 0.8014 0.7435 0.4192 0.2031

0.5212 0.8039 1.0138 1.1488 0.7327 0.5313 0.3410 0.1732

0.5929 0.7005 0.8014 0.7327 0.5921 0.4293 0.2847 0.1476

0.3488 0.5191 0.7435 0.5313 0.4293 0.3553 0.2377 0.1241

0.2199 0.3348 0.4192 0.3410 0.2847 0.2377 0.1965 0.1024

0.1415 0.1744 0.2031 0.1732 0.1476 0.1241 0.1024 0.0795

>> norm(A’*X + X*A + Q - X*G*X) / (norm(A’*X) + norm(X*A) + norm(Q) + norm(X*G*X))

ans =

115

3.4242e-15

>> max(real(eig(A - G*X)))

ans =

-0.1006

Note that the method produces a symmetric stabilizing solution X; we al-
ready know that this must be the case.

Recall: backward stability QR-like algorithms are backward stable: thanks
to the fact that all transformations are orthogonal, one can prove that the
computed Ũ , T̃ are the exact Schur decomposition of a perturbed input

H+∆H = Ũ T̃ Ũ∗.

In particular, the Schur method computes a true invariant subspace of H+∆H,
with ∥∆H∥ small.

However, an important drawback is that this method is not structureally
backward stable: the error ∆H is not Hamiltonian.

Among the consequences, eigenvalues close to the imaginary axis can be
‘mixed up’. An example is carex(14), an example in which the Hamiltonian
matrix has eigenvalues very close to the imaginary axis.

>> [A, G, Q] = carex(14);

>> format short e

>> eig([A -G; -Q -A’])

ans =

-3.7321e+00 + 0.0000e+00i

3.7321e+00 + 0.0000e+00i

-2.6795e-01 + 0.0000e+00i

2.6795e-01 + 0.0000e+00i

4.9991e-13 + 1.0000e+00i

4.9991e-13 - 1.0000e+00i

-5.0007e-13 + 1.0000e+00i

-5.0007e-13 - 1.0000e+00i

>> X = care_schur(A, G, Q)

X =

1.0003e+00 - 2.9186e-17i 4.6455e-04 - 2.6292e-17i -2.6185e-04 + 2.9186e-17i

-4.6355e-04 + 2.6292e-17i

-4.6455e-04 - 7.7034e-17i 1.0003e+00 - 3.0087e-17i 4.6355e-04 + 7.7034e-17i

-2.6185e-04 + 3.0087e-17i

-2.6185e-04 - 4.4409e-22i -4.6555e-04 + 4.4409e-16i 1.0003e+00 + 0.0000e+00i

4.6455e-04 - 4.4409e-16i

4.6555e-04 - 9.9493e-17i -2.6185e-04 + 2.5750e-17i -4.6455e-04 + 9.9494e-17i

1.0003e+00 - 2.5750e-17i

>> norm(A’*X + X*A + Q - X*G*X) / (norm(A’*X) + norm(X*A) + norm(Q) + norm(X*G*X))

ans =

6.5270e-16

116

>> max(real(eig(A - G*X)))

ans =

-5.0028e-13

>> norm(X - X’) / norm(X)

ans =

1.8572e-03

On this problem, the Schur method produces an invariant subspace U that does
not give a symmetric X. The explanation is that this is the wrong invariant
subspace: this solution is not the stabilizing one, and is not even close to it; it
is close to a non-stabilizing solution of the CARE.

To improve accuracy on ill-conditioned problems, it would be ideal to have
a structurally backward stable method.

Indefinite scalar products and symplectic transformations Ultimately,
the reason why the previous algorithm fails to preserve the eigenvalue pairing
is that orthogonal transformations do not preserve the matrix structure of the
Hamiltonian.

This structure is intimately related with indefinite scalar products. Let us
consider the indefinite scalar product (bilinear form) defined by the matrix J ,
i.e.,

⟨u, v⟩ = u∗Jv =

[
u1

u2

]∗ [
0 I
−I 0

] [
v1
v2

]
= u∗

1v2 − u∗
2v1.

The matrix H is skew-self-adjoint with respect to this scalar product, i.e.,
⟨u,Hv⟩ = ⟨−H∗u, v⟩; indeed, this is equivalent to Lemma TODO. Indeed, any
matrix H with H11 = −H∗

22, H21 = H∗
21, H12 = H∗

12 is so, even without the
positive semidefiniteness constraint. These are called Hamiltonian matrices, and
they all satisfy the eigenvalue pairing lemma.

So we must look for orthogonal transformations with respect to this scalar
product.

Definition 14.1. A matrix S ∈ C2n×2n is called symplectic if it is orthogonal
w.r.t the scalar product J , that is, if S∗JS = J .

Lemma
If H is Hamiltonian and S is symplectic, then S−1HS is Hamiltonian.

Proof : (S−1HS)∗J = J(S−1HS) ⇐⇒ (S−1HS)∗S∗JS = S∗JS(S−1HS) ⇐⇒
S∗H∗JS = S∗JHS.

Remark : unlike orthogonal transformations, symplectic ones do not auto-
matically ensure stability: ∥v∥ small does not imply ∥Sv∥ small: for instance,
any matrix of the form S =

[
A 0
0 A−T

]
is symplectic.

Orthosymplectic transformations Ideal setting : construct successive changes
of basesH 7→ S−1HS where S is both orthogonal (for stability reasons) and sym-
plectic (for structure preservation reasons). These are called orthosymplectic
matrices.

117

Examples of orthosymplectic matrices:

• If Q ∈ Cn×n is any orthogonal matrix, then blkdiag(Q,Q) is orthosym-
plectic.

• A Givens matrix that acts on entries k and n+k (i.e., that generated with
the Matlab commands

G = eye(2*n); G([k,n+k], [k,n+k]) = [c s; -s c];

is orthosymplectic.

The Laub trick There is a certain orthogonal and symplectic matrix that
reduces H to a special form.

Theorem

Let U =

[
U11 U12

U21 U22

]
be unitary s.t.

[
U11

U21

]
spans the stable invariant subspace.

Then,

1. V =

[
U11 −U21

U21 U11

]
is orthosymplectic;

2. V ∗HV =

[
T11 T12

0 −T ∗
11

]
, with T11 upper triangular and T12 symmetric

(Hamiltonian Schur form).

Proof (1) follows from the fact that
[
U11

U21

]
has orthonormal columns, and we

showed earlier that U∗
21U11 − U∗

11U21 = 0.
(2) follows from the facts that

[
U11

U21

]
spans an invariant subspace and that

V ∗HV is Hamiltonian.

An orthogonal symplectic algorithm Numerically, the Laub trick is no
more effective than the Schur method, because they compute the same invariant
subspace.

But the existence of this structured factorization suggests that there may be
a structure-preserving method to compute it.

Problem (“curse of Van Loan”)
Is there a structure-preserving QR method that produces the Hamiltonian Schur
form via a sequence of orthosymplectic transformations applied to H?

Roadblock : we have proved that a stable invariant subspace exists if (A,B)
controllable and G,Q ⪰ 0, but there are Hamiltonian matrices that do not
satisfy these assumptions; e.g., H =

[
1 2
−1 −1

]
with eigenvalues ±i.

=⇒ algorithms to compute a HSF must become unstable when G,Q are
ill-conditioned.

118

Extras: Chu–Liu–Mehrmann algorithm [Chu-Liu-Mehrmann ’98] A so-
lution comes by going through another, different decomposition: H = URV ∗,
with U, V orthosymplectic and

R =

[
R11 R12

0 R22

]
with R11R

∗
22 upper triangular.

(Reminds of the SVD.)

It can be computed in O(n3) via backward stable orthosymplectic transfor-
mations.

Note that R is not Hamiltonian and Λ(H) ̸= Λ(R), in general.

URV decomposition — sketch

• Left-multiply by blkdiag(Q,Q) to get

[∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

]

• Left-multiply by a Givens on (1, n+ 1) to get

[∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

]

• Right-multiply by blkdiag(Q,Q) to get

[∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

]

• Right-multiply by a Givens on (2, n+ 2) to get

[∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

]

• Repeat on smaller blocks to zero out the (2, 1) block:

[∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗

]
,

[∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗

]
.

URV — the final step Finally, left multiply by blkdiag(Q,Q) to replace R1,
R2 with QR1, QR∗

2 so that QR1R
∗
2Q

∗ is upper triangular.

Note that H = URV together with symplecticity implies

H = V

[
−R∗

22 R∗
12

0 −R∗
11

]
U∗.

Then

H2 = V

[
−R11R

∗
22 ∗

0 −R22R
∗
11

]
V ∗.

This is a Schur-like decomposition that reveals the eigenvalues and eigenvectors
of H2 (not of H). However, if v1 is an eigenvector of H2 then span(v1,Hv1) is
an invariant subspace of H, and it can be used to compute an eigenvector of H
and deflate it (many details omitted).

119

Chapter 15

The sign function method
for CAREs

Sign-like methods for CAREs Let us consider the matrix sign iteration

Hk+1 =
1

2
(Hk +H−1

k), H0 = H.

One can see that Hk is Hamiltonian at each step (i.e., JHk = −H∗
kJ). Indeed,

the following properties hold.

Lemma 15.1. The following propertiess hold.

• Let H be Hamiltonian. Then H−1 is Hamiltonian, too.

• Let H1, H2 be Hamiltonian. Then H1 +H2 is Hamiltonian, too.

It is easy to prove this lemma by direct verification of the property JHk =
−H∗

kJ . The guiding idea is that Hamiltonian matrices are like antisymmetric
ones: properties that one expects for antisymmetric matrices often hold for
Hamiltonian, too.

Structure-preserving sign iteration In machine arithmetic, the Hk won’t
be exactly Hamiltonian — unless we modify our algorithm to ensure that they
are.

Observe that the defining property of Hamiltonian matrices JHk = −H∗
kJ

can be rewritten as: H is Hamiltonian iff JH is symmetric.
So we can rewrite the sign iteration in terms of Zk := JHk:

Zk+1 =
1

2
(Zk + JZ−1

k J), Z0 = JH.

This version preserves symmetry exactly, assuming that the numerical method
we use for inversion does; on Matlab, inv on a symmetric matrix uses an LDL

120

decomposition, and ensures that the result is exactly symmetric: if Z is symmet-
ric, IZ = inv(Z); IZ - IZ’ is guaranteed to return a matrix of exact zeros.

We can incorporate scaling, exactly as discussed in the section on the Newton
method for the matrix sign.

function [X, k] = care_sign(A, G, Q)

n = size(A);

J = [zeros(n) eye(n); -eye(n) zeros(n)];

Z = [-Q -A’; -A G];

err = inf;

k = 0;

while err >= 1e-15

Zold = Z;

Z = 1/2*(Z + J*inv(Z)*J);

% these products with J could be replaced

% with direct block reordering, for

% better performance

err = norm(Zold - Z) / norm(Z);

k = k + 1;

end

U = null(Z + J);

X = U(n+1:2*n, 1:n) / U(1:n, 1:n);

Whenever we compute the nullspace of a matrix, we should be careful since
the matrix could have decaying singular values, making it difficult to guess
correctly the dimension of its nullspace. However, since symmetry is preserved
exactly, it is guaranteed that the limit H∗ has n eigenvalues equal to 1 and n
equal to −1; so we have nothing to guess. It is still possible that H∗ is severely
ill-conditioned, though, if H is far from normal and its stable and anti-stable
invariant subspaces are badly separated.

>> [A, G, Q] = carex(4);

>> X = care_sign(A, G, Q);

>> norm(A’*X + X*A + Q - X*G*X) / (norm(A’*X) + norm(X*A) + norm(Q) + norm(X*G*X))

ans =

1.4435e-15

>> max(real(eig(A - G*X)))

ans =

-1.0057e-01

What happens in a more ill-conditioned example?

>> [A, G, Q] = carex(14);

>> X = care_sign(A, G, Q);

121

>> norm(A’*X + X*A + Q - X*G*X) / (norm(A’*X) + norm(X*A) + norm(Q) + norm(X*G*X))

ans =

2.4419e-05

>> max(real(eig(A - G*X)))

ans =

-5.0006e-13

>> norm(X - X’) / norm(X)

ans =

8.7455e-16

The method takes many iterations, 48, to reach our stopping criterion; and the
computed X is only a very rough approximation of the solution, since its relative
residual if of the order of 10−5. However, this matrix is symmetric; this is a sign
that, unlike the Schur method, the sign method computes an approximation of
the correct solution: by preserving structure, we ensure that we are computing
the invarfiant subspace of a Hamiltonian matrix.

As noted above, we can use the Newton method to improve the quality of
this approximate solution: we apply to steps of the Newton method, each time
using the previous X as a starting value.

>> X = care_newton(A, G, Q, 1, X);

>> norm(A’*X + X*A + Q - X*G*X) / (norm(A’*X) + norm(X*A) + norm(Q) + norm(X*G*X))

ans =

3.2018e-10

>> X = care_newton(A, G, Q, 1, X);

>> norm(A’*X + X*A + Q - X*G*X) / (norm(A’*X) + norm(X*A) + norm(Q) + norm(X*G*X))

ans =

1.0205e-16

The residual drops sharply, as expected for a quadratically converging method.

15.1 The doubling algorithm

In this section, we describe an interesting algorithm that implements the sign
method in an implicit fashion.

Recall that, in the sign iteration, if we set Yk = (I −Xk)
−1(I +Xk), then

Yk+1 = −Y 2
k .

In an ideal world without rounding errors, we could compute Y0, Y1, Y2, . . . ,
and then get the stable invariant subspace as kerY∞ (or, rather, the invariant
subspace associated to the n smallest singular values of Y∞, since in an ideal
world without rounding errors this matrix is nonsingular).

We can do these steps also in machine arithmetic, if we work in a suitable
format.

122

Standard Symplectic Form We would like to find E0, F0, G0, H0 such that
the matrix Y0 = (I −H)−1(I +H) can be factored as

Y0 =

[
I G0

0 F0

]−1 [
E0 0
H0 I

]
.

Trick : this is equivalent to finding M such that

M
[
(I −H) (I +H)

]
=

[
I G0 E0 0
0 F0 H0 I

]
.

Clearly this matrix M must be the inverse of block columns 1 and 4.
Structural properties:

• if H is Hamiltonian, Y0 is symplectic.

Proof : via (I −H)∗J(I −H) = (I +H)∗J(I +H).

• If Y0 is symplectic, E0 = F ∗
0 , G0 = G∗

0, H0 = H∗
0 .

• Moreover, if G ⪰ 0, H ⪰ 0, then G0 ⪰ 0, H0 ⪯ 0 (tedious).

Doubling algorithm Plan Given Yk =

[
I Gk

0 E∗
k

]−1 [
Ek 0
Hk I

]
, compute Yk+1 =

−Y 2
k =

[
I Gk+1

0 E∗
k+1

]−1 [
Ek+1 0
Hk+1 I

]
.

Similar to the ‘inverse-free sign method’ described earlier.
The swap: If Yk =M−1

k Nk, then−Y 2
k = −M−1

k NkM−1
k Nk =M−1

k M̂
−1
k N̂kNk =

(M̂kMk)
−1(N̂kNk), where M̂k, N̂k satisfy M̂−1

k N̂k = −NkM−1
k , i.e.,[

M̂k N̂k

] [Nk

Mk

]
= 0.

Doubling: the swap

[
I Ĝk Êk 0

0 F̂k Ĥk I

]
Ek 0
Hk I
I Gk

0 E∗
k

 = 0

holds if[
Ĝk Êk

F̂k Ĥk

]
= −

[
Ek 0
0 E∗

k

] [
Hk I
I Gk

]−1

=

[
Ek 0
0 E∗

k

] [
Gk(I −HkGk)

−1 −(I −GkHk)
−1

−(I −HkGk)
−1 Hk(I −GkHk)

−1

]
.

123

Doubling: the formulas Putting everything together,[
Ek+1 0
Hk+1 I

]
=

[
−Ek(I −GkHk)

−1 0
E∗

kHk(I −GkHk)
−1 I

] [
Ek 0
Hk I

]
=

[
−Ek(I −GkHk)

−1Ek 0
Hk + E∗

kHk(I −GkHk)
−1Ek I

]
and an analogous computation gives E∗

k+1, Gk+1:

Structured doubling algorithm
Ek+1 = −Ek(I −GkHk)

−1Ek,

Gk+1 = Gk + EkGk(I −HkGk)
−1E∗

k ,

Hk+1 = Hk + E∗
kHk(I −GkHk)

−1Ek.

SDA: details Note that (even when the series does not converge)

Gk(I −HkGk)
−1 = Gk +GkHkGk +GkHkGkHkGk + · · · = (I −GkHk)

−1Gk,

and this matrix is symmetric. If Gk = BkB
∗
k , then it can also be rewritten as

Bk(I −B∗
kHkBk)

−1B∗
k (inverting a symmetric matrix).

Monotonicity If Hk ⪯ 0 then Gk(I −HkGk)
−1 ⪰ 0. Hence, 0 ⪯ G0 ⪯ G1 ⪯

. . . , and 0 ⪰ H0 ⪰ H1 ⪰ H2 ⪰ . . .

Cost As much as a 2n×2n inversion M−1N , if you put everything together.
Unlike the sign algorithm, we have a bound σmin(I − HkGk) ≥ 1 (because
Gk ⪰ 0, Hk ⪯ 0).

SDA: the dual equation To analyze convergence, we need to introduce
another matrix. Let Y be the matrix such that

H
[
−Y
I

]
=

[
A −G
−Q −A∗

] [
−Y
I

]
=

[
−Y
I

]
R̂

is the anti-stable invariant subspace of H, i.e., Λ(R̂) ⊂ RHP .[
I
Y

]
spans the stable subspace of H∗ = −JHJ ; we can prove that the

subspace has this form if (AT , CT) controllable (typically satisfied).

SDA: convergence (intuitively) Theorem
In SDA, Ek → 0, Gk → Y,Hk → −X. Convergence is quadratic, i.e., ∥Hk +

X∥ = O(ρ2k) for some ρ ∈ [0, 1), as k →∞.

Intuitive view Ek → 0, approximately squared at each time. Hence

Hk =

[
I Gk

0 E∗
k

]−1 [
Ek 0
Hk I

]

124

has n eigenvalues → 0 and n that →∞. kerHk ≈
[

I
−Hk

]
, so −Hk → X.

Dually, “kerH−1
k ” (a thing that shouldn’t exist. . .) ≈

[
−Gk

I

]
, so Gk → Y .

SDA convergence (formally) Proof some manipulations give

H0

[
I
X

]
= (I −H)−1(I +H)

[
I
X

]
=

[
I
X

]
(I −R)−1(I +R).

where S = (I −R)−1(I +R) has eigenvalues in the unit circle. Thus

[
I Gk

0 E∗
k

] [
I
X

]
=

[
I
X

] [
Ek 0
Hk I

] [
I
X

]
S2

k

.

which implies

Ek = (I +GkX)S2
k

,

Hk +X = E∗
kXS2

k

= (S2
k

)∗(I +XGk)S2
k

⪰ 0.

The same computation on the dual equation gives Gk ⪯ Y , so Gk is bounded

and Ek → 0, Hk +X → 0 (quadratically as S2k).

125

Chapter 16

Methods for large-scale
control systems

Methods for large-scale control systems We give a hint of the methods
used for large-scale control systems.

What does a large-scale control system look like?
Example: the heat equation: finite-difference discretization of a 2D or 3D

structure, possibly on a non-square domain.

• Large, sparse A ∈ Rn×n, often produced by a discretization.

• B ∈ Rn×m with m≪ n: the control usually acts only on a few points.

We aim to solve these problems with a cost that is approximately linear
in n (or in the number of nonzeros of A, which is the true ‘dimension’ of the
problem).

Large-scale Lyapunov equations We focus on a very simple problem: solv-
ing Lyapunov equations with m = 1

AX +XA∗ + bb∗ = 0, Λ(A) ⊂ LHP, b ∈ Cn (16.1)

This is the bare minimum that we need to solve all the problems that we have
encountered. Indeed,

• If we have a Lyapunov equation with B = [b1, b2, . . . , bm], we can compute
its solution X as X = X1+X2+ · · ·+Xm, where Xi solves AXi+XiA

∗ =
bib

∗
i for each i = 1, 2, . . . ,m. This is because Lyapunov equations are

linear.

• Once we know how to solve Lyapunov equations, we can run Newton’s
method to solve an algebraic Riccati equation.

126

There are other methods to address these problems directly, but to get a hang
of the techniques we will focus on the simple case (16.1) only.

We shall also assume that we can solve linear systems of the form (A−αI)v =
w efficiently. In practice, for a sparse A, this is achieved using a sparse LU
factorization. but in principle the methods are applicable also to more general
structures (e.g., a Toeplitz matrix A).

A first difficulty is that the solution X is typically dense and full-rank:
indeed, we know that X = X∗ ≻ 0, since usually (A, b) is controllable, so
X is nonsingular. If it is dense, it has n2 nonzero entries, and we cannot afford
to compute nor return all of them.

However, it is often the case that X has eigenvalues that decay very quickly,
so we can approximate it with X ≈ ZZ∗, for a tall thin Z. We shall see in the
following why. Our algorithms will return Z rather than X.

Matlab example

>> n = 1000;

>> rng(0); A = sprandn(n, n, 0.01); % sparse random A with 1% nonzeros

>> A = A - 10*speye(n); % to ensure Lambda(A) in LHP

>> max(real(eig(full(A)))) %and indeed it is so

ans =

-6.9058

>> b = randn(n, 1);

>> X = lyap(A, b*b’); % this uses a dense O(n^3) method

>> format short e

>> eig(X)

ans =

[...]

5.0019e-15

5.0876e-15

7.2166e-15

9.6627e-15

1.4224e-14

2.5617e-13

9.9637e-12

3.7134e-10

1.6017e-08

6.0124e-07

2.3502e-05

9.2131e-04

3.4250e-02

1.4232e+00

5.1405e+01

>>

All the other 985 eigenvalues are essentially zero!

127

16.1 ADI (alternating-direction implicit itera-
tion)

Idea Let’s convert our continuous-time problem (Lyapunov equation)

AX +XA∗ + bb∗ = 0 (16.2)

to a discrete-time one (Stein equation)

X − ÂXÂ∗ = b̂b̂∗, (16.3)

since those can be solved with a simpler fixed-point iteration.

Theorem 16.1. Let τ > 0, so that Λ(A−τI) ⊂ LHP . Then, X solves (16.2) if

and only if it solves (16.3) with Â := (A−τI)−1(A+τI), b̂ :=
√
2τ(A−τI)−1b.

Proof. Expand in two ways

(A− τI)X(A− τI)∗ − (A+ τI)X(A+ τI)∗ − 2τbb∗ = 0.

Solving Stein equations We can solve (16.3) with the fixed-point iteration

Xk = ÂXk−1Â
∗ + b̂b̂∗. (16.4)

Lemma 16.2. If Λ(A) ⊂ LHP and τ > 0, then Λ(Â) ⊂ D (unit disk).

Proof. If λ ∈ LHP , then dist(λ,−τ) < dist(λ, τ), thus |λ+τ |
|λ−τ | < 1.

Extras: Time discretization It is interesting to note that Â and a (scaled)

version of b̂ be obtained by discretizing the control system with the midpoint
method:

ẋ = Ax+Bu

is discretized to

xk+1 − xk

h
=

1

2
(Axk +Buk +Axk+1 +Buk+1) ,

i.e.,
xk+1 = (I − h

2A)−1(I + h
2A)xk + (I − h

2A)−1B(uk + uk+1)
h
2 .

This specific method is particularly nice, because it preserves stability: the
open-loop system ẋ = Ax is stable iff xk+1 = (I − h

2A)−1(I + h
2A)xk is so.

128

Low-rank formulation Starting from X0 = 0, we have

Xk = b̂b̂∗ + Âb̂b̂∗Â ∗+Â2b̂b̂∗Â2∗ + · · ·+ Âk−1b̂b̂∗Â(k−1)∗.

Or, in terms of its low-rank factor

Zk =
[
b̂ Âb̂ Â2b̂ . . . Âk−1b̂

]
, Xk = ZkZ

∗
k .

We can compute the columns of the Zk’s iteratively{
v1 = b̂,

vk+1 = Âvk = (A− τI)−1(A+ τI)vk = vk + 2τ(A− τI)−1vk.

Cost : One shifted solve with A per iteration.

function Z = adi_single_shift(A, b, tau, k)

n = size(A,1);

v = (A - tau*speye(n)) \ b * sqrt(2*tau);

Z = [v];

% this could be improved by computing only once

% a factorization of A - tau*I

for i = 1:k-1

v = v + (A - tau*speye(n)) \ v * 2*tau;

Z = [Z v];

end

Take care with parentheses here: if we had written v = sqrt(2*tau) * (A - tau*speye(n)) \ b,
Matlab would have associated starting from the left and computed v = (sqrt(2*tau) * (A - tau*speye(n))) \ b,
i.e., we would have erroneously divided, rather than multiplied, by

√
2τ

On our example, convergence is pretty fast. With 20 iterations and τ = 5.0:

>> Z = adi_single_shift(A, b, 5.0, 20);

>> norm(Z*Z’ - X) / norm(X)

ans =

1.1886e-14

We can estimate the convergence speed rigorously.

Lemma 16.3. For the iteration (16.4),

Xk −X = Âk(X0 −X)Âk∗.

Proof. Induction.

Hence convergence is linear:

∥Xk −X∥ ≤ ∥Âk∥∥X0 −X∥∥Âk∗∥ = ∥Âk∥2∥X∥ ∼ ρ(Â)2k.

On our example, the spectral radius ρ(Â) is rather small.

129

>> Ahat = (A-5.0*speye(n)) \ (A+5.0*speye(n));

>> max(abs(eig(full(Ahat))))

ans =

4.4949e-01

On other matrices, we might be less lucky.
One can see that if A has an eigenvalue with |Re(λ)| ≪ τ then Â has an

eigenvalue λ+τ
λ−τ ≈ −1, and similarly if |λ| ≫ τ then λ+τ

λ−τ ≈ 1.
This suggests that the optimal τ is close to the eigenvalues of −A. But if

A has eigenvalues with both very small and very large negative real parts, we
cannot find a value τ that works well with all eigenvalues, and inevitably ρ(Â)
will be very close to 1.

16.2 ADI with multiple shifts

The key to get faster convergence is changing the value of τ at each step: given
an arbitrary sequence of positive shifts (or poles) τ1, τ2, . . . , we set

Âk := (A− τkI)
−1(A+ τkI), b̂k :=

√
2τk(A− τkI)

−1b.

Then one can set up the iteration

X0 = 0, Xk = ÂkXk−1Â
∗
k + b̂k b̂

∗
k.

At each iteration we change the fixed-point equation that we use, but still the
iteration behaves similarly.

Proceeding as above one gets

Zk =
[
b̂k Âk b̂k−1 ÂkÂk−1b̂k−2 . . . ÂkÂk−1 · · · Â2b̂1

]
.

Rearranging the computation It’s less clear from this formulation how to
compute the columns of Zk iteratively. However one can rearrange things using
commutativity, to reach a form that makes the iterative structure more clear:

1√
2τk−2

ÂkÂk−1b̂k−2

= (A− τkI)
−1(A+ τkI)(A− τk−1I)

−1(A+ τk−1I)(A− τk−2I)
−1b

= (A− τk−2I)
−1(A+ τk−1I) (A− τk−1I)

−1(A+ τkI) (A− τkI)
−1b︸ ︷︷ ︸

=:w1︸ ︷︷ ︸
=:w2︸ ︷︷ ︸

=:w3

Thus we get w1 = (A− τkI)
−1b̂ and

wj+1 = (A− τk−jI)
−1(A+ τk−j+1I)wj

= wj + (τk−j + τk−j+1)(A− τk−jI)
−1wj .

130

Low-rank ADI: the formulation Reversing the order of the τj for simplic-
ity, we get

Low-rank ADI with multiple shifts

v1 =
√
2τ1(A− τ1)

−1b, vj =

√
2τj√

2τj−1

(vj + (τj−1 + τj)
(
A− τjI)

−1vj
)
.

Zk =
[
v1 v2 . . . vk

]
.

One can also use complex shifts (details omitted; complex conjugates τ j
appear).

ADI: convergence Proceeding analogously to the one-shift case, one gets

Xk −X∗ = ÂkÂk−1 · · · Â1(X0 −X∗)Â
∗
1 · · · Â∗

k−1Â
∗
k = g(A)(X0 −X∗)g(A)∗,

where g(x) =
∏k

j=1
x−τj
x+τj

.

Hence the key to get a fast convergence is choosing the τj ’s so that ∥g(A)∥
is small.

If A = V ΛV −1, then

∥g(A)∥ = ∥V g(Λ)V −1∥ ≤ κ(V) max
λ∈Λ(A)

k∏
j=1

|λ− τj |
|λ+ τj |

.

If A has at most k distinct eigenvalues, we can choose τj = −λj to get
g(A) = 0 and exact convergence in k steps.

If A has k clusters, we get a small ∥g(A)∥ after k steps by choosing shifts
close to the centers of these clusters (cfr. Arnoldi convergence theory).

The ADI shift choice problem We can express the optimal shifts τ1, . . . , τk
as the solution of an approximation problem, analogously to the theory in
Arnoldi:

ηk = min
τ1,...,τk

max
λ∈Λ(A)

k−1∏
j=0

|λ− τj |
|λ+ τj |

.

This computation, in practice, is unfeasible: to compute an optimal solution, we
need the full spectrum Λ(A), which is unfeasible. And the choice would change
at each step k, requiring recomputation of previous iterates.

One usually computes a small number k′ of shifts initially, before starting
the iteration, and reuses them cyclically with τk = τmod(k,k′).

Often the max is taken by the largest or smallest eigenvalues of A. Hence
we can run a few steps of Arnoldi on A and A−1 to get {µ1, . . . , µd} that
approximate the extremal eigenvalues of A, and get a simpler, smaller-scale
problem

min
τ1,...,τk

max
λ∈{µ1,...,µd}

k−1∏
j=0

|λ− τj |
|λ+ τj |

.

131

ADI optimal shifts Alternatively, we can replace Λ(A) with a region C ⊂
LHP enclosing the eigenvalues of A: for instance, if A = A∗, all eigenvalues are
in an interval C = [a, b]. Then, look for

η̂k = min
τ0,...,τk

max
λ∈C

k−1∏
j=0

|λ− τj |
|λ+ τj |

.

This is a classical problem from approximation theory: look for polynomials
that are small on C and large on −C. Explicit solutions can be constructed
from elliptic functions for many choices of C. It is known that η̂k ∼ rk for a
certain r < 1. This value r, known as logarithmic capacity of C, depends on b

a
in the symmetric case: so the convergence bounds re worse for ill-conditioned
A).

Consequence Since ∥X∗−Xk∥ ∼ rk, and rkXk = k, it follows that σk+1(X) ≲
rk, so X has low numerical rank, whenever the eigenvalues decay fast enough.
This argument validates our earlier claim that X often has rapidly decaying
eigenvalues.

Extra: Residual computation Detail As a stopping criterion for ADI, we
would like to use the residual ∥AZkZ

∗
k+ZkZ

∗
kA

∗+bb∗∥, but how can we compute
it without assembling all these large matrices? We show a method to do it.

For Xk = ZkZ
∗
k , with Zk ∈ Rn×k, we have

AZkZ
∗
k + ZkZ

∗
kA

∗ +BB∗ =
[
Zk AZk B

] 0 I 0
I 0 0
0 0 I

 [Zk AZk B
]∗

.

Let us compute a thin QR factorization Q0R0 =
[
Zk AZk B

]
; this is a tall-

thin matrix so the cost is low. Since the Q0 factors have orthonormal columns,
we have

∥AZkZ
∗
k + ZkZ

∗
kA

∗ +BB∗∥ =

∥∥∥∥∥∥R
0 I 0
I 0 0
0 0 I

R∗

∥∥∥∥∥∥.
The total cost is O(nk2), linear in the matrix size n and quadratic in the number
of iterations k.

16.3 Rational Arnoldi

An alternative algorithm for large-scale Lyapunov equations comes from Krylov
subspace ideas. Note that the approximation Zk computed by ADI has columns
of the form r(A)b, where r(x) = p(x)/q(x), with fixed denominator q(x) =
(x− τ1)(x− τ2) . . . (x− τk). In other words, the columns of Zk (and hence also
those of Xk) belong to the rational Arnoldi subspace

Kq(A, b) = {q(A)−1p(A)b : deg p < k} = q(A)−1Kk(A, b).

Idea: first compute this subspace, then look for an approximated solution with
ImZk ⊂ Kq(A, b) by ‘projecting the problem’.

132

Galerkin Projection Given an orthonormal basis Uk of Kq(A, b):

1. Set Xk = UkYkU
∗
k ;

2. Assume ‘orthogonal residual’: U∗
k (AXk +XkA

∗ + bb∗)Uk = 0.

This strategy produces a projected k × k Lyapunov equation

(U∗
kAUk)Y + Y (U∗

kAUk)
∗ + U∗

k bb
∗Uk = 0.

Since its size is smaller, we can solve it using direct methods.
Difficulty 1 Even if Λ(A) ⊂ LHP , the same property does not always hold

for Ak = U∗
kAUk. Recall: the eigenvalues of Ak = U∗

kAUk are in the field of
values of A, which is hull Λ(A) for normal A, but larger (possibly by much) for
non-normal A. If A is far from normal, it is a common occurrence that this
method produces projected equations for which Λ(Ak) ̸⊂ LHP . Difficulty 2
(the main one, shared with ADI): good pole selection is crucial for convergence.

Solving large and sparse Lyapunov and Riccati equation is another very
active research area. Many more sophisticated methods have been introduced
in recent years.

133

	Sylvester equations and invariant subspaces
	Invariant subspaces

	Matrix functions
	Definition(s) of matrix functions
	Properties of matrix functions

	Sensitivity of matrix functions
	Computational methods for general matrix functions
	Diagonalization vs. Taylor series: between Scylla and Charybdis
	Extras: Polynomial evaluation
	Parlett recurrence

	Intermezzo: Automatic differentiation
	Numerical differentiation
	Automatic differentiation
	Reverse mode

	The matrix exponential
	Scaling and squaring
	Scaling and squaring

	The matrix sign function
	The Schur-Parlett method
	Perturbation theory
	Newton for the matrix sign
	Extra: Inversion-free sign

	The matrix square root
	The modified Schur method
	Relation to the sign function and matrix iterations

	Functions of large-scale matrices
	Arnoldi for matrix functions
	Arnoldi for matrix function: experiments
	Extras: the Arnoldi algorithm (in a generalizable way)
	Extras: rational Arnoldi gray[Güttel '13]

	Lyapunov equations
	Introduction to control theory
	Examples of control systems
	Controllability
	Stabilizability

	Optimal control
	Newton's method for AREs
	Invariant subspace methods for CAREs
	The sign function method for CAREs
	The doubling algorithm

	Methods for large-scale control systems
	ADI (alternating-direction implicit iteration)
	ADI with multiple shifts
	Rational Arnoldi

