GALOIS GROUPS AND FUNDAMENTAL GROUPS Homework 1

1. Let k be a field with fixed separable closure k_s . Consider the set-valued functor F on the category C of finite étale k-algebras sending an algebra A to the set of k-algebra homomorphisms $A \to k_s$.

Determine the automorphism group of the functor F. [Warning: k_s is not an object of C!]

- 2. Let $p: Y \to X$ be a cover of a connected and locally simply connected topological space X. For a point $x \in X$, we have defined two canonical left actions on the fibre $p^{-1}(x)$: one is the action by $\operatorname{Aut}(Y|X)$ and the other is that by $\pi_1(X,x)$. Verify that these two actions commute, i.e. that $\alpha(\phi(y)) = \phi(\alpha y)$ for $y \in \pi^{-1}(x)$, $\phi \in \operatorname{Aut}(Y|X)$ and $\alpha \in \pi_1(X,x)$.
- 3. Let X be a connected and locally simply connected topological space, and let \widetilde{X}_x be the universal cover corresponding to a fixed base point $x \in X$. Consider a connected cover $p: Y \to X$ and a base point $y \in p^{-1}(x)$.
 - a) Show that the homomorphism $\pi_1(Y,y) \to \pi_1(X,x)$ induced by p is injective.
- b) Viewing $\pi_1(Y,y)^{op}$ as a subgroup of $\operatorname{Aut}(\widetilde{X}_x|X)$ via the isomorphism $\operatorname{Aut}(\widetilde{X}_x|X) \cong \pi_1(X,x)^{op}$, establish an isomorphism $\widetilde{X}_x/\pi_1(Y,y)^{op} \cong Y$.