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1 Galois theory of fields

1.1 Basic notions

Let k be a field, and consider an algebraic field extension L|k. We denote by Autk(L) the group
of field automorphisms of L fixing k elementwise, and if G = Autk(L) then we denote by LG the
subfield of elements of L which are fixed under the action of G, that is

LG = {x ∈ L : σ(x) = x for all σ ∈ G}.

Definition 1.1. In the above situation, we say that the extension L|k is Galois if

LG = k.

Recall that an algebraic closure of k is an algebraic extension k of k that does not admit
algebraic extensions other than itself. We now recall the following well-known results from field
theory.

Facts 1.2. Let k be a field.

1. There exists an algebraic closure k of k.

2. If L|k is an algebraic extension, then there exists an embedding L ↪→ k leaving k fixed
elementwise.

3. If L is a fixed algebraic closure of L, then every embedding L ↪→ k fixing k extends to an
isomorphism L

∼−→ k.

For a proof, we refer to [1, Chapter V - 2.6 & 2.8].

Definition 1.3. Let L|k be an algebraic field extension.

• An element x in L is separable over k if the minimal polynomial of x over k has no
multiple roots.

• The extension L|k is separable if every element of L is separable over k.

Definition 1.4. Let k be a field and let k be a fixed algebraic closure of k. The separable
closure of k in k is

ks = {λ ∈ k : λ is separable over k}.

The absolute Galois group of k is

Gal(ks|k) = Autk(ks).
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Remark 1.5.

1. The extension ks|k is Galois. In fact, it suffices to show that for every element x in ks
not contained in k there exists an automorphism σ in Gal(ks|k) such that σ(x) ̸= x. Let
x′ be another root of the minimal polynomial of x over k. Then the assignment x 7→ x′

induces a field isomorphism k(x)
∼−→ k(x′) that fixes k elementwise. By Fact 1.2 (3), the

latter extends to an automorphism σ : k → k. Since σ sends each element to another root
of its minimal polynomial over k, it maps ks onto itself, determining an automorphism of
ks which sends x to x′.

2. The absolute Galois group of k depends on the choice of the algebraic closure k of k.

Proposition 1.6. Let L|k be a separable field extension and let ks be a separable closure
of L. The following are equivalent.

1. L|k is a Galois extension.

2. The minimal polynomial over k of each element of L splits into linear factors in L.

3. Each σ in Gal(ks|k) satisfies σ(L) ⊆ L.

Recall that an extension L|k satisfying property (3) of Proposition 1.6 is called a normal
extension.

Proof. First, we prove (1)⇒ (2). Let x be an element in L. Then x is a root of the polynomial

f =
∏
σ∈S

(t− σ(x)),

where S is a system of coset representatives of the stabilizer of x in Gal(ks|k). Let g be the
minimal polynomial of x over k. Then σ(x) is a root of g for all σ in S, so f divides g. Since g
is irreducible and monic, we conclude f = g.

The implication (2) ⇒ (3) is trivial, so we prove (3) ⇒ (1). Let x be an element in L \ k.
Since ks|k is a Galois extension, x is moved by some σ in Gal(ks|k). As σ(L) ⊆ L, σ restricts to
an element of Autk(L) which does not fix x.

Here is an important result which allows us to characterize infinite extensions in terms of
their finite subextensions:

Fact 1.7. If L|k a finite separable extension, then there exists a finite Galois extension M |k
containing L.

It essentially follows from the Primitive Element Theorem, by taking the splitting field of the
minimal polynomial of a generator of the extension.

Corollary 1.8. If L|k is an infinite Galois extension, then L is the union of its finite Galois
subextensions:

L =
⋃

k⊆M⊆L
M finite Galois

M.
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We want to reduce questions about infinite Galois theory to the finite case: let L|k be an
infinite Galois extension and consider two finite Galois subextensions L1 ⊂ L2 ⊂ L over k. Then
there are surjective restriction maps

Gal(L2|k) ↠ Gal(L1|k),

and the idea is to “pass to the limit” in L2. To make this precise, we need to introduce the
notion of profinite groups.

1.2 Profinite groups and their topology

Definition 1.9. A (filtered) inverse system of groups (Gα, φαβ)α,β∈Λ consists of

• a partially ordered set (Λ,≤) that is directed, i.e. for every α, β in Λ there exists γ in
Λ such that α ≤ γ and β ≤ γ;

• a group Gα for each α in Λ;

• A group homomorphism φαβ : Gβ → Gα for every α ≤ β in Λ such that

– φαα = idGα
for all α in Λ;

– φαγ = φαβ ◦ φβγ for all α ≤ β ≤ γ in Λ.

Definition 1.10. The inverse limit of an inverse system of groups (Gα, φαβ)α,β∈Λ is the
subgroup of the direct product

∏
α∈ΛGα

lim←−
α∈Λ

Gα =

{
(gα) ∈

∏
α∈Λ

Gα : φαβ(gβ) = gα for all α ≤ β

}
.

Definition 1.11 (Profinite group). A profinite group is an inverse limit of a (filtered) inverse
system of finite groups.

Example 1.12.

1. Every finite group is profinite (it is the limit of the constant system).

2. Let G be a group, and consider the set

Λ = {U ◁ G : [G : U ] <∞},

of normal subgroups of finite index, ordered by reverse inclusion. For U ⊂ V in Λ we have
projection maps φUV : G/V ↠ G/V , and the resulting inverse limit

Ĝ = lim←−
U∈Λ

G/U

is called the profinite completion of G.
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3. Taking G = Z in the previous example, we obtain the profinite completion of the integers

Ẑ = lim←−
n∈N

Z/nZ.

Here the reduction maps are given by Z/nZ ↠ Z/mZ for m | n. In fact, Ẑ is also a ring
with componentwise multiplication.

Exercise 1.13. Show that there is an isomorphism

Ẑ ∼=
∏

p prime

Zp.

Here, Zp = lim←−n Z/p
nZ is the additive group of p-adic integers. Again, Zp is also a ring and the

above turns out to be an isomorphism of rings.

Fix a profinite group G = lim←−α∈Λ
Gα. We can equip each Gα with the discrete topology, the

direct product
∏
α∈ΛGα with the product topology, and the inverse limit G ⊆

∏
α∈ΛGα with

the subspace topology. The following fact follows directly from the definitions.

Fact 1.14. The projection maps
πα : G↠ Gα

are continuous for the above topology, and the subgroups ker(πα) form a basis of open neighbor-
hoods of the identity in G.

Lemma 1.15. The topological group G is a closed subspace of
∏
α∈ΛGα.

Proof. We prove that the complement is open. Pick g = (gα)α∈Λ not in G. Then there exist
α ≤ β such that φαβ(gβ) ̸= gα. The open set

π−1
α ({gα}) ∩ π−1

β ({gβ})

contains g and is disjoint from G.

By Tychonoff’s theorem, the product
∏
α∈ΛGα is compact (and it is obviously Haussdorff),

so we get the following.

Corollary 1.16. A profinite group is a compact Hausdorff topological group.

In fact, it can be shown that the profinite structure is determined by purely topological
properties:

Fact 1.17. A topological group is profinite if and only if it is compact, Hausdorff and totally
disconnected.

For a proof, we refer to [2, Theorem 1.1.12].
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1.3 The Galois correspondence

Proposition 1.18. Let K|k be a Galois extension. Then there is a group isomorphism

Gal(K|k) ∼= lim←−
L

Gal(L|k),

where L runs over the finite Galois subextensions L|k contained in K. In particular,
Gal(K|k) is a profinite group.

Proof. Consider the restriction map

Φ : Gal(K|k)→ lim←−
L

Gal(L|k)

σ 7→ (σ|L)L

which is well-defined by Proposition 1.6 (3). Then Φ is continuous and injective, as if σ ̸= 1 then
there is some α in K such that σ(α) ̸= α; since α is contained in a finite Galois extension L|k,
we have σ|L ̸= 1. For surjectivity, given an element (σL)L in the limit, we define σ : K → K by
σ(α) = σL(α) where L|k is a finite Galois extension containing α. Note that σ is well-defined,
as if L′ ⊇ L is another such extension then σL′ |L = σL. It is easy to see that σ is a field
automorphism of K fixing k elementwise, and by construction Φ(σ) = (σL)L.

Corollary 1.19. For every finite Galois extension L|k contained in K there is a continuous
surjection

Gal(K|k) ↠ Gal(L|k).

Proof. The desired map is the continuous homomorphism making the diagram

Gal(K|k)
∏
LGal(L|k)

Gal(L|k)

πL

commute. This is surjective because every automorphism σ of L|k extends to an automorphism
σ̃ of the separable closure ks, and the latter restricts to an automorphism of K|k which is sent
to σ by the above map.

Example 1.20.

1. Let F be a finite field and let Fs be its separable (algebraic) closure. If L|F is a finite
extension of degree n, then it is Galois with cyclic Galois group of order n. These assemble
to an isomorphism

Gal(Fs|F) ∼= Ẑ.

If |F| = q, then the isomorphism is given by sending the Frobenius automorphism x 7→ xq

to 1 ∈ Ẑ, which generates a dense subgroup Z ⊆ Ẑ.
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2. Take k = C((t)). Then, by a theorem of Puiseux, every finite Galois extension of k is given
by adjoining the n-th root of t for some n, and thus

Gal(C((t))|C((t))) ∼= Ẑ.

3. Fix a prime number p, and let k = Q(µp∞) =
⋃
r≥1 Q(µpr ) be the extension of Q obtained

by adjoining all p-power roots of unity. By a well-known result from number theory, each
term has Galois group

Gal(Q(µpr )|Q) ∼= (Z/prZ)×,

and taking the limit we get an isomorphism

Gal(Q(µp∞)|Q) ∼= Z×
p ,

where we used the fact that the units of the finite rings (Z/prZ)× assemble to the units of
the inverse limit Zp. Finally, if Q(µ) =

⋃
n≥1 Q(µn) is obtained by adjoining all roots of

unity, then
Gal(Q(µ)|Q) ∼= Ẑ×.

Now we are ready to state and prove the main result of Galois theory for arbitrary Galois
extensions.

Theorem 1.21. Let K|k be a Galois extension and let L be a subextension of K|k. Then
Gal(K|L) is a closed subgroup of Gal(K|k), and the assignments

L 7−→ H = Gal(K|L)
H 7−→ KH

yield an inclusion-reversing bijection{
subfields K ⊇ L ⊇ k

}
←→

{
closed subgroups H ≤ Gal(K|k)

}
.

Moreover, finite extensions L|k correspond to open subgroups H ≤ Gal(K|k), and Galois
extensions L|k correspond to normal subgroups H ◁Gal(K|k).

Remark 1.22.

• In a topological group, every open subgroup is closed, since its complement is a union of
the other open cosets. In fact, they are precisely the closed subgroups of finite index in
any compact topological group.

• If K|k is an infinite Galois extension, there may exist non-closed subgroups in Gal(K|k),
for example Z is a dense subgroup of Ẑ ∼= Gal(Fp|Fp). In general, we can use the following
idea of Dedekind: take an infinite chain

k = k0 ⊊ k1 ⊊ k2 ⊊ . . . ⊊ K

and if ki ̸= ki+1, one proves that every σ in Gal(ki|k) extends to σ̃ in Gal(ki+1|k) in at
least two ways, which implies that Gal(K|k) is uncountable. Similarly, one shows that a
closed subgroup H ≤ Gal(K|k) is uncountable, and thus countable subgroups are never
closed.

7



The following theorem indicates that the absolute Galois group of a field encodes a lot of
information about the field itself; the number field case was proven by Neukirch in 1969.

Theorem 1.23 (Pop, 1994). Let K1,K2 be finitely generated field extensions of Q. If there
is an isomorphism of topological groups

Φ : Gal(K1|K1)
∼−→ Gal(K2|K2),

then K1
∼−→ K2 as fields. In fact, every such isomorphism comes from an isomorphism of

the algebraic closures φ : K1
∼−→ K2 by conjugation: g 7→ φ ◦ g ◦ φ−1.

We now start proving Theorem 1.21, dividing the proof into several steps.

Proposition 1.24. Let K|k be a Galois extension and let L be an intermediate field exten-
sion of K|k. Then Gal(K|L) is a closed subgroup of Gal(K|k).

Proof. We first assume that L/k is a finite subextension, and show that Gal(K|L) is open in
Gal(K|k). Since L embeds in some finite Galois extension M of k contained in K, there is a
continuous surjection

φM : Gal(K|k) ↠ Gal(M |k) ⊃ Gal(M |L)
and UL := φ−1

M (Gal(M |L)) ⊂ Gal(K|k) is open. Also, we have an inclusion Gal(K|L) ⊆ UL
because its image in Gal(M |k) is exactly Gal(M |L), so it suffices to show the reverse inclusion:
if σ is an element in UL, then σ|M lies in Gal(M |L), so σ|L = idL and thus σ lies in Gal(K|L).
Thus Gal(K|L) = UL is open. If L is arbitrary, then L =

⋃
α∈Λ Lα where Lα ranges over the

finite Galois extensions of k contained in L. Then,

Gal(K|L) =
⋂
α∈Λ

Gal(K|Lα)

is an intersection of open subgroups (which are always closed), hence closed.

Proposition 1.25. The assignment L 7→ Gal(K|L) induces an inclusion-reversing bijection
between subextensions of K|k and closed subgroups of Gal(K|k), whose inverse is given by
H 7→ KH .

Proof. The previous proposition implies that the map L 7→ Gal(K|L) is well-defined. Moreover,
if H = Gal(K|k) is the whole group, then KH = L because K|L is Galois.

Now letH be a closed subgroup of Gal(K|L), and set L := KH . We want to show that they are
in fact equal. Pick σ in Gal(K|L) and consider intermediate finite Galois extensions K ⊇M ⊇ L.
Then the groups UM = Gal(K|M) for varying M form a basis of open neighborhoods of the
identity in Gal(K|L), and the subgroup H ≤ Gal(K|L) surjects onto Gal(M |L) via the natural
projection φM (because any element not contained in L is moved by some element of H). So,
there exists some τ in H such that φM (τ) = φM (σ). In other words, H ∩ σ(UM ) ̸= ∅ for every
M , but H is closed, so σ lies in H and we are done.

8



Proposition 1.26. In the above correspondence, finite extensions L|k correspond to open
subgroups H ≤ Gal(K|k), and Galois extensions L|k correspond to normal subgroups H ◁
Gal(K|k).

Proof. Suppose that H is a normal subgroup of G and set L = KH . Then G/H acts on L and
LG/H = (KH)G/H = KG = k, so L|k is Galois.

Conversely, if L|k is Galois, then there exists a homomorphism G → Gal(L|k) with kernel
H = Gal(K|L), which is thus normal in G.

1.4 Grothendieck’s Galois theory

Fix a base field k and a separable closure ks of k. Consider the assignment

L 7→ Homk(L, ks)

which sends a finite separable extension of k to the set of k-algebra homomorphisms L → ks.
This is a finite set: if L = k(α) and f is the minimal polynomial of α over k, every such
homomorphism is determined by the image of α, which must be a root of f in ks. Note that
there is a left action of Gk := Gal(ks|k) on Homk(L, ks) by

Gk ×Homk(L, ks)→ Homk(L, ks)

(σ, φ) 7→ σ ◦ φ .

Definition 1.27. If G is a topological group acting on a discrete set X, we say that the
action is continuous if the map

G×X → X, (g, x) 7→ g · x

is continuous.

Lemma 1.28. In the above situation, the action of G on X is continuous if and only if the
stabilizer of every x in X is open in G.

Proof. Take an element x in X and consider the fiber

Gx = {g ∈ G : g · x = x}

of x under the composition

G
(id,x)−−−→ G×X → X.

If G×X → X is continuous, then Gx is open. On the other hand, suppose Gx is open for all x
in X. We prove that the fiber

Ux = {(g, y) ∈ G×X : g · y = x} ⊂ G×X
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is open. We can write

Ux =
⊔
y∈X
{(g, y) ∈ G× {y} : g · y = x}

and each of the sets in the disjoint union is either empty or homeomorphic to Gx, hence Ux is
open.

Proposition 1.29. If L|k is a finite separable extension, then the finite set Homk(L, ks) is
equipped with a continuous and transitive Gk-action.

Proof. The action is continuous because the stabilizer of any element φ of Homk(L, ks) is equal
to Gal(ks|φ(L)), which is open in Gk as it is closed and of finite index.

For transitivity, notice that Gal(ks|k) permutes the roots of the minimal polynomial of any
element of L transitively.

Suppose now M |k is another finite separable extension, and let ρ : L → M be a k-algebra
homomorphism. Then ρ induces a map

ρ∗ : Homk(M,ks)→ Homk(L, ks)

φ 7→ φ ◦ ρ

which is compatible with the action of Gk. In other words, we have defined a contravariant
functor from the category of finite separable extensions of k to the category of finite sets with
continuous transitive Gk-action.

Definition 1.30. Two categories C and D are equivalent if there exist two functors

F : C → D, G : D → C

such that F ◦ G and G ◦ F are naturally isomorphic to the identity functors of D and C,
respectively. An anti-equivalence of categories is an equivalence between C and the opposite
category Dop of D.

Example 1.31. Let D be the category of finite-dimensional vector spaces over a field k, and let
C be the category of vector spaces of the form kn for some n in N. There is an obvious functor
F : C → D sending kn to itself; it induces an equivalence of categories: to define G : D → C,
we need to fix a k-basis of each vector space in D. This induces an isomorphism V

∼−→ kn for
n = dimk(V ). We set G(V ) := kn and we the image of a morphism via G as the associated
matrix with respect to the chosen bases. This highlights the two main features of equivalences
of categories: the objects of the two categories are only in bijection “up to isomorphism”, while
“locally” the morphisms are the same, meaning that for every two objects there is a bijection
between the sets of morphisms.

Theorem 1.32. The functor L 7→ Homk(L, ks) induces an anti-equivalence between the
category of finite separable extensions of k and the category of finite sets with continuous
transitive Gk-action.
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Proof. Omitted, in favor of the more general Theorem 1.35 below.

Definition 1.33. A k-algebra is finite étale if it is isomorphic to a finite direct product of
finite separable extensions of k.

Remark 1.34. One can prove the following equivalent characterizations for a finite-dimensional
k-algebra A:

A finite étale ⇐⇒ A⊗k k is reduced ⇐⇒ Ω1
A|k = 0,

where k is an algebraic closure of k and Ω1
A|k is the module of Kähler differentials (recall that a

k-algebra is reduced if it has no nilpotents).

Theorem 1.35. The contravariant functor A 7→ Homk(A, ks) induces an anti-equivalence
of categories{

finite étale k-algebras
}
←→

{
finite sets with continuous Gk-action

}
.

We now explain how to reduce the case of étale k-algebras to the case of field extensions.

Remark 1.36. If A is the direct product
∏n
i=1 Li of finite separable extensions Li|k, then we

have an orbit decomposition

Homk(A, ks) ∼=
n⊔
i=1

Homk(Li, ks)

which is compatible with the Galois action.

Proof. We show that any ϕ : A→ ks factors through exactly one of the fields Li, from which the
claim follows. Since ϕ is not zero, there exists some i such that the restriction to the subring

0× · · · × Li × · · · × 0 ⊂ A

is not zero, hence injective as the kernel must be a proper ideal. Similarly, if this were to hold
for some other j ̸= i, then the induced map

0× · · · × Li × · · · × Lj × · · · × 0→ ks

would be injective, which is a contradiction since the domain has zero-divisors. Therefore, ϕ
defines a homomorphism of fields from the copy of Li sitting inside A to ks, which gives the
desired factorization (note that the identity of Li inside A is automatically sent by ϕ to 1 ∈ ks,
as the identity of Lj goes to zero for all j ̸= i).

The following formal lemma is useful when dealing with equivalences of categories.
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Lemma 1.37. Let F : C → D be a functor. Then F induces an equivalence of categories if
and only if

• F is fully faithful (i.e. for every C,C ′ in C the map

HomC(C,C
′)→ HomD(F (C), F (C

′))

is bijective);

• F is essentially surjective (i.e. for every D in D there exists some C in C such that
F (C) ∼= D).

Proof. We only prove the interesting direction, which is the one we shall need. Suppose F is
fully faithful and essentially surjective. We have to construct a quasi-inverse G : D → C: for
every object V in D, we fix an isomorphism

iV : F (A)
∼−→ V

for some object A in C and set G(V ) := A. Given a morphism f : V → W in D, we define G(f)
via the following commutative diagram:

V W

F (A) F (B)

φ

iV ∼=
iW ◦f◦i−1

V

iW ∼=

Since F is fully faithful, there exists a unique morphism g ∈ HomC(A,B)
1:1←→ HomD(F (A), F (B))

which corresponds to iW ◦ f ◦ i−1
V , so we set G(f) := g.

By construction, we have an isomorphism iV : F (G(V )) ∼= V which is compatible with mor-
phisms, so we have to check that G ◦ F ∼= idC : for every A in C we need morphisms

G(F (A))→ A, A→ G(F (A))

which are inverse to each other, and by fully faithfulness it suffices to construct morphisms

F (G(F (A)))→ F (A), F (A)→ F (G(F (A)))

which are inverse to each other: we can just take the isomorphism iF (A) and its inverse.

Proof of Theorem 1.35. We’ve already restricted to the case of finite separable extensions L|k
and transitive Gk-sets.

For essential surjectivity, suppose S is a finite set endowed with a continuous transitive Gk-
action. If s is an element in S, its stabilizer Us ⊂ Gk is open by continuity of the action, and so
L = kUs

s is a finite separable extension of k. If r : L→ ks is the inclusion, by transitivity of the
action on Homk(L, ks) we can define a map

Homk(L, ks)→ S

g ◦ r 7→ g · s,

and by construction it is a Gk-equivariant bijection (everything works because Us is the stabilizer
of r).
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For fully faithfulness, given finite separable extensions L,M |k we need to show that the
assignment

Homk(L,M)→ HomGk
(Homk(M,ks),Homk(L, ks))

ρ 7→ ρ∗

is bijective. Since Homk(L, ks) and Homk(M,ks) are transitive Gk-sets, a map

f : Homk(M,ks)→ Homk(L, ks)

is determined by the image of a fixed element φ in Homk(M,ks). Since f is compatible with the
action of G, if U is the stabilizer of φ and V is the stabilizer of f(φ), then U ⊆ V . But then, we
get the the desired map L→M via the following diagram:

kVs kUs

f(φ)(L) φ(M)

L M

∼= ∼=

∼= ∼=
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2 Topological Covers

In this section, we assume all topological spaces to be locally connected.

2.1 Galois theory of Covers

Definition 2.1. Let X be a topological space A space over X is a topological space Y
together with a continuous map p : Y → X. A morphism of spaces over X is a diagram
of continuous maps A space over X is a cover if for every x in X there exists an open
neighborhood V of x such that p−1(V ) ∼=

⊔
i∈I Ui and such that the restriction p|Ui

: Ui
∼−→ V

is a homeomorphism for every i in I.

Example 2.2. If I is a discrete space, then the projection X × I → X is the trivial cover with
fiber I.

Remark 2.3. p : Y → X is a cover if and only if for all x in X there exists an open neighborhood
V of x such that p−1(V ) is isomorphic, as a space over V , to a trivial cover.

Definition 2.4. Let G be a group acting on the left on a topological space X. The action
of G is even if every x in X has a open neighborhood U such that the open sets gU are
pairwise disjoint as g varies in G.

Remark 2.5. If G acts evenly on a space Y , then the natural projection Y
pG→ Y/G turns Y

into a cover of Y/G. Indeed, every x in X has an open neighborhood of the form pG(U).

Definition 2.6. Let Y → X be a cover. An automorphism of Y as a cover of X is an
automorphism of Y as a space over X. The group of automorphisms of Y as a cover of X
is denoted by Aut(Y |X).

Proposition 2.7. If Y is connected and φ ∈ Aut(Y |X) has a fixed point, then φ = idY .

This follows from an elementary fact about covers,of which we omit the proof:

Lemma 2.8. Let p : Y → X be a cover and let Z be a connected space endowed with two
maps f, g : Z → Y such that p ◦ f = p ◦ g. If there exists some z ∈ Z such that f(z) = g(z),
then f = g.

Indeed, taking Z = Y and f = φ and g = idY we get the previous proposition.
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Corollary 2.9. If Y
p→ X is a connected cover, then Aut(Y |X) acts evenly on Y .

Proof. Pick some y in Y and let V be a connected open neighborhood of x := p(y) such that
p−1(V ) ∼=

⊔
i∈I Ui, with y ∈ Ui for some i. Then, the φ(Ui) are disjoint and if φ ̸= id then it

must take Ui to Uj with j ̸= i, because if φ(Ui) = Ui then φ would have a fixed point in Ui and
thus be the identity, which is a contradiction.

Corollary 2.10. If G acts evenly on a connected space Y , then Aut(Y |Y/G) = G.

Proof. The inclusion G ≤ Aut(Y |Y/G) is clear. Conversely, gives φ ∈ Aut(Y |Y/G), for a fixed
y in Y there is some g in G such that φ(y) = g · y. This means that φ−1 ◦ g has a fixed point,
so it is the identity and thus g = φ.

Let Y
p→ X be a connected cover, and consider the factorization

Y → Y/Aut(Y |X)
p−→ X.

Definition 2.11. A cover Y
p→ X is Galois if p is an isomorphism.

Remark 2.12. If Y → X is a connected cover, then Y → X is Galois if and only if Aut(Y |X)

acts transitively on the fibres of Y
p−→ X. This is because the underlying set of Y/Aut(Y |X) is

the set of Aut(Y |X)-orbits of Y , so p is a bijection if and only if each orbit is the entire fibre.
Moreover, it is enough that the action is transitive on just one fibre. This is because

Y/Aut(Y |X) → X is a connected cover of X (see the proposition below), and in a connected
cover all fibres have the same cardinality.

Theorem 2.13 (Galois Theory for Covers). Let Y → X be a Galois cover with group
G = Aut(Y |X). If H ≤ G is a subgroup, then Y/H → X is a connected cover lying between
Y and X. Conversely, if Y → X is a morphism between connected covers of X, then f is
itself a Galois cover and Z ∼= Y/H with H = Aut(Y |Z).

Let us fix p : Y → X to be a Galois cover. We divide the proof of the theorem into multiple
steps.

Proposition 2.14. If H ≤ Aut(Y |X) is a subgroup, then Y/H → X is a cover.

Proof. We have the following factorization factorization of p:

Y → Y/H
pH−−→ X,
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where pH is continuous and surjective. Since Y → X is a cover, over sufficiently small V ⊂ X
we have

p−1(V ) ∼= V × I

for some discrete set I, and thus

p−1
H (V ) ∼= V × (I/H),

which shows that pH is a cover.

Proposition 2.15. Suppose we have a map of spaces over X:

Y Z

X

p

pY

p2

where Z → X is a connected cover. Then, Y → Z is a Galois cover.

Lemma 2.16. If Y
pY→ Z

p2→ X are all connected such that Y → X and Z → X are covers,
then Y → Z is a cover.

Sketch of proof. For every z in Z, set x := p2(z) and pick a connected open neighborhood V of
x such that

p−1(V ) ∼=
⊔
i∈I

Ui

and p−1
2 (V ) ∼=

⊔
j∈J Vj . Then, for every i there exists j such that pY (Ui) = Vj , and a little

reflection shows that pY is surjective.

Proof of Proposition. By the Lemma, Y → Z is a cover. If H = Aut(Y |Z), we need to show that
H acts transitively on the fibres of pY . Pick z in Z and let y1, y2 be two points in p−1

Y (z) ⊂ Y .
Then, there exists some φ in Aut(Y |X) such that φ(y1) = y2 because Y → X is Galois. Then,
φ descends to an automorphism of Z if and only if φ lies in H, and

φ ∈ H ⇐⇒ {y ∈ Y : pY (y) = pY (φ(y))} = Y,

which is true by Lemma 2.8 applied to pY and pY ◦ φ.

Corollary 2.17. The assignments H 7→ Y/H and Z 7→ Aut(Y |Z) induce an inclusion-
reversing bijection

{
subgroups H ≤ Aut(Y |X)

}
←→

 connected covers

Y Z

X

 .
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Proposition 2.18. In the above correspondence, normal subgroups H ◁ Aut(Y |X) corre-
spond to Galois covers Z → X, and in this case

Aut(Z|X) ∼= Aut(Y |X)/H.

Proof. If H is normal in G := Aut(Y |X), then G
H acts on Y

H and(
Y

H

)
/

(
G

H

)
∼= Y/G ∼= X.

So, Y/H → X is Galois with group G/H. Suppose now that Z → X is Galois. We first show
that if φ ∈ Aut(Y |X), then it induces an automorphism of Aut(Z|X). Indeed, take y ∈ Y
consider the diagram

Y Y

Z Z

X X

ϕ

pY pY

ψ

p2 p2

Then, x = (p2 ◦ pY )(y) ∈ X and pY (y), pY (φ(y)) ∈ p−1
2 (x). Since Z → X is Galois, there exists

a unique ψ ∈ Aut(Z|X) such that ψ(pY (y)) = pY (φ(y)) and we claim that this ψ makes the
diagram commute, i.e. ψ ◦ pY = pY ◦φ. However, the two maps agree on y and thus coincide on
all of Y by Lemma 2.8. The assignment φ 7→ ψ then induces a homomorphism

ρ : Aut(Y |X)→ Aut(Z|X)

with kernel Aut(Y |Z), which is thus normal in Aut(Y |X).

2.2 Monodromy and the Universal Cover

Suppose now X is locally path-connected.

Notation. For x ∈ X, we denote by π1(X,x) the fundamental group of X, that is the group
of homotopy classes of loops based at x, where the group operation is given by concatenation of
loops with the convention that if f, g are loops then f · g is given by first going along
g and then along f . We denote by I the unit interval [0, 1].

The following lemma is a standard result from the theory of of covers.

Lemma 2.19. If Y → X is a cover and f : I → X represents an element α ∈ π1(X,x). If
we take y in p−1(x), then f has a unique lifting f̃ : I → Y such that f̃(0) = y. Moreover, if
f1 is another representative of α, then

f̃(1) = f̃1(1).
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Definition 2.20 (Monodromy action). There is a left action of π1(X,x) on p
−1(x) given

α · y := f̃(1),

where f is any representative of α ∈ π1(X,x) and f̃ is the unique lifting of f such that
f̃(0) = y.

Fix a basepoint x in X. We define a functor

Fibx : {covers of X} → {sets with a left π1(X,x)-action}

which sends p : Y → X to the fiber p−1(x) of the base point, with the monodromy action. To
a morphism f : Y1 → Y2 of covers we associate f |p−1

Y1
(x) : p

−1
Y1

(x) → p−1
Y2

(x), which is compatible

with the action of π1(X,x). The main result of this section is the following:

Theorem 2.21. Let X be a connected and locally simply connected space, and take x in
X. Then, the functor Fibx induces an equivalence of categories

{ covers of X} ←→ {left π1(X,x)-sets}.

Here connected covers correspond to transitive π1(X,x)-sets. Moreover, Galois covers cor-
respond to coset spaces of normal subgroups of π1(X,x).

Definition 2.22. Let C be a category and let F : C → Sets be a functor. Then, F is
representable if there exists an object A ∈ C such that

F ∼= HomC(A,−)

as functors.

Note. Whenever it exists, such a representing object A is unique up to unique isomorphism.

Proposition 2.23. In the situation of the above theorem, the functor Fibx is representable
by a cover X̃x → X, called the universal cover of X at x.

Remark 2.24. In particular, representability tells us that Hom(X̃x, X̃x) ∼= π−1(x), so there

is some element x̃ in X̃x which corresponds to idX̃x
, and this “universal element” identifies a

distinguished lift of x in any other cover Y → X via the unique morphism X̃x → Y .

Proof. We first prove that Fibx is representable by such a cover X̃x → X as a functor

Fibx : {spaces over X} → {sets},
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ignoring the monodromy action. We construct the cover X̃x as follows: as a set, it is given by

X̃x := {homotopy classes of paths I
f−→ X, f(0) = x}

with the map π : X̃x → X given by evaluating a path at 1.
For the topology, pick any ỹ ∈ X̃x represented by a path f : I → X and set x = f(0), y = f(1).

We then pick a simply connected open neighborhood U of y in X, and define a basis of open
neighborhoods Ũy of ỹ as the “continuations” of f to points inside U : since U is simply connected,
the continuation only depends on the endpoint in U . This is a basis of open neighborhoods
because if Ũy and Ṽy are two such neighborhoods, then there exists a simply connectedW ⊂ U∩V
containing y, and W̃y ⊂ Ũy ∩ Ṽy.

This topology makes π continuous, and moreover π is a cover: indeed, for z̃ ∈ Ũy we have

Ũy = Ũz,and if ỹ, ỹ′ ∈ π−1(y) are distinct then Ũy ̸= Ũy′ and thus Ũy ∩ Ũy′ = ∅. Therefore,

π−1(U) =
⊔

ỹ∈π−1(y)

Ũy

Note. The “universal element” x̃ ∈ π−1(x) is represented by the constant path I → {x}.

Finally, we need to show that X̃x represents Fibx, that is given a cover Y
p→ X we have a

functorial bijection

y ∈ p−1(x)
1:1←→ πy ∈ HomX(X̃x, Y )

Pick y ∈ p−1(x) and x̃′ ∈ X̃x represented by a path I
g−→ X with g(0) = x and g(1) = π(x̃′).

Then, g has a unique lifting g̃ : I → Y such that g̃(0) = y, and we define

πy(x̃
′) := g̃(1).

It’s easy to check that πy is continuous and that p ◦ πy = π. The inverse is given by evaluating
at the universal element x̃, and functoriality is also straightforward.

The left action of Aut(X̃x|X) on X̃x induces a right action on Fibx(Y ) = Hom(X̃x, Y ).
However, we can turn it into a left action by the following trick:

Definition 2.25. If G is a group, the opposite group Gop is the group with the same
underlying set as G, and with multiplication given by

(g, h) 7→ h · g.

Proposition 2.26. X̃x is a Galois cover of X, and there is a canonical isomorphism of
groups

Aut(X̃x|X) ∼= π1(X,x)
op.

In this way, the action of Aut(X̃x|X) on Fibx(Y ) described above corresponds to the mon-
odromy action of π1(X,x). This will follow from the construction of the isomorphism given
below.
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Lemma 2.27. The space X̃x is path-connected.

Proof. We prove that the universal element x̃ can be connected to every other x̃′ ∈ X̃x. Suppose

x̃′ is represented by a path I
f−→ X, and consider the composition with the multiplication map

I × I → X

(s, t) 7→ f(st).

For every fixed s, we get a map fs : I → X such that f0 is the constant path at x and f1 = f .
One then checks that

s 7→ [fs]

is a continuous map from I to X̃x, and so it defines a path joining x̃ to x̃′ which is the unique
lifting of f to X̃x.

Lemma 2.28. If X is simply connected and locally path-connected, every cover Y
p−→ X is

trivial.

Proof. Assume without loss of generality that Y is connected. Then, by assumption it must also
be path-connected. Pick y0, y1 ∈ Y and suppose that x = p(y0) = p(y1). We want to show

that y0 = y1. Since Y is path-connected, there exists a path I
f̃−→ Y such that f̃(0) = y0 and

f̃(1) = y1. Then, f := p ◦ f̃ is a closed path in X around x, but X is simply connected and so f

is homotopic to the constant path I
c−→ {x}. The unique lifting c̃ of c such that c̃(0) = y0 is the

constant path at y0, so by uniqueness of the lifting we get y1 = f̃(1) = c̃(1) = y0.

Corollary 2.29. Let X be a locally simply connected space. If Y
p−→ X is a cover of X and

Z
q−→ Y is a cover of Y , then q ◦ p : Z → X is a cover of X.

Proof. If U is a simply connected neighborhood of X, then p−1(U) is a disjoint union of simply
connected open sets Ui homeomorphic to U , but then q−1(Ui) is a disjoint union of open sets
homeomorphic to Ui (by the above lemma, as Ui is simply connected), and thus q◦p is a cover.

Proof of Proposition 2.26. We want to show that X̃x → X is a Galois cover. By Lemma 2.27,
we know it is connected, so we only need to show that Aut(X̃x|X) acts transitively on one fibre,
namely on π−1(x). Pick ỹ ∈ π−1(x) which corresponds by representability to a morphism of

covers πỹ : X̃x → X̃x with πỹ(x̃) = ỹ. We claim that πỹ is an automorphism of covers. We have
already seen that πy is a connected cover, in particular it is surjective. Take some z̃ ∈ πỹ(x̃).
Again, by representability we get a morphism of covers πz̃ : X̃x → X̃x such that πz̃(x̃) = z̃.
Furthermore, π ◦ πỹ ◦ πz̃ = π, so by Lemma 2.8 we have

πỹ ◦ πz̃ = idX̃x
,
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but since these are surjective maps, this shows injectivity of πỹ and we conclude that πỹ is an
automorphism of covers.

We now move on to the isomorphism between π1(X,x)
op and Aut(X̃x|X). Recall that there

is a right action of π1(X,x) on X̃x. If x̃′ ∈ X̃x is represented by f : I → X with f(0) = x and
α ∈ π1(X,x) is represented by fα such that fα(0) = fα(1) = x, then the corresponding left

action of π1(X,x)
op on X̃x is given by

α · x̃′ := [f ◦ fα].

This defines a map

π1(X,x)
op → Aut(X̃x|X)

α 7→ φα := (x̃′ 7→ α · x̃′).

This is a homomorphism, and it is injective because if α ̸= 1 then it moves x̃. For surjectivity,
given φ ∈ Aut(X̃x|X) we need to show that it comes from some α ∈ π1(X,x). Consider

x̃′ = [f ] ∈ X̃x and its image φ(x̃′) = [g]. Here g is a path starting from x and ending at f(1).
Denote by α the class of f−1 · g in π1(X,x). The associated ϕα coincides with ϕ in x̃′, so they
are equal by the usual lemma.

Propositions 2.23 and 2.26 together imply Theorem 2.21, in the same way as in Grothendieck’s
form of Galois theory (Theorem 1.35).

Remark. In general, consider a category C and a functor F : C → Sets representable by some
object A. Then, there is an isomorphism

Aut(F ) ∼= Aut(A)op,

where Aut(F ) is the group of automorphisms of the functor F .
In view of the above fact, we can define the fundamental group of any topological space X as

π1(X,x) = Aut(Fibx).
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