GALOIS GROUPS AND FUNDAMENTAL GROUPS Homework 3

- 1. Let k be a field of characteristic 0 containing the n-th roots of unity.
- a) Show that for every $a \in k$ there exists a Galois field extension $K_n|k(t)$ with group $\mathbf{Z}/n\mathbf{Z}$ such that the normalisation X of \mathbf{A}_k^1 in K_n is étale above the complement of the point of \mathbf{A}_k^1 defined by a, and moreover there is only one point of X above a, with inertial subgroup equal to the whole of $\mathbf{Z}/n\mathbf{Z}$.
 - b) Show that if $a \neq a' \in k$, then $K_a \cap K_{a'} = k(t)$.
- 2. Let k again be a field of characteristic 0 containing the n-th roots of unity, and let A be a finite abelian group with nA = 0.

Show that there exists a finite Galois extension L|k(t) with group A such that k is algebraically closed in L.

3. Let k be an algebraically closed field of characteristic p > 0, and consider the rational function field k(t). Choose $f \in k[t]$ so that the polynomial $x^p - x - f \in k(t)[x]$ is irreducible over k(t).

Show that the normalization of \mathbf{A}_k^1 in the finite extension of k(t) defined by $x^p - x - f$ is an étale Galois cover of \mathbf{A}_k^1 whose Galois group is $\mathbf{Z}/p\mathbf{Z}$. (It is called an *Artin–Schreier cover* of \mathbf{A}_k^1 .)

4. Let k again be an algebraically closed field of characteristic p > 0, and let $\pi_1^{ab}(\mathbf{A}_k^1)$ be the maximal abelian quotient of the profinite group $\pi_1(\mathbf{A}_k^1)$, i.e. its quotient modulo the (closed) commutator subgroup.

Using the previous exercise, show that $\pi_1^{ab}(\mathbf{A}_k^1)/p\pi_1^{ab}(\mathbf{A}_k^1)$ is an infinite-dimensional \mathbf{F}_p -vector space.

[Bonus question: can you determine the cardinality of $\pi_1^{ab}(\mathbf{A}_k^1)/p\pi_1^{ab}(\mathbf{A}_k^1)$?]