What is this course about

Not approximation methods. (!)
A few selected advanced topics in linear algebra, close to (some of) the themes of our research group in Pisa.

New teacher, Federico Poloni (Inst. of Computer Science); partially new topics.

Themes

- Matrix pencils and polynomials (canonical forms / structure);
- Methods to compute for matrix functions;
- (Some) methods to solve matrix equations.

Course features

Prereqs

- Numerical analysis
- Scientific computing

Synergizes with other courses from the same area.

Course format

- Frontal lectures - will attempt to record them.
- Seminars by the students: last year 2/each (one during the course, one after). We'll see, also depending on no. of students.

Material from several books / sources.
Possibly some changes along the way - new course for me, too.

Movie: matrix pencils

Generalized eigenvalue problems: $\operatorname{det}(A-\lambda E)=0, E \neq I$.
Some new features; for instance, eigenvalues at ∞

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Some more pathological cases; for instance,

$$
\operatorname{det}\left[\begin{array}{ccc}
0 & 1 & \lambda \\
1 & 0 & 0 \\
\lambda & 0 & 0
\end{array}\right] \equiv 0
$$

Try conjugating and computing its eigenvalues with $\operatorname{eig}\left(Q * A * Q^{\prime}, ~ Q * E * Q^{\prime}\right) \ldots$

What can we say about higher-degree matrix polynomials?

Movie trailer: matrix functions

How to define $f(A)$ for an analytic function f ? You have already seen $\exp (A) \ldots$
Either via a series expansion or

$$
f(A)=f\left(V \wedge V^{-1}\right)=V \operatorname{diag}\left(f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \ldots, f\left(\lambda_{m}\right)\right) V^{-1}
$$

Higher derivatives may pop up unexpectedly:

$$
f\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\right)=\left[\begin{array}{ccc}
f(0) & f^{\prime}(0) & f^{\prime \prime}(0) \\
0 & f(0) & f^{\prime}(0) \\
0 & 0 & f(0)
\end{array}\right]
$$

Techniques to compute them involve Cauchy integrals, interpolation...

Movie trailer: matrix equations

Algebraic Riccati equations

Find $X \in \mathbb{R}^{n \times n}$ that solves

$$
X C X-A X+X D-B=0
$$

Appears in several applications, e.g., control theory.
(Block) eigenvalue problem in disguise: find $X, \Lambda=C X+D$ s.t.

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
X \\
I
\end{array}\right]=\left[\begin{array}{c}
X \\
I
\end{array}\right] \Lambda .
$$

Or: find X such that

$$
\left[\begin{array}{cc}
I & -X \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]=\left[\begin{array}{ll}
* & 0 \\
* & *
\end{array}\right] .
$$

Movie trailer: matrix sign

Newton for the matrix sign

$$
A_{k+1}=\frac{1}{2}\left(A_{k}+A_{k}^{-1}\right), \quad A_{0}=A .
$$

Maps eigenvalues according to $\lambda_{i}^{(k+1)}=\frac{1}{2}\left(\lambda_{i}^{(k)}+1 / \lambda_{i}^{(k)}\right)$.
Two limit fixed points, ± 1.
Converges to the matrix analogue of the sign function,

$$
\operatorname{sgn}(A)=\operatorname{sgn}\left(V D V^{-1}\right)=V\left(\operatorname{sgn}\left(\lambda_{1}\right), \operatorname{sgn}\left(\lambda_{2}\right), \ldots, \operatorname{sgn}\left(\lambda_{m}\right)\right) V^{-1}
$$

Splits the spectrum of A in two: $\operatorname{ker}\left(A_{\infty}-I\right)$ and $\operatorname{ker}\left(A_{\infty}+I\right)$.

- Can be used to solve algebraic Riccati equations.
- Can be used to find eigenvalues recursively, as a "matrix product-heavy" algorithm.

