Matrix pencils

Definition: Matrix pencil

$A+x B$, with $A, B \in \mathbb{C}^{m \times n}, x$ indeterminate.
A pencil is called regular if $n=m$ and $\operatorname{det}(A+x B)$ does not vanish identically, i.e., if there is $\lambda \in \mathbb{C}$ for which it is square invertible.
An eigenvalue λ is a value for which $\operatorname{det}(A+\lambda B)=0$.
Eigenvector, Jordan chains. . .
If $\operatorname{det}(A+x B)$ has degree less than n, the 'missing' eigenvalues are said to be "at infinity".

Example

$\operatorname{de}\left[\begin{array}{ll}1 & x \\ 1 & x\end{array}\right]=x-x=0 \quad$ no singolane $\operatorname{det}\left[\begin{array}{cc}1+x & x \\ x & 1+x\end{array}\right]=2 x+1$ no regolare se $x=-\frac{1}{2}$, viene $\left[\begin{array}{cc}-\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2}\end{array}\right]$ no non invertibile no $\lambda=-\frac{1}{2} i$ un eutovelere di $\left[\begin{array}{cc}1+x & x \\ x & 1+x\end{array}\right]$
$\left[\begin{array}{l}1 \\ 1\end{array}\right]$ eutovettore corrispondente (outoval/vetl. di une matrice $M \leftrightarrow$ di $M-x I$)
$\operatorname{det}(A+B x)$ hes segre st most n If B is singular, lower degree
Def: A pencil hos $n-\operatorname{deg} \operatorname{det}(A+B x)$ eigenvalues at infinity
$\left[\begin{array}{l}\text { remark: } A+B x \text { hos an aigenalve at } \infty \\ \text { iff } A x+B \text { has son eigenvalue at } 0\end{array}\right]$ $\left[\begin{array}{cc}x+1 & x \\ x & x+1\end{array}\right]$: eigul at $-\frac{1}{2}, \infty$
$\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right]$: eigul st t_{∞} with multiplicity 2

Eigenvalues of singular pencils
Can be defined via 'unusual rank drop'. For instance:

has typical rank 2. More formally, $\operatorname{rank}_{\mathbb{C}(x)}(A+x B)=2$. But $A+\underline{2} B$ has rank 1 .
Remark: for almost all $\lambda \in \mathbb{C}$ (sport from a finite set), ron k $k_{d}(A+\lambda B)$ $=\operatorname{ren} K_{\mathbb{C}(x)}(A+x B)$.

Canonical form
Equivalence relation \sim : for each two square $\underline{P} \in \mathbb{C}^{m \times m}, \underline{Q} \in \mathbb{C}^{n \times n}$ square invertible, $A+x B$ and $\underline{P}(A+x B) \underline{Q}$ are said to be equivalent.

$$
\overline{P A Q}+\bar{P} B Q
$$

Equivalent \Longrightarrow same eigenvalues, singularity...
If B is square nonsingular, there is little new in this theory: $A+x B \sim J-x l$, where J is the Jordan canonical form of $-B^{-1} A$ (or $-A B^{-1}$).
Computing eigenvalues of $A+x B \Longleftrightarrow$ computing eigenvalues of
$-B^{-1} A$
$\operatorname{det} P(A+x B) Q=\operatorname{det} P \operatorname{det}(A+\times B) \operatorname{det} Q$
BK:

$$
\begin{array}{r}
M-x I \sim N-x I \Leftrightarrow M e N \text { simili, } \\
\quad M=S N S^{-1}
\end{array}
$$

se B invertibile:

$$
\begin{aligned}
& A+\times B \sim-B^{-1}(A+x B)=-B^{-1} A-x I \sim \\
& \sim S\left(-B^{-1} A\right) S^{-1}-x I=J-x I
\end{aligned}
$$

\& Jordon form of $-B^{-1} A$

Theorem (Weierstrass canonical form)
For a regular matrix pencil $A+x B \in \mathbb{C}[x]^{n \times n}$, there are nonsingular $P, Q \in \mathbb{C}^{n \times n}$ such that $P(A+x B) Q$ is the direct sum (blkdiag) of blocks of the forms

$$
\left[\begin{array}{cccc}
\lambda-x & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & \\
& & \ddots & 1 \\
& & & \lambda-x
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1-x & & 0 \\
\ddots & \ddots & \\
0 & \ddots & -x
\end{array}\right)
$$

Proof (sketch):

- Take c such that $A+c B$ is invertible;
- $A+x B \sim I+(x-c)(A+c B)^{-1} B$;
- $A+x B \sim I+(x-c) \operatorname{blkdiag}\left(J_{1}, \ldots, J_{s}\right)$,
- Consider separately each $I+(x-c) J_{i}=I+(x-c)(\lambda I+N)$.
- If $\lambda=0$, block $\sim I-x M$, where $M=$ toeplitztriu $(0,1, \ldots)$.
- If $\lambda \neq 0$, block $\sim M-x$, where $M=$ toeplitztriu $\left(\frac{c \lambda-1}{\lambda}, \frac{1}{\lambda^{2}}, \ldots\right)$.

Prendo $c \in \mathbb{C}$ trle che $A+c B$ sia invertibile

$$
\begin{aligned}
& A+x B=(A+c B)+(x-c) B \sim \\
& I+(x-C) \underbrace{(A+c B)^{-1} B} \sim\left[\begin{array}{l}
\text { Jordon form } \\
\text { of } A+C B)^{-1} B
\end{array}\right] \\
& \sim I+(x-c) \operatorname{diang}\left(J_{1}, J_{2}, \ldots J_{s}\right) \\
& =\left[\begin{array}{cccc}
I t(x-c) J_{1} & & & \\
& I+(x-c) J_{2} & & \\
& & \ddots & \\
& & & I+(x-c) J_{S}
\end{array}\right]
\end{aligned}
$$

Lavovo soi singhi blocchi

$$
\begin{aligned}
& J_{i}=\lambda I+N \quad N=\left[\begin{array}{ccc}
0 & \ddots & \\
\ddots & \ddots & 1 \\
& 0
\end{array}\right] \\
& \frac{I+}{\text { caso }}(x-c) J_{i}=(1-c \lambda) I-c N+x(\lambda I+N) * \\
& \text { (1) } \lambda=0 \\
& \underbrace{*}=(I-c N)+x N \sim I+x(I-c N)^{-1} N
\end{aligned}
$$

Since dimker $\left[\begin{array}{lll}0 & \ddots & \cdots \\ 0 & 1 & c \\ 0 & 0\end{array}\right]=1$, it has
a siyle Jordon block,

$$
I-x\left[\begin{array}{cc}
1 & c \\
0^{\prime} & \ddots \\
\because & c \\
& 0 \\
0
\end{array}\right] \sim I-x\left[\begin{array}{ccc}
0 & 1 & 0 \\
\vdots & \ddots & 1 \\
0 & 1 & 0
\end{array}\right]
$$

(2) $\lambda \neq 0$
$\otimes \sim((1-c \lambda) I-c N)(\lambda I+N)^{-1}-x I$
(ragionsments anelogo)

One can define 'Jordan chains' (at λ, at $\infty \ldots$)

Generalized Schur factorization

Compare with generalized Schur (QZ) factorization:

Theorem

For any pair of square $A, B \in \mathbb{C}^{m \times m}$, one can find orthogonal Q, Z such that $Q A Z=T_{A}, Q B Z=T_{B}$ are upper triangular (at the same time).

Eigenvalues $=\frac{\left(T_{A}\right)_{i i}}{\left(T_{B}\right)_{i i}}($ incl. $\infty)$.

Theorem (Kronecker canonical form)

For a regular matrix pencil $A+x B \in \mathbb{C}[x]^{m \times n}$, there are nonsingular $P \in \mathbb{C}^{m \times m}, Q \in \mathbb{C}^{n \times n}$ such that $P(A+x B) Q$ is the direct sum (blkdiag) of blocks of the form $J_{\lambda}(x), J_{\infty}(x)$, and

$$
\left[\begin{array}{ccccc}
1 & x & & & \\
& 1 & x & & \\
& & \ddots & \ddots & \\
& & & 1 & x
\end{array}\right] \in \mathbb{C}[x]^{k \times(k+1)},\left[\begin{array}{cccc}
1 & & & \\
x & 1 & & \\
& x & \ddots & \\
& & \ddots & 1 \\
& & & x
\end{array}\right] \in \mathbb{C}[x]^{(k+1) \times k}
$$

(This includes 1×0 and 0×1 empty blocks).

Examples

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 1 & x \\
1 & 0 & 0 \\
x & 0 & 0
\end{array}\right] \ldots
$$

Proof (sketch): [Gantmacher book '59]

- Suppose $(A+x B) v(x)=0$ for some $v \in \mathbb{C}(x)^{n}$
- We may assume $v=v_{0}+v_{1} x+\cdots+v_{d} x^{d} \in \mathbb{C}[x]^{n}$, clearing denominators.
- Remark: singularity of $(d+1) \times d\left[\begin{array}{cccc}A & & & \\ B & A & & \\ & \ddots & \ddots & \\ & & B & A \\ & & & B\end{array}\right]$.
- Assume d minimal.
- We wish to show that the v_{i} are linearly independent. Suppose they are not so; then one can choose $\alpha(x)=\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{e} x^{e}$ (of minimal degree $e \leq d$) such that $w(x)=\alpha(x) v(x)$ has a zero coefficient w_{e}. But then $A w_{0}=0, A w_{1}+B w_{0}=0, \ldots, B w_{e-1}=0$, which contradicts minimality of d.
(cont.)
- Take a basis that starts with the v_{i}; this block-triangularizes the pencil: $\left[\begin{array}{cc}K(x) & L(x) \\ 0 & M(x)\end{array}\right]$, where $K(x)$ is a Kronecker block.
- Moreover, by minimality of $d, M(x)$ is such that $d \times(d-1)$
$\left[\begin{array}{llll}M_{0} & & & \\ M_{1} & M_{0} & & \\ & \ddots & \ddots & \\ & & M_{1} & M_{0} \\ & & & M_{1}\end{array}\right]$ is nonsingular.
- Using this nonsingularity, one can prove that the system of Sylvester-like equations

$$
\left[\begin{array}{cc}
I & E \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
K(x) & L(x) \\
0 & M(x)
\end{array}\right]\left[\begin{array}{cc}
I & F \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
K(x) & 0 \\
0 & M(x)
\end{array}\right]
$$

is solvable (some work needed - details not given in the course).

Kernel in $\mathbb{C}(x)$

The $(k \times(k+1))$ Kronecker blocks have kernel
$\left[\begin{array}{lllll}(-1)^{k} x^{k} & (-1)^{k-1} x^{k-1} & \ldots & -x & 1\end{array}\right]^{T}$.
The other blocks have full column rank in $\mathbb{C}(x)$.
(Remark: the kernel of blkdiag (C, D) can be obtained by the kernels of C, D.)

