Matrix pencils

Definition: Matrix pencil

A + xB, with $A, B \in \mathbb{C}^{m \times n}$, x indeterminate.

A pencil is called regular if n = m and det(A + xB) does not vanish identically, i.e., if there is $\lambda \in \mathbb{C}$ for which it is square invertible.

An eigenvalue λ is a value for which det $(A + \lambda B) = 0$. Eigenvector, Jordan chains...

If det(A + xB) has degree less than *n*, the 'missing' eigenvalues are said to be "at infinity".

Example

$$\begin{bmatrix} x+1 & x \\ x & x+1 \end{bmatrix} \quad \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$$

det[1 x] = x-x=0 no singolere
det[1 x] = 2x+1 no regolere
se x=-1/2, viene [-1/2 1/2] no hon invertibile

$$no \Lambda = -\frac{1}{2}i$$
 on entrovelore di [1+x x
x 1+x]
[1] outovettore corrispondente
(autovel/vett. di une metrice M(s) de M-xI)

det (A+BX) has degree at most n If B is singular, lower degree Def: A pencil has N-deg det (A+BX) eigenvalues at infinity [remark: A+Bx hos an agenvalue at ob] [iff Ax+B has sun eigenvalue at o] X+1 ×]: eigel at -2, ~ [oi]: eigel at a with multiplicity 2

Eigenvalues of singular pencils

Can be defined via 'unusual rank drop'. For instance:

$$A + xB = \begin{bmatrix} 2 & x & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ x & x & 0 \end{bmatrix} \begin{bmatrix} 2 - \chi \\ 2 & \chi \\ \chi & \chi \end{bmatrix} = 2\chi - \chi^2$$

has typical rank 2. More formally, $\operatorname{rank}_{\mathbb{C}(x)}(A + xB) = 2$. But $A + \underline{2}B$ has rank 1.

Canonical form

Equivalence relation \sim : for each two square $\underline{P} \in \mathbb{C}^{m \times m}$, $\underline{Q} \in \mathbb{C}^{n \times n}$ square invertible, A + xB and $\underline{P}(A + xB)Q$ are said to be equivalent. PAQ $\Rightarrow x \rightarrow PQQ$

Equivalent \implies same eigenvalues, singularity...

If *B* is square nonsingular, there is little new in this theory: $A + xB \sim J - xI$, where *J* is the Jordan canonical form of $-B^{-1}A$ (or $-AB^{-1}$). Computing eigenvalues of $A + xB \iff$ computing eigenvalues of $-B^{-1}A$

det P(A+xB)Q = edet P det(A+xB)det Q<u>RMK</u>: $M-xT \sim N-xI \iff MeNsimili,$ $M=SNS^{-1}$

se Binvertibile: $A + xB \sim -B^{-1}(A + xB) = -B^{-1}A - xI \sim$ $\sim S(-B'A)S'-XI = J-XI$ E Jordon form of -B'A

Theorem (Weierstrass canonical form)

For a regular matrix pencil $A + xB \in \mathbb{C}[x]^{n \times n}$, there are nonsingular $P, Q \in \mathbb{C}^{n \times n}$ such that P(A + xB)Q is the direct sum (blkdiag) of blocks of the forms

Proof (sketch):

- Take *c* such that A + cB is invertible;
- $A + xB \sim I + (x c)(A + cB)^{-1}B$;
- $A + xB \sim I + (x c)$ blkdiag (J_1, \ldots, J_s) ,
- Consider separately each $I + (x c)J_i = I + (x c)(\lambda I + N)$.
- If $\lambda = 0$, block $\sim I xM$, where M = toeplitztriu(0, 1, ...).

▶ If
$$\lambda \neq 0$$
, block $\sim M - xI$, where $M = \text{toeplitztriu}(\frac{c\lambda-1}{\lambda}, \frac{1}{\lambda^2}, \dots)$.

Prendo CE (C tale de A+cB sia invertibile $A+xB=(A+cB)+(x-c)B\sim$ I+(x-c)(A+rB)⁻¹B~ (Jordon form) of (A+rB)B $\mathcal{N} \mathbf{T} + (\mathbf{x} - \mathbf{c}) \operatorname{diag} \left(\mathbf{J}_{1}, \mathbf{J}_{2}, \dots, \mathbf{J}_{s} \right)$ $= \begin{bmatrix} I + (k-c)J_{1} & 0 \\ 0 & I + (k-c)J_{2} \\ 0 & I + (k-c)J_{3} \end{bmatrix}$

Lavova si singeli blocchi $J_{i} = \lambda I + N \qquad N = \begin{bmatrix} 0, 1 \\ 0 \\ 0 \end{bmatrix}$ $\frac{I+(x-c)}{C+N+c} J_{i} = (I-cA)I-cN+c(AI+N) \otimes$ (1) = 0 $\mathbb{R} = (\mathbb{I} - c \mathbb{N}) + \mathbb{X} \mathbb{N} \sim \mathbb{I} + \mathbb{X} (\mathbb{I} - c \mathbb{N})^{-1} \mathbb{N}$ One eigenvolue et \mathcal{O} $\mathsf{rK}\left(\begin{bmatrix}0,1,5,1\\0&0\end{bmatrix}-0:\mathbf{I}\right)=\mathbf{K};-1$

Sina dimker [0,1,c,c] = 1, it has a sigle Jordon block,

2 xto $\widetilde{\mathbb{A}} \sim ((-c_{N})I - c_{N})(\Lambda I + N)^{-1} - \mathbf{x}I$ (ragionsments analago)

One can define 'Jordan chains' (at $\lambda,$ at $\infty...)$

Generalized Schur factorization

Compare with generalized Schur (QZ) factorization:

Theorem

For any pair of square $A, B \in \mathbb{C}^{m \times m}$, one can find orthogonal Q, Z such that $QAZ = T_A, QBZ = T_B$ are upper triangular (at the same time).

Eigenvalues = $\frac{(T_A)_{ii}}{(T_B)_{ii}}$ (incl. ∞).

Theorem (Kronecker canonical form)

For a regular matrix pencil $A + xB \in \mathbb{C}[x]^{m \times n}$, there are nonsingular $P \in \mathbb{C}^{m \times m}$, $Q \in \mathbb{C}^{n \times n}$ such that P(A + xB)Q is the direct sum (blkdiag) of blocks of the form $J_{\lambda}(x), J_{\infty}(x)$, and

$$\begin{bmatrix} 1 & x & & & \\ & 1 & x & & \\ & & \ddots & \ddots & \\ & & & 1 & x \end{bmatrix} \in \mathbb{C}[x]^{k \times (k+1)}, \qquad \begin{bmatrix} 1 & & & & \\ x & 1 & & & \\ & x & \ddots & & \\ & & \ddots & 1 & \\ & & & x \end{bmatrix} \in \mathbb{C}[x]^{(k+1) \times k},$$

(This includes 1×0 and 0×1 empty blocks).

Examples

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & x \\ 1 & 0 & 0 \\ x & 0 & 0 \end{bmatrix} \dots$$

Proof (sketch): [Gantmacher book '59]

- Suppose (A + xB)v(x) = 0 for some $v \in \mathbb{C}(x)^n$
- We may assume $v = v_0 + v_1 x + \cdots + v_d x^d \in \mathbb{C}[x]^n$, clearing denominators.
- Remark: singularity of $(d+1) \times d$ $\begin{vmatrix} A \\ B \\ \ddots \\ B \\ A \\ \vdots \\ B \\ A \end{vmatrix}$.

- Assume *d* minimal.
- We wish to show that the v_i are linearly independent. Suppose they are not so; then one can choose $\alpha(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_e x^e$ (of minimal degree $e \leq d$) such that $w(x) = \alpha(x)v(x)$ has a zero coefficient w_e . But then $Aw_0 = 0$, $Aw_1 + Bw_0 = 0$, ..., $Bw_{e-1} = 0$, which contradicts minimality of d.

(cont.)

- Using this nonsingularity, one can prove that the system of Sylvester-like equations

$$\begin{bmatrix} I & E \\ 0 & I \end{bmatrix} \begin{bmatrix} K(x) & L(x) \\ 0 & M(x) \end{bmatrix} \begin{bmatrix} I & F \\ 0 & I \end{bmatrix} = \begin{bmatrix} K(x) & 0 \\ 0 & M(x) \end{bmatrix}$$

is solvable (some work needed — details not given in the course).

Kernel in $\mathbb{C}(x)$

The $(k \times (k + 1))$ Kronecker blocks have kernel $\begin{bmatrix} (-1)^k x^k & (-1)^{k-1} x^{k-1} & \dots & -x & 1 \end{bmatrix}^T$. The other blocks have full column rank in $\mathbb{C}(x)$. (Remark: the kernel of blkdiag(C,D) can be obtained by the kernels of C, D.)