Matrix polynomials
A matrix polynomial is A(x) = Ag + Arx + Apx? + - + Agx?.
We assume for now A; €¢ C™*M,
d “not exactly” degree: we admit zero leading coefficients.
Eigenvalues/vectors are pairs such that A(A\)v = 0.

If the polynomial is regular (det A(x) is not identically zero), then
there is at most dm of them. They can be at oo, like for pencils.



Reversal and infinite eigenvalues

Reversal of a matrix polynomial: same coefficients but in the
opposite order:

Rev(Ao + A1 x + Aox? + A3x3) = Az + Aox + A1x% 4+ Apx3.

Lemma
Let A(x) be a regular matrix polynomial. The eigenvalues of
Rev A(x) are )% where \; are the eigenvalues of A(x). This

includes also eigenvalues at oo, with the convention that % =00
1 _
and = =0.

Proof: direct verification for A & {0,00}. Homogenize det A(x) to
count eigvls at 0 and oo.



The companion linearization

Theorem

Let A(x) = Ag + Arx + Axx? + - + Ayx9 be a matrix
polynomial. Then, det A(x) = det C(x), where C(x) is the pencil
(“Frobenius companion form™)

AdX aF Ad—l Ad_2 “o A1 Ao
Im —xIm
C(x) = I —xIm € C[x]dmxdm
lm  —xln

We prove something stronger: there are E(x), F(x) € C(x)mxdm
with determinant 1 s.t. E(x)C(x)F(x) = blkdiag(A(x), [d—1)m)-

Proof (sketch): make linear combinations of columns to eliminate
the blocks —x/.



Other linearizations

Other pencils with the same property
E(x)C(x)F(x) = blkdiag(A(x), [(g—1)m) can be constructed —
they are called linearizations.

Some final projects available on methods to construct them.



Eigenvector recovery

Theorem
v # 0 is an eigenvector of A(x) (with eigvl A # oo) iff

Ad-1y

=2y
w(A,v) =

is an eigenvector of C(x).

Proof: direct verification. Start calling v the last block of w....



Eigenvectors are not independent

Small surprise: the eigenvectors of A(x) are (usually) not linearly
independent.

(How could they be? There are too many of them. . .)

However, w(\;, v;) are linearly independent.



Application

What do we use linearization / eigenvalues of matrix polynomials
for?
Linear differential equations: (assume det(Az) # 0)

Apx + Arx + Agx =0, x : [to, t] — R". (ode)

Special solutions: e

polynomial.

v, where (), v) eigenpair of the matrix

General solution: via linearization of Axx? 4 A;x + Ag (matrix
exponential of —C; ).

(Stable solutions: invariant subspace formed by eigenvalues with
ReX <0.)

What about polynomials with eigenvalues at oo / singularities?
More involved — differential-algebraic equations. Example

S35 =01+ [4]



Jordan chains [Gohberg-Lancaster-Rodman book, Sec. 1.4]

One can define Jordan chains of a matrix polynomial using
derivatives:

A(MN)vp =0,
A/(/\)Vo + A(M)v; =0,

1
SA (o + ANy + ANz = 0

With this definition, voet, (vot + vi)eMt, (vot? + vit + wo)et, ...
are special solutions of (ode).

How to define Jordan chains at co? As Jordan chains at zero of
Rev A(x).



The problem with linearizations and A = o©

The relation C(x) ~ D(x) iff C(x) = E(x)D(x)F(x) preserves the
sizes of Jordan chains at A € C (why?), but not of those at
infinity. This can be seen already for degree 1: the pencils

D(x) =1+0x = ll 1]
and
C(x) = ll 1‘] — D(x)F(x)  with F(x) = ll ﬂ

have different Jordan structures at co.



Strong linearizations
A linearization is said to be strong if Rev L(x) is also a linearization

of Rev A(x).

Result

The companion pencil C(x) is a strong linearization.

Proof: again linear combinations of columns to ‘fold up’ the
polynomial Rev A(x).



Smith form [Gohberg—Lancaster—-Rodman book, appendix S1]
Quick review of other invariants for matrix polynomials. ..

Smith normal form

There are matrices E(x), F(x) with determinant 1 such that
E(x)A(x)F(x) = diag(di1(x), d2(x), ..., dr(x),0,0,...,0), and
di(x) | dit1(x) for all i.

Actually an algebra result — holds in every PID. (Proof idea: a
sort of back-and-forth Gaussian elimination like the one used to
compute inverses. Instead of division, use Bézout identities).
The d;s are uniquely defined (GCDs of all i x i minors).
Reveals:

» Rank over C(x);
» Eigenvalues (roots of d,(x));

» Sizes of Jordan chains (depend on how many d;()) vanish).



Minimal indices [Forney, '72]

Quick review of other invariants for matrix polynomials. ..
The generalization of sizes of singular Kronecker blocks are
minimal indices.

Like in the degree-1 case, kerc(,) A(x) and kerc(y) AT (x) admit
polynomial bases with degrees “as small as possible” — these
degrees are called minimal indices.

Linearizations do not always preserve minimal indices — but
sometimes they change them predictably. For instance, for C(x),
right minimal indices are preserved, left minimal indices are
increased by d — 1.



