
Example: square root

A =


4 1

4 1
4

0

 , f (x) =
√

x

We look for an interpolating polynomial with

p(0) = 0, p(4) = 2, p′(4) = f ′(4) = 1
4 , p′′(4) = f ′′(4) = − 1

32 .

I.e., 
0 0 0 1
43 42 4 1

3 · 42 2 · 4 1 0
6 · 4 2 0 0




p3
p2
p1
p0

 =


0
2
1
4
− 1

32

 ,

p(x) = 3
256x3 − 5

32x2 + 15
16x .



Example – continues

p(A) = 3
256A3 − 5

32A2 + 15
16A =


2 1

4
1
64

2 1
4
2

0

 .

(One can check that f (A)2 = A.)



Example – square root

A =
[
0 1
0 0

]
, f (x) =

√
x

does not exist (because f ′(0) is not defined).

(Indeed, there is no matrix such that X 2 = A.)



Example – matrix exponential

A = S


−1

0
1 1

1

 S−1, f (x) = exp(x).

exp(A) = S


e−1

1
e e

e

 S−1

Can also be obtained as I + A + 1
2A2 + 1

6A3 + . . .
(not so obvious, for Jordan blocks. . . )



Example – matrix sign

A = S


−3

−2
1 1

1

 S−1, f (x) = sign(x) =
{
1 Re x > 0,

−1 Re x < 0.

f (A) = S


−1

−1
1

1

 S−1.

Not constant (for general S).

Instead, we can recover stable / unstable invariant subspaces of A
as ker(f (A)± I).

If we found a way to compute f (A) without diagonalizing, we
could use it to compute eigenvalues via bisection. . .



Example – complex square root

A =
[
0 1
−1 0

]
, f (x) =

√
x

We can play around with branches: let us say f (i) = 1√
2(1 + i),

f (−i) = 1√
2(1− i).

Polynomial: p(x) = 1√
2(1 + x).

p(A) = 1√
2

[
1 1
−1 1

]
.

(This is the so-called principal square root – we have chosen the
values of f (±i) in the right half-plane — other choices are
possible).

(We get a non-real square root of A, if we choose non-conjugate
values for f (i) and f (−i))



Example – nonprimary square root
With our definition, if we have

A = S

1 1
2

 S−1, f (x) =
√

x

we cannot get

f (A) = S

1 −1 √
2

 S−1 :

either f (1) = 1, or f (1) = −1. . .

This would also be a solution of X 2 = A, though.


