Polynomials of matrices

Another different way to make polynomials and matrices interact: take a scalar polynomial, and apply a (square) matrix to it, e.g.,

$$p(x) = 1 + 3x - 5x^2 \implies p(A) = I + 3A - 5A^2.$$

Lemma

If A = S blkdiag $(J_1, J_2, \dots, J_s)S^{-1}$ is a Jordan form, then p(A) = S blkdiag $(p(J_1), p(J_2), \dots, p(J_s))S^{-1}$, and $p(J_i) = \begin{bmatrix} p(\lambda_i) & p'(\lambda_i) & \dots & \frac{1}{k}p^{(k)}(\lambda_i) \\ & p(\lambda_i) & \ddots & \vdots \\ & & \ddots & p'(\lambda_i) \\ & & & p(\lambda_i) \end{bmatrix}.$

(Proof: Taylor expansion of p around λ .)

$$P(x) = P(x) + P'(x)(x - x) + \dots + P^{(l)}(x)(x - x)^{d}$$

$$= P(x) = P(x) + P'(x)(x - x) + \dots + \frac{1}{d!} P^{(l)}(x)(x - x)^{d}$$

$$= P(x) + P'(x)(x) + \frac{1}{2}P''(x) + \dots + \frac{1}{d!} P^{(l)}(x)(x - x)^{d}$$

$$= \left[P(x) + P'(x) + \frac{1}{2}P''(x) + \frac{1}{2}P^{(l)}(x) + \frac{1}{2}P^{$$

Functions of matrices [Higham book, '08] C. 1

We can extend the same definition to arbitrary scalar functions: Given a function $f : U \subseteq \mathbb{C} \to \mathbb{C}$, we say that f is defined on A if f is defined and differentiable at least $\underline{m_g(\lambda_i) - 1}$ times on each eigenvalue λ_i of A.

Definition

If A = S blkdiag $(J_1, J_2, ..., J_s)S^{-1}$ is a Jordan form, then f(A) = S blkdiag $(f(J_1), f(J_2), ..., f(J_s))S^{-1}$, where

$$f(J_i) = \begin{bmatrix} f(\lambda_i) & f'(\lambda_i) & \dots & \frac{1}{k!} f^{(k)}(\lambda_i) \\ & f(\lambda_i) & \ddots & \vdots \\ & & \ddots & f'(\lambda_i) \\ & & & f(\lambda_i) \end{bmatrix}$$

(Reasonable doubt: is it independent of the choice of S?)

Def: Hernite interpolating polynomial:
Dati hodi
$$\lambda_1, \Lambda_2, ..., \lambda_k$$
, moltoplicità
 $1 \le M_i$ per $i=1, 2, ..., k$, e una funtione derivabile
 $m_i 1$ volde in λ_i , esiste un (unico) polinomio
di grado $(\overline{Z}, M_i) - 1$ tale de $p^{(j)}(\Lambda_i) = f^{(j)}(\Lambda_i)$
per ogni $\overline{e}=1, 2, ..., k$, $j=1, 2, ..., M_i$:
 \overline{ES} : trovare un polinomio tale che
 $p(0)=1$ $p^{(1)}=e$ (coincide con $\exp(x)$
 $-o$ $p^{i}(o)=1$ $p^{ii}(1)=e$ in $O e I$, con
 $-o$ $p^{ii}(o)=1$ $p^{ii}(1)=e$ due derivato agruno)
(deg = 5)

 $f[x_1, x_2] \quad f[x_1, x_2, x_3] \quad f[x_1, x_2, x_3] \quad f[x_1, x_2, x_3] \quad f[x_2, x_3, x_4] \quad f[x_3, x_4] \quad f[x_2, x_3, x_4] \quad f[x_3, x_4] \quad (forma d' Newton)$ f(x) f(x) Υ_٩, f(xy) $f[x_{i_1}x_{i+i}] = \frac{f(x_{i+1}) - f(x_{i})}{x_{i+1} - x_{i}} \quad \bullet$ $f[x_{i_{1}} \times f_{i_{1}} \times f_{i_{1}} \times f_{i_{1}}] = \frac{f[x_{i_{1}+i_{1}} \times f_{i_{1}+2}] - f[x_{i_{1}} \times f_{i_{1}+1}]}{X_{i_{1}+2} - X_{i_{1}}}$

$$P(x) = f[x_1] + f[x_1, x_2](x-x_1) + f[x_1, x_2, x_3](x-x_1)(x-x_2)$$

$$+ \dots + f[x_1, x_2, \dots \times \kappa](x-x_1)(x-x_2) \dots (x-x_{\kappa_1})$$
(Newton form of interpolating polynomial)

Alternate definition: via Hermite interpolation

Definition

f(A) = p(A), where p is a polynomial such that $f(\lambda_i) = p(\lambda_i), f'(\overline{\lambda_i}) = p'(\lambda_i), \dots, f(\underline{m_g(\lambda_i)}-1)(\lambda_i) = p^{(m_g(\lambda_i)-1)}(\lambda_i)$ for each i.

We may use this as a definition of f(A) (and it does not depend on S).

Obvious from the definitions that it coincides with the previous one.

Remark: if $A \in \mathbb{C}^{m \times m}$ has multiple Jordan blocks with the same eigenvalue, these may be fewer than *m* conditions. Remark: be careful when you say "all matrix functions are polynomials", because *p* depends on *A*.

$$\begin{array}{l} p(A) = p(A) & Ap(A) = p(A)A \\ p(B) = q(B) & Bq(B) = q(B)B \end{array}$$

Se f
$$\overline{e}$$
 un polinomio, allore $f(A)$ définite n
questo mado coincide con il volutore $f(x)$ in A :
 $A=SJS^{-1}$
volutore $f(x)$ in A produce S ·blkdiag $(f(J_1), -f(J_k))S^{-1}$
dove $f(J_1) = \begin{bmatrix} f(A_1) & f'(A_2) & \cdots & f(M_{n-1}) & (A_1) \\ & & f'(A_1) \\ & & f'(A_1) \\ & & f'(A_1) \\ & & f'(A_1) \end{bmatrix}$
che coincide con $p(J_1)$ se $p(i)$ \overline{e} il polinomio
di interpologione.
Quindi $f(A)$ coincide con $p(A)$

Se voglio valutare f(A) per $A = 5 \begin{bmatrix} 1000\\ 0022\\ 0002 \end{bmatrix} 5^{-1}$, mi bosto serpare f(1)e f(2), 2 conditioni antiché 4 che avrei in generale.

$$sin(A) cos(A)$$

 $sin(A) cos(A) = cos(A) sin(A)$
 $f(x) = sin(x) cos(x)$

Some properties

- If the eigenvalues of A are $\lambda_1, \ldots, \lambda_s$, the eigenvalues of f(A) are $f(\lambda_1), \ldots, f(\lambda_s)$. (Remark: geometric multiplicities may drop)
- $\int \left[\frac{f(A)g(A) = g(A)f(A) = (\underline{fg})(A) \text{ (since they are all polynomials in } A). \right]$
- If $\underline{f_n \to f}$ together with 'enough derivatives' (for instance because they are analytic and the convergence is uniform), then $f_n(\underline{A}) \to f(\underline{A})$.
- ▶ If a sequence of matrix $\underline{A_n \to A}$, then $f(A_n) \to f(A)$. Proof: let p_n be the (Hermite) interpolating polynomial on the eigenvalues of A_n . Interpolating polynomials are continuous in the nodes, so $p_n \to p$ (coefficient by coefficient). Then $\|\underline{p_n(A_n) - p(A)}\| \le \|p_n(A_n) - p_n(A)\| + \|p_n(A) - p(A)\| \le \dots$

$$f(An) = p_n(An)$$

Examples

- ► exp(A) = I + A + ¹/₂A² + ¹/_{3!}A³ + The identity holds also for non-diagonalizable matrices (by continuity).
- ▶ sgn(A) from

$$\operatorname{sgn}(x) = \begin{cases} -1 & \operatorname{Re} x < 0, \\ 1 & \operatorname{Re} x > 0, \\ \operatorname{undefined} & \operatorname{Re} x = 0. \end{cases}$$

A^{1/2} from f(x) = √x. Note that we can choose signs (branch) independently on each eigenvalue. All the various ways satisfy (A^{1/2})² = A.

Nonprimary matrix functions

If a matrix A has multiple eigenvalues, one could also define a 'square root' by choosing different signs on Jordan blocks with the same eigenvalue: for instance, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ as a square root of I_2 (or

also
$$V \begin{bmatrix} 1 \\ -1 \end{bmatrix} V^{-1}$$
 for any invertible $V \dots$).

These are called **nonprimary** matrix functions (and they are **not** matrix functions with our definition).

(They all satisfy
$$f(A)^2 = A$$
.)

(They are not polynomials in A).

Cauchy integrals

If f is analytic on and inside a contour Γ that encloses the eigenvalues of A,

$$f(A)=\frac{1}{2\pi i}\int_{\Gamma}f(z)(zI-A)^{-1}dz.$$

Generalizes the analogous scalar formula.

Proof If $A = V \Lambda V^{-1} \in \mathbb{C}^{m \times m}$ is diagonalizable, the integral equals

$$V\begin{bmatrix}\frac{1}{2\pi i}\int_{\Gamma}\frac{f(z)}{z-\lambda_{1}}dz\\ & \ddots\\ & & \frac{1}{2\pi i}\int_{\Gamma}\frac{f(z)}{z-\lambda_{m}}dz\end{bmatrix}V^{-1}=V\begin{bmatrix}f(\lambda_{1})\\ & \ddots\\ & & f(\lambda_{m})\end{bmatrix}V^{-1}$$

By continuity, the equality holds also for non-diagonalizable A.

Methods

Matrix functions arise in several areas: solving ODEs (e.g. exp A), matrix analysis (square roots), physics, ...

Main methods to compute them:

- Factorizations (eigendecompositions, Schur...),
- Matrix versions of scalar iterations (e.g., Newton on $x^2 = a$),
- Interpolation / approximation,
- Complex integrals.