Example: square root

$$A = \begin{bmatrix} 4 & 1 & & \\ & 4 & 1 & \\ & & 4 & \\ & & & 0 \end{bmatrix}, \quad f(x) = \sqrt{x}$$

We look for an interpolating polynomial with

$$p(0) = 0, p(4) = 2, p'(4) = f'(4) = \frac{1}{4}, p''(4) = f''(4) = -\frac{1}{32}.$$

I.e.,

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 4^3 & 4^2 & 4 & 1 \\ 3 \cdot 4^2 & 2 \cdot 4 & 1 & 0 \\ 6 \cdot 4 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_3 \\ p_2 \\ p_1 \\ p_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ \frac{1}{4} \\ -\frac{1}{32} \end{bmatrix},$$
$$p(x) = \frac{3}{256}x^3 - \frac{5}{32}x^2 + \frac{15}{16}x.$$

Example – continues

$$p(A) = \frac{3}{256}A^3 - \frac{5}{32}A^2 + \frac{15}{16}A = \begin{bmatrix} 2 & \frac{1}{4} & \frac{1}{64} \\ 2 & \frac{1}{4} \\ & 2 \end{bmatrix}$$

•

(One can check that $f(A)^2 = A$.)

Teo: quer ogni scelts di nodi e nolteplicité Ai, i:1,...K,
Mi 21, la matrice che corrisponde a imporre le
conditioni di interpologione p⁽ⁱ⁾(Ai) = f⁽ⁱ⁾(Ai), con
j
è invertibile.
Dim: Se evesse un kernel,
V:
$$\begin{bmatrix} a_n \\ a_n \\ a_n \end{bmatrix} = 0$$
 per un vottore con qi non truti nulli
Allore il polinomio qotq.xt...+qnxⁿ = q(x)
soddisfa q⁽ⁱ⁾(Ai) = 0 per ogni j
Queste sono n+1 conditioni che mi dicoro che
(x-Ai)^{Mii} q(x) per ogni i = q(x) è un multiplo di
(x-Ai)^{Mii} ... (x-Ai)^{Mix}

Quinti q(x) sorebbe un polinomio hon hullo,
mottiplo di un certo polinomio di grado h+1,
e di grado h no impossibile
(più complicato: fissata f(x), il poli. di interpolatione
à una funtione continua del multi-insieme di
nodi {
$$\lambda_{1,} \lambda_{1,...} \lambda_{1}$$
, $\frac{\lambda_{2,} ... \lambda_{2}}{M_{2}}$, $\frac{\lambda_{4,...} \lambda_{K}}{M_{2}}$ }

Example – square root

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad f(x) = \sqrt{x}$$

does not exist (because f'(0) is not defined).

(Indeed, there is no matrix such that $X^2 = A$.) (par ché X deviessere une matrice hilpstente $(X^4 = A^2 = 0)$, ma une $2x^2$ hilpstente he sempre $X^2 = 0$)

Example - matrix exponential

$$A = S \begin{bmatrix} -1 & & \\ & 0 & \\ & & 1 & 1 \\ & & & 1 \end{bmatrix} S^{-1}, \quad f(x) = \exp(x).$$
$$\exp(A) = S \begin{bmatrix} e^{-1} & & \\ & e^{-1} & \\$$

Can also be obtained as $I + A + \frac{1}{2}A^2 + \frac{1}{6}A^3 + \dots$ (not so obvious, for Jordan blocks...)

Not constant (for general S).

Instead, we can recover stable / unstable invariant subspaces of A as $ker(f(A) \pm I)$.

If we found a way to compute f(A) without diagonalizing, we could use it to compute eigenvalues via bisection...

Teo: Se
$$f(x)$$
 is hole the $f(\overline{x}) = \overline{f(x)}$, allora
 $f(\overline{A}) = \overline{f(A)}$. Ein particolare se A reale $f(A)$ reale.
Dim: se A è diagonalizzabile, $A=VDV^{-1}$
 $\overline{A}=V\overline{D}V^{-1}$ partie in polinnio
 $f(\overline{A})=f(\overline{V}\overline{D}\overline{V}^{-1})=Vf(\overline{D})\overline{V}^{-1}=Vf(\overline{D})\overline{V}^{-1}=$
 $=Vf(\overline{b})V^{-1}=\overline{f(A)}$
Se A non è diagonalizzabile,
 $f(A)=\lim_{x \to 0} f(A_{E})$ per une successione di A_{E}
diagonalizzabili, e $f(A_{E})$ sons butte reali

Se
$$A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} L_1 & 0 \\ O & L_2 \end{bmatrix} \begin{bmatrix} U_1 & U_2 \end{bmatrix}^{-1}$$
, dove g^{-1}
autoval. d: L_1 honoro $Re(A) < 0$
" L_2 ~ $Re(A) > 0$, allora
sign $(A) = \begin{bmatrix} U_1 & U_2 \end{bmatrix}$ sign $\left(\frac{L_1 & O}{O & L_2}\right) \begin{bmatrix} U_1 & U_2 \end{bmatrix}^{-1} =$
 $= \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} -T & O \\ O & T \end{bmatrix} \begin{bmatrix} U_1 & U_2 \end{bmatrix}^{-1}$
sign $(A) - T = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} -2T & O \\ O & T \end{bmatrix} \begin{bmatrix} U_1 & U_2 \end{bmatrix}^{-1}$
ter $(sign(A) - T) = U_2 = span \qquad \text{fautoveflori relativi a souhovel}$

Se avessi in modo di calcolare squ(A) che
non pesse de calcolo di auborol/auborettorn pobrei
usarlo per calcolare autorettori per bisetione:
1. Calcola sign(A) = S
2. Calcola U₁=Ker(S+I), U₂=Ker(S-I)
3. Coninge
$$A \sim [U_1 U_2]^{-1}A[U_1 U_2] = \left[\frac{A_1}{O} \frac{O}{O}\right]A_2$$

4. Ripeti su $A_2 = (\frac{1}{V_2} Tr A_2)I$
 $e A_2 = (\frac{1}{V_2} Tr A_2)I$

Example – complex square root

$$\underline{A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad \underline{f(x) = \sqrt{x}}$$

We can play around with branches: let us say $f(i) = \frac{1}{\sqrt{2}}(1+i)$, $f(-i) = \frac{1}{\sqrt{2}}(1-i)$. Polynomial: $p(x) = \frac{1}{\sqrt{2}}(1+x)$. $f(A) = p(A) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$.

(This is the so-called <u>principal</u> square root – we have chosen the values of $f(\pm i)$ in the right half-plane — other choices are possible).

(We get a non-real square root of A, if we choose non-conjugate values for f(i) and f(-i))

Se sales invece $f(i) = \frac{1}{V_2}(1+i)$, $f(-i) = \frac{1}{V_2}(-1+i)$ $P(x) = \frac{1}{\sqrt{2}}(i - ix)$ $f(A) = p(A) = \frac{1}{\sqrt{2}} \begin{vmatrix} i & -i \\ i & i \end{vmatrix}$ Soddisfere entrambe f(A)2 = A

Example – nonprimary square root

With our definition, if we have

we

$$A = S \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} S^{-1}, \quad f(x) = \sqrt{x}$$

cannot get
$$f(A) = S \begin{bmatrix} 1 \\ -1 \\ \sqrt{2} \end{bmatrix} S^{-1}: \quad \text{Stesse autovelore}$$

either f(1) = 1, or f(1) = -1...

This would also be a solution of $X^2 = A$, though.