Example: square root

$$
\widehat{A}=\left[\begin{array}{cccc}
4 & 1 & & \\
& 4 & 1 & \\
& & 4 & \\
& & & 0
\end{array}\right], \quad \underline{f(x)}=\sqrt{x}
$$

We look for an interpolating polynomial with

Example - continues

$$
p(A)=\frac{3}{256} A^{3}-\frac{5}{32} A^{2}+\frac{15}{16} A=\left[\begin{array}{cccc}
2 & \frac{1}{4} & \frac{1}{64} & \\
& 2 & \frac{1}{4} & \\
& & 2 & \\
& & & 0
\end{array}\right] .
$$

(One can check that $f(A)^{2}=A$.)

Teo: per ogi scelta di nodi e molteplicita $\lambda_{i}, i=1, \ldots, k$. $m_{i} \geq 1$, la matrice che corrispande a importe le condition: d. interpolarione $p^{(j)}\left(\lambda_{i}\right)=f^{(j)}\left(\lambda_{i}\right)$, con $j<m_{i}, i=1, \ldots k \quad$ (Vandermonde generalizató) è invertibile.
Dim: Se evesse un Kernel,
$V \cdot\left[\begin{array}{l}q_{n} \\ \vdots \\ q_{1} \\ q_{0}\end{array}\right]=0$ per un vettore con q_{i} won tuati nulli
Allone il polinomio $q_{0}+q_{1} x+\ldots+q_{n} x^{n}=q(x)$
soddiffe $q^{(i)}\left(\lambda_{i}\right)=0$ per gni $j<m_{i}, i=1,2, \ldots k$ Queste sone $n+1$ condition che mi licow che $\left(x-\lambda_{i}\right)^{m_{i}} \mid q(x)$ per gqui $i \Rightarrow q(x)$ è un multiplo di $\left(x-\lambda_{1}\right)^{m} \ldots\left(x-\lambda_{k}\right)^{m_{k}}$

Quindi $q(x)$ sorebbe un palinomis wan nullo, multiplo di un certo polinomio di grode $n+1$, a di gredo n no impossibile
pir complicato: fissata $f(x)$, il poli. di interpalatione à uno funtione continue del mulfi-insieme di

Example - square root

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad f(x)=\sqrt{x}
$$

does not exist (because $f^{\prime}(0)$ is not defined).
(Indeed, there is no matrix such that $X^{2}=A$.)
(parchéx dev'essere una matrice nilpotente $\left(x^{4}=A^{2}=0\right)$, ma una 2×2 nilpotente he semple $X^{2}=0$)

Example - matrix exponential

Can also be obtained as $I+A+\frac{1}{2} A^{2}+\frac{1}{6} A^{3}+\ldots$ (not so obvious, for Jordan blocks...)

Example - matrix sign

Not constant (for general S).
Instead, we can recover stable / unstable invariant subspaces of A as $\operatorname{ker}(f(A) \pm I)$.

If we found a way to compute $f(A)$ without diagonalizing, we could use it to compute eigenvalues via bisection...

Teo: Se $f(x)$, tale che $f(\bar{x})=\widehat{f(x)}$, allore $f(\bar{A})=\overline{f(A)}$. E in particolare se A reale $f(A)^{\text {reale. }}$
Dim: se $A \bar{l}$ diagonglizabile,

$$
\begin{aligned}
& \bar{A}=\bar{V} \bar{D}^{A} \bar{V}^{-1} \text { diegongliazobile, } A=V D Y^{-1} \\
& f(\bar{A})=f\left(\bar{V} \bar{D}^{-1}\right)=\bar{V} f(\bar{D}) \bar{V}^{-1}=\bar{V} \overline{f(D)} \bar{V}^{-1}= \\
& \\
& =\overline{V f(D) V^{-1}}=\overline{f(A)}
\end{aligned}
$$

Se A won è diggnalizzabile, $f(A)=\lim f\left(A_{k}\right)$ per une successisme d. A_{k} digqualizabibili, e $f\left(A_{k}\right)$ sons tutte raali

Se $A=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]\left[\begin{array}{ll}L_{1} & 0 \\ 0 & L_{2}\end{array}\right]\left[\begin{array}{ll}U_{1} \mid U_{2}\end{array}\right]^{-1}$, dove g^{-} autoval. di L_{1} hanno $\operatorname{Re}(\lambda)<0$,
" L_{2}. $\operatorname{Re}(\lambda)>0$, allora

$$
\begin{aligned}
& \operatorname{sigh}(A)=\left[U_{1} \mid U_{2}\right] \operatorname{sigh}\left(\frac{L_{1} \mid 0}{\Delta L_{2}}\right)\left[U_{1} \mid U_{2}\right]^{-1}= \\
& =\left[U_{1} \mid U_{2}\right]\left[\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right]\left[U_{1} \mid U_{2}\right]^{-1} \\
& \operatorname{sigh}(A)-I=\left[U_{1} \mid U_{2}\right]\left[\begin{array}{cc}
-2 I & 0 \\
0 & 0
\end{array}\right]\left[U_{1} \mid U_{2}\right]^{-1}
\end{aligned}
$$

$\operatorname{Ker}(\operatorname{sign}(A)-I)=U_{2}=\operatorname{span}\left\{\begin{array}{l}\text { aut ove tori relativi a suchovel } \\ \text { nel semipien destor }\end{array}\right\}$

Se ovessi m modo di calcolare sgn (A) che won passe de calcals di autoval/ ouburettorr patrei userlo per calcolare autovettor per bisezione:

1. Calcola $\operatorname{sign}(A)=S$
2. Calcola $U_{1}=\operatorname{Ker}(S+I), U_{2}=\operatorname{Ker}(S-I)$
3. Coninge $A \sim\left[U_{1} U_{2}\right]^{-1} A\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]=\left[\begin{array}{l|l}A_{1} & O \\ \hline O & A_{2}\end{array}\right]$
4. Ripeti su $A_{1}-\left(\frac{1}{n_{1}} T_{r} A_{1}\right) I$

$$
e \quad A_{2}-\left(\frac{1}{n_{2}} \operatorname{Tr} A_{2}\right) I
$$

Example - complex square root

$$
\operatorname{eig}(A)= \pm i
$$

$$
\underline{A}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad \underline{f(x)=\sqrt{x}}
$$

We can play around with branches: let us say $f(i)=\frac{1}{\sqrt{2}}(1+i)$, $f(-i)=\frac{1}{\sqrt{2}}(1-i)$.
Polynomial: $p(x)=\frac{1}{\sqrt{2}}(1+x)$.

$$
f(A)=p(A)=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] .
$$

(This is the so-called principal square root - we have chosen the values of $f(\pm i)$ in the right half-plane - other choices are possible).
(We get a non-real square root of A, if we choose non-conjugate values for $f(i)$ and $f(-i)$)

Prendo $f(x)=$ ramo principale delle radice quadrata: $f(z)$ è l'unice complesso w che she nol semipieho destro e $\omega^{2}=z$

Ben definite a potto che z non sie reale negativo

Readici quedrote di i :

$$
\xrightarrow[\substack{\infty \\-\omega}]{\substack{\infty}}
$$

Radici L. $-i$:

$$
\xrightarrow[\pm w]{\substack{\text { kodac }}} \frac{1}{\sqrt{2}}(1-i)
$$

Se scelgo invece $f(i)=\frac{1}{\sqrt{2}}(1+i)$,

$$
\begin{aligned}
& f(-i)=\frac{1}{\sqrt{2}}(-1+i) \\
& P(x)=\frac{1}{\sqrt{2}}(i-i x) \\
& f(A)=p(A)=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
i & -i \\
i & i
\end{array}\right]
\end{aligned}
$$

Soddisfen entrambe $f(A)^{2}=A$

Example - nonprimary square root

With our definition, if we have
we cannot get

$$
f(A)=S\left[\begin{array}{lll}
1 & & \\
& -1 & \\
& & \sqrt{2}
\end{array}\right] S^{-1}: \begin{array}{r}
\text { Jordan con bo } \\
\text { Stasis autovglore) }
\end{array}
$$

either $f(1)=1$, or $f(1)=-1 \ldots$
This would also be a solution of $X^{2}=A$, though.
Noh-primery square roots of A

