
Methods for general matrix functions
We now explore methods for matrix functions in general (not
restricting to specific choices of f ). [Higham book, Ch. 4]

Simple strategy: diagonalize A = V ΛV−1, then compute

f (A) = Vf (Λ)V−1 = V

f (λ1)
. . .

f (λm)

V−1.

Works fine if A is symmetric/Hermitian/normal (and Q
orthogonal). Otherwise, errors on f (λi ) (or in the diagonalization
itself) are amplified by a factor κ(V ) — possibly much higher than
the conditioning of the problem.
Example: sqrt of

[ 3 −1
1 1

]
.

Alternative: do ‘matrix algebra’ directly, e.g., evaluate polynomials
in matrix arguments.





Polynomial evaluation
How to evaluate polynomials in a matrix argument?

Unlike scalar polynomials, Horner method (i.e.,
(. . . ((pdA + pd−1)A + pd−2)A + . . . ) for matrix arguments is no
better than ‘direct’ evaluation (build powers of A incrementally
and sum them).

Even better: divide the terms into ‘chunks’ of size
√

d , e.g.,

(p8A2 +p7A+p6)(A3)2 +(p5A2 +p4A+p3)A3 +(p2A2 +p1A1 +p0).

(Paterson-Stockmayer method. — requires more storage though.)



Padé approximations
Variant: Padé approximations, i.e., rational approximations.

Padé approximant (at x = 0)
For every f analytic at 0 and for every choice of degrees
deg p, deg q, one can find a rational function p(x)

q(x) such that

f (x)− p(x)
q(x) = O(xdeg p+deg q+1).

i.e., “matches first deg p + deg q terms of the MacLaurin series”.
(Count degrees of freedom to get a hint of why it works.)

For many functions, they have better approximation properties
than Taylor series.

We will examine them for specific functions, e.g. the square root.



Matrix approximants
Good approximation of a scalar function is not good enough:
even if |f (x)− p(x)| < ε for each x , this only implies

‖f (A)− p(A)‖ = ‖V (f (Λ)− p(Λ))V−1‖ ≤ κ(V )ε.

One needs to study approximation properties directly “at the
matrix level”.



Convergence of Taylor series

Theorem [Higham book Thm. 4.7]

Suppose f =
∑∞

k=0 ak(x − α)k , with ak = f (k)(α)
k! , is a Taylor series

with convergence radius r .
Then,

lim
d→∞

d∑
k=0

ak(A− αI)k = f (A)

for each A whose eigenvalues satisfy |λi − α| < r .

Proof (sketch):
I It is enough to work on Jordan blocks.
I If pd (x) is the polynomial obtained by truncating the series to

degre-d , then pd (λI + N) =
∑d

k=0 p(k)
d (λ)Nk .

I p(k)
d is the truncated Taylor series of f (k), which has the same

radius of convergence as that of f . So p(k)
d (λ)→ f (k)(λ).

I The sum has at most size(N) terms (all zero afterwards).



Parlett recurrence
Can one compute matrix functions using the Schur form of A?

Example

A =
[
t11 t12
0 t22

]
, f (A) =

[
s11 s12
0 s22

]
.

Clearly, s11 = f (t11), s22 = f (t22).

Trick: expanding Af (A) = f (A)A, one gets an equation for s12:

t11s12 + t12s22 = s11t12 + s12t22 =⇒ s12 = t12
s11 − s22
t11 − t22

.

(If t11 = t22, the equation is not solvable and we already know that
the finite difference becomes a derivative).



Parlett recurrence — II
The same idea works for larger blocks (provided we compute things
in the correct order):

A =

t11 t12 t13
t22 t23

t33

 , f (A) =

s11 s12 s13
s22 s23

s33

 ,
t11s13 + t12s23 + t13s33 = s11t13 + s12t23 + s13t33.

Very similar to the algorithm we used to solve Sylvester equations.
In some sense, we are solving the (singular) Sylvester equation
AX − XA = 0, after setting specific elements on its diagonal.

The same idea works blockwise — the quotients become Sylvester
equations.



Parlett recurrence — III

Algorithm (Schur–Parlett method)

1. Compute Schur form A = QTQ∗;
2. Partition T into blocks with ‘well-separated eigenvalues’;
3. Compute f (Tii ) (e.g., with Taylor series in the centroid of its

eigenvalues);
4. Use recurrences to compute off-diagonal blocks of f (T );
5. Return f (A) = Qf (T )Q∗.

Tries to get ‘best of both worlds’: uses Taylor expansion when the
eigenvalues are close, recurrences when they are distant.



Parlett recurrence and block diagonalization
The Parlett recurrence is ‘almost the same thing’ as block
diagonalization. Consider the case of 2 blocks for simplicity. T can
be block-diagonalized via

W−1TW =
[

I −X
0 I

] [
T11 T12
0 T22

] [
I X
0 I

]
=
[
T11

T22

]

where X solves T11X −XT22 + T12 = 0 (Sylvester equation). Then

f (T ) = W
[
f (T11)

f (T22)

]
W−1 =

[
f (T11) Xf (T22)− f (T11)X

f (T22)

]
.

(Note indeed that S = Xf (T22)− f (T11)X solves the Sylvester
equation appearing in the Parlett recurrence.)

So both methods solve a Sylvester equation with operator
Z 7→ T11Z − ZT22.


