The matrix exponential

We start our discussion of specific matrix functions from expm(A).

Easy to come up with ways that turn out to be unstable. [Moler,

Van Loan, "Nineteen dubious ways to compute the exponential of a matrix", '78 & '03].

Example truncated Taylor series, $I + A + \frac{1}{2}$ $\frac{1}{2}A^2 + \frac{1}{6}$ $\frac{1}{6}A^3 \cdots + \frac{1}{k}$ $\frac{1}{k!}A^k$.

Frequent example that this is unstable also for scalars (cancellation if $x < 0$). For scalars, cheap fix via exp $(-x) = \exp(x)^{-1}$. For matrices, often we have both positive and negative eigenvalues.

Growth in matrix powers

Additional problem in computing matrix power series: intermediate growth of coefficients.

Example Even on a nilpotent matrix, entries may grow.

$$
\underline{A} = \begin{bmatrix} 0 & 10 & & & \\ & 0 & 10 & & \\ & & 0 & 10 & \\ & & & 0 & \end{bmatrix}, \underline{A}^2 = \begin{bmatrix} 0 & 0 & \frac{100}{100} & \\ & 0 & 0 & \frac{100}{0} \\ & & 0 & 0 & 0 \\ & & & 0 & \end{bmatrix}, A^3 = \begin{bmatrix} 0 & 0 & 0 & \boxed{1000} \\ & 0 & 0 & 0 \\ & & 0 & 0 \\ & & & 0 & 0 \end{bmatrix}
$$

.

Intrinsic problem on non-normal matrices. Growth $+$ cancellation $=$ trouble.

(On normal matrices, $||A^k|| = ||A||^k = \lambda_{\max}^k$.) AAT=ATA, oppus de sistegonativas can uns Q ortogonale $\| (Q \wedge Q^T)^k \|_F \|_Q \wedge^k Q^T \|_F \| \wedge^k \|_F \|_{\lambda_{\max}} \|_K$

"Humps"

Similarly, $exp(tA)$ may grow for small values of t before 'settling down'.

Example

>> A = [-0.97 25; 0 -0.3]; >> t = linspace(0,20,100); >> for i = 1:length(t); y(i) = norm(expm(t(i)*A)); end >> plot(t, y)

Shows it is also a bad idea to use an ODE solver on $X'(t) = \overline{AX}(t), \quad X(0) = I;$ Remark: explicit Euler produces exp $(A_t) \approx (I + \frac{t}{c})$ $\left(\frac{t}{n}\mathcal{A}\right)^n$). $=(I+LA)(t)$ χ (o)= $\overline{\bot}$ $\chi(\ell)$ 2I+GA $\chi(\ell)$ 2(I+GA)²

(Quindi anche exp(A) $\approx (I + \frac{1}{h}A)^h$ per h gronde $I + \frac{1}{n}A \times exp(\frac{A}{h})$ $\begin{picture}(120,115) \put(0,0){\vector(1,0){15}} \put(15,0){\vector(1,0){15}} \put(15,0){\vector$ $(\text{I}f_{G}^{1}A)^{2}$ \approx exp $\frac{\ell A}{\ln}$

 $e\times \varphi(A) \approx (I + \frac{1}{1024}A)^{1024}$

Padé approximants

Padé approximants to the exponential (in $x = 0$) are known explicitly.

Padé approximants to $exp(x)$ $|\exp(x) - N_{pq}(x)/D_{pq}(x)| = O(x^{p+q+1})$ $P \wedge P = \deg N_{pq}(x)$
1), where $q = \deg D_{pq}(x)$ $N_{pq}(x) = \sum$ p j=0 $\frac{(p+q-j)!p!}{(p+q)!j!(p-j)!}x^j,$ $D_{pq}(x) = \sum$ q j=0 $\frac{(p+q-j)!q!}{(p+q)!j!(q-j)!}(-x)^{j}.$

$$
\exp(A) \approx \underbrace{(D_{pq}(A))^{-1}N_{pq}(A)}_{\text{The main danger comes from } D_{pq}(A)^{-1}.
$$
\n
$$
\text{For large } p, q, \underbrace{D_{pq}(A) \approx \exp(-\frac{1}{2}A)}_{\text{exp}(A)} \cdot \underbrace{\kappa(D_{pq}(A))}_{\text{exp}(A)} \approx \frac{e^{-\frac{1}{2}\lambda_{\text{min}}}}{e^{-\frac{1}{2}\lambda_{\text{max}}}}.
$$

 Pe_r and which M_{16} =||M|| $\geq |\lambda_{1}|$ $\mathcal{P}_{\mathsf{ev}}$ M⁻¹, $G_{\min(M^{\equiv})}^{-1}||M^{-1}|| \ge |\lambda_{\min(M)}|^{-1}$ $k(M) = ||M|| \cdot ||M^{-1}|| \geq |\Lambda(h) \cdot \lambda_{min}(M)||$

Backward error of Padé approximants

Are Padé approximants reliable when $||A||$ is small, at least?

Recall: perfect scalar approximation does not imply good matrix approximation.

Let $H = f(A)$, where $f(x) = log(e^{-x} \frac{N_{pq}(x)}{D_{eq}(x)})$ $\frac{Npq(X)}{D_{pq}(x)}$). H is a matrix function, so it commutes with A . (Note that $e^{-\chi} \frac{N_{pq}(\chi)}{D_{pq}(\chi)} = 1 + O(\chi^{p+q+1})$, so the log exists for χ sufficiently small). One has $exp(H) = exp(-A)(D_{pq}(A))^{-1}N_{pq}(A)$, so $(D_{pq}(A))^{-1}N_{pq}(A) = \exp(A) \exp(H) = \exp(A + H)$

(since A and H commute).

We can regard H as a sort of 'backward error': the Padé approximant $(D_{pq}(A))^{-1}N_{pq}(A)$ is the exact exponential of a certain perturbed matrix $A + H$.

Can one bound $\frac{\|H\|}{\|A\|}$?

$$
H = \left\{ (A) \qquad \qquad \mathcal{L}(x) = \mathcal{L}_{eg} \left(e^{-x} \frac{N_{pq}(x)}{D_{rq}(x)} \right) \right\}
$$
\n
$$
exp(H) = g(A) = \qquad \qquad \frac{g(x) = e^{-x} \frac{N_{pq}(x)}{D_{pq}(x)}}{D_{pq}(x)}
$$
\n
$$
= exp(-A) \cdot D_{pq}^{-1}(A) N_{pq}(A) \qquad \left(\mathcal{L}_{1} \mathcal{L}_{2} (A) - \mathcal{L}_{1} (A) \mathcal{L}_{2} (A) \right)
$$
\n
$$
exp(A) exp(H) = D_{pq}^{-1}(A) N_{pq}(A)
$$
\n
$$
= exp(A + H) p_0 d_0 e^A + e^A - c_0 m \text{mucleon}
$$
\n
$$
L_{q} \text{yunkik} = d_0 d_0 k_0 D_{pq}(A) \qquad \text{e} \text{y}_{s, \text{p}, \text{p}, \text{m}}(A) = \mathcal{L}_{q} \text{yunkik}
$$

Bounding $||H|| \frac{p}{d}(x) = \log(1+O(x^{p+q+1})) = O(x^{p+q+1})$ $H = f(A)$, where $f(x) = log(e^{-x} \frac{N_{pq}(x)}{D_{eq}(x)})$ $\frac{Npq(x)}{D_{pq}(x)}$). f is analytic, so $f(x) = c_1 x^{p+q+1} + c_2 x^{p+q+2} + c_3 x^{p+q+3} + \ldots$ $H = f(A) = c_1 A^{p+q+1} + c_2 A^{p+q+2} + c_3 A^{p+q+3} + \dots$ $\|H\| \leq |c_1| \|A\|^{p+q+1} + |c_2| \|A\|^{p+q+2} + |c_3| \|A\|^{p+q+3} + \ldots$ **Pallal** All these quantities can be computed, explicitly or with Mathematica (but it's a lot of work). Luckily, someone did it for us. For instance:

[Higham book 108, p. 244]
$$
\frac{1}{2}
$$

\nIf $p = q = 13$ and $||A|| \leq 5.4$, then $\frac{||H||}{||A||} \leq u$ (machine precision).
\n[**tbsals** cm **velox** per **opt** $p = q$ so [Higham])
\n= **5 seegl one** $q = q \leq 3$, per **opt** A **table the the** $||A|| \leq 5.4$, **l'error**
\nall' **indletro commes** in $\exp(A) \approx D^{-1}(A)N(A)$ $\geq \leq u$

 $||H|| \leq C_1 \cdot V^{P+q+1} + (C_2 \cdot V^{P+q+2} + |C_3 \cdot V^{P+q+3} + ...$ $Jove \ r = ||A||$ $\frac{\|H\|}{\|A\|} = \frac{\|\mu\|}{r} = |C_1| \cdot r^{pq} + |C_2| \cdot r^{pq} + \cdots$ Riesco a trovere nomenicamente il valore r $|c_1| r^{p+q} + |c_2| r^{p+q+1} + ... \leq M$ per cui

 $e^{x} = (e^{x})^{s}$. $(e^{x *})^{z^{k}}$ Scaling and squaring What if $||A|| > 5.4$? Trick: $exp(A) = (exp(\frac{1}{s}A))^s$. Algorithm (scaling and squaring) 1. Find $s = 2^k$ such that $\|\frac{1}{s}\|$ $\frac{1}{s}A\| \leq 5.4.$ 2. Compute $F = D_{13,13}(B)^{-1} N_{13,13}(B)$, where $D_{13,13}$ and $N_{13,13}$ are given polynomials and $B = \frac{1}{5}$ $\frac{1}{s}A$. 3. Compute F^2 by repeated squaring.

This is what is used in practice on Matlab.

Why 13 ? Chosen to minimize number of operations. Note that we can evaluate $D_{13,13}$ and $N_{13,13}$ with 6 matmuls, using Paterson-Stockmeyer.

This is Matlab's expm, currently. (Warning: exp(A) is componentwise).

 A, A, A^2, A^3 $(c_5 + c_1A + c_2A^2 + c_3A^3) + (c_4A + c_5A^2 + c_6A^3)A^3$
 $+...$
 $+$

Is scaling and squaring stable?

Note that 'humps' may still give problems: $exp(B)$ may be much larger than $\mathsf{exp}(A) = \mathsf{exp}(B)^{2^k}$, leading to cancellation in the squares.

Is scaling and squaring stable for all matrices? Yes numerically, but no definitive answer.

