The matrix exponential

We start our discussion of specific matrix functions from expm (A).
Easy to come up with ways that turn out to be unstable. [Moler, Van Loan, "Nineteen dubious ways to compute the exponential of a matrix", ' 78 \& '03].
Example truncated Taylor series, $I+A+\frac{1}{2} A^{2}+\frac{1}{6} A^{3} \cdots+\frac{1}{k!} A^{k}$.
Frequent example that this is unstable also for scalars (cancellation if $x<0$). For scalars, cheap fix via $\exp (-x)=\exp (x)^{-1}$. For matrices, often we have both positive and negative eigenvalues.

Growth in matrix powers

Additional problem in computing matrix power series: intermediate growth of coefficients.
Example Even on a nilpotent matrix, entries may grow.
$A=\left[\begin{array}{cccc}0 & 10 & & \\ & 0 & 10 & \\ & & 0 & 10 \\ & & & 0\end{array}\right], A^{2}=\left[\begin{array}{cccc}0 & 0 & 100 & \\ & 0 & 0 & 100 \\ & & 0 & 0 \\ & & & 0\end{array}\right], A^{3}=\left[\begin{array}{cccc}0 & 0 & 0 & 1000 \\ & 0 & 0 & 0 \\ & & 0 & 0 \\ & & & 0\end{array}\right]$.
Intrinsic problem on non-normal matrices. Growth + cancellation $=$ trouble.
(On normal matrices, $\left\|A^{k}\right\|=\|A\|^{k}=\lambda_{\text {max }}^{k}$.)

"Humps"

Similarly, $\exp (t A)$ may grow for small values of t before 'settling down'.
Example
>> $A=[-0.9725 ; 0-0.3]$;
>> t = linspace ($0,20,100$);
>> for $i=1: l e n g t h(t) ; ~ y(i)=n o r m(e x p m(t(i) * A)) ; ~ e n d ~$
>> plot(t, y)
Shows it is also a bad idea to use an ODE solver on

$$
X^{\prime}(t)=A X(t), \quad X(0)=I ;
$$

Remark: explicit Euler produces $\left.\exp (A t) \approx\left(I+\frac{t}{n} A\right)^{n}\right)$.

Padé approximants

Padé approximants to the exponential (in $x=0$) are known explicitly.
Padé approximants to $\exp (x)$

$$
\left|\exp (x)-N_{p q}(x) / D_{p q}(x)\right|=O\left(x^{p+q+1}\right), \text { where }
$$

$$
\begin{aligned}
& N_{p q}(x)=\sum_{j=0}^{p} \frac{(p+q-j)!p!}{(p+q)!j!(p-j)!} x^{j}, \\
& D_{p q}(x)=\sum_{j=0}^{q} \frac{(p+q-j)!q!}{(p+q)!j!(q-j)!}(-x)^{j}
\end{aligned}
$$

$$
\exp (A) \approx\left(D_{p q}(A)\right)^{-1} N_{p q}(A)
$$

The main danger comes from $D_{p q}(A)^{-1}$.
For large $p, q, D_{p q}(A) \approx \exp \left(-\frac{1}{2} A\right) \cdot \kappa\left(D_{p q}(A)\right) \approx \frac{e^{-\frac{1}{2} \lambda_{\min }}}{e^{-\frac{1}{2} \lambda_{\max }}}$.

Backward error of Padé approximants

Are Padé approximants reliable when $\|A\|$ is small, at least?
Recall: perfect scalar approximation does not imply good matrix approximation.
Let $H=f(A)$, where $f(x)=\log \left(e^{-x} \frac{N_{p q}(x)}{D_{p q}(x)}\right)$. H is a matrix function, so it commutes with A.
(Note that $e^{-x} \frac{N_{p q}(x)}{D_{p q}(x)}=1+O\left(x^{p+q+1}\right)$, so the log exists for x sufficiently small).
One has $\exp (H)=\exp (-A)\left(D_{p q}(A)\right)^{-1} N_{p q}(A)$, so

$$
\left(D_{p q}(A)\right)^{-1} N_{p q}(A)=\exp (A) \exp (H)=\exp (A+H)
$$

(since A and H commute).

We can regard H as a sort of 'backward error': the Padé approximant $\left(D_{p q}(A)\right)^{-1} N_{p q}(A)$ is the exact exponential of a certain perturbed matrix $A+H$.
Can one bound $\frac{\|H\|}{\|A\|}$?

Bounding $\|H\|$

$H=f(A)$, where $f(x)=\log \left(e^{\left.-x \frac{N_{p q}(x)}{D_{p q}(x)}\right)}\right.$.
f is analytic, so $f(x)=c_{1} x^{p+q+1}+c_{2} x^{p+q+2}+c_{3} x^{p+q+3}+\ldots$.

$$
\begin{gathered}
H=f(A)=c_{1} A^{p+q+1}+c_{2} A^{p+q+2}+c_{3} x^{p+q+3}+\ldots \\
\|H\| \leq\left|c_{1}\right|\|A\|^{p+q+1}+\left|c_{2}\right|\|A\|^{p+q+2}+\left|c_{3}\right|\|A\|^{p+q+3}+\ldots
\end{gathered}
$$

All these quantities can be computed, explicitly or with Mathematica (but it's a lot of work).
Luckily, someone did it for us. For instance:

[Higham book '08, p. 244]

If $p=q=13$ and $\|A\| \leq 5.4$, then $\frac{\|H\|}{\|A\|} \leq \mathbf{u}$ (machine precision).

Scaling and squaring

What if $\|A\|>5.4$? Trick: $\exp (A)=\left(\exp \left(\frac{1}{s} A\right)\right)^{s}$.

Algorithm (scaling and squaring)

1. Find $s=2^{k}$ such that $\left\|\frac{1}{s} A\right\| \leq 5.4$.
2. Compute $F=D_{13,13}(B)^{-1} N_{13,13}(B)$, where $D_{13,13}$ and $N_{13,13}$ are given polynomials and $B=\frac{1}{s} A$.
3. Compute $F^{2^{k}}$ by repeated squaring.

This is what is used in practice on Matlab.
Why 13? Chosen to minimize number of operations.
Note that we can evaluate $D_{13,13}$ and $N_{13,13}$ with 6 matmuls, using Paterson-Stockmeyer.

This is Matlab's expm, currently. (Warning: $\exp (A)$ is componentwise).

Is scaling and squaring stable?

Note that 'humps' may still give problems: $\exp (B)$ may be much larger than $\exp (A)=\exp (B)^{2^{k}}$, leading to cancellation in the squares.

Is scaling and squaring stable for all matrices? Yes numerically, but no definitive answer.

