Conditioning of computing matrix functions

Recall: the condition number of a differentiable $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is the norm of its Jacobian.

$$
\begin{gathered}
\kappa_{\text {abs }}(f, x)=\lim _{\varepsilon \rightarrow 0} \sup _{\|\tilde{x}-x\| \leq \varepsilon} \frac{\|f(\tilde{x})-f(x)\|}{\|\tilde{x}-x\|}=\|\nabla f\| \\
\kappa_{\text {rel }}(f, x)=\lim _{\varepsilon \rightarrow 0} \sup _{\frac{\|f(x)-f(x)\|}{\|x\|} \leq \varepsilon}^{\frac{\|f(x)\|}{\|x\|} \leq \varepsilon} \\
\frac{\|\tilde{x}-x\|}{\|x\|}
\end{gathered} \kappa_{a b s}(f, x) \frac{\|x\|}{\|f(x)\|} .
$$

Fréchet derivative

Direct generalization of the Jacobian to matrix functions:

Definition

The Fréchet derivative of a matrix function f is the linear operator $L_{f, X}: \mathbb{R}^{m \times m} \rightarrow \mathbb{R}^{m \times m}$ (when it exists) such that

$$
f(X+E)=f(X)+L_{f, X}(E)+o(\|E\|)
$$

I.e., in a neighbourhood of X, f behaves like a linear function.

Example

$$
\begin{aligned}
& f(x)=x^{2}, f(X)=X^{2} . \\
& \quad(X+E)^{2}=X^{2}+X E+E X+E^{2}=X^{2}+\underbrace{X E+E X}_{L_{f, X}(E)}+o\left(\|E\|^{2}\right) .
\end{aligned}
$$

$L_{f, X}$ is a linear operator that maps matrices to matrices - we can consider its vectorized version:

$$
\widehat{L}: \operatorname{vec} E \mapsto \operatorname{vec} L_{f, X}(E)
$$

In this case,

$$
\widehat{L}=X^{T} \otimes I+I \otimes X
$$

\widehat{L} is the "usual" Jacobian of the map vec $X \mapsto \operatorname{vec} f(X)$.

Properties

Follow from those of Jacobians:

- $L_{f+g, X}=L_{f, X}+L_{g, X}$.
- $L_{f \circ g, x}=L_{f, g(X)} \circ L_{g, X}$.
- $L_{f-1}, f(X)=L_{f, X}^{-1}$.

Example Let $g(y)=\sqrt{y}$ (principal branch: we take the root in the right half-plane), Y with no real nonpositive eigenvalue.
Then $g(y)$ is the inverse of $f(x)=x^{2}$, and its Fréchet derivative $F=L_{g, Y}(E)$ is the matrix such that $L_{f, x}(F)=E$, i.e.,

$$
X F+F X=E, \quad X=f(Y)=Y^{1 / 2}
$$

(solution of a Sylvester equation). X has eigenvalues in the right half-plane, so the Sylvester equation is always solvable:
$\Lambda(X) \cap \wedge(-X)=\emptyset$.

Derivative of the exponential

Derivative of the matrix exponential:

$$
\begin{aligned}
\exp (X+E)= & I+(X+E)+\frac{1}{2}(X+E)^{2}+\frac{1}{3!}(X+E)^{3}+\ldots \\
= & I+(X+E)+\frac{1}{2}\left(X^{2}+E X+X E+E^{2}\right)+\frac{1}{3!}\left(X^{3}+\ldots\right) \\
= & \exp (X)+E+\frac{1}{2}(E X+X E)+\frac{1}{3!}\left(X^{2} E+X E X+X^{2} E\right) \\
& +\cdots+O\left(\|E\|^{2}\right)
\end{aligned}
$$

Not simple to express.
$\widehat{L}=I+\frac{1}{2}\left(I \otimes X+X^{T} \otimes I\right)+\frac{1}{3!}\left(I \otimes X^{2}+X^{T} \otimes X+\left(X^{2}\right)^{T} \otimes I\right)+\ldots$

Trick to compute $L_{f, X}(E)$

Let f be Fréchet differentiable. Then,

$$
f\left(\left[\begin{array}{cc}
X & E \\
0 & X
\end{array}\right]\right)=\left[\begin{array}{cc}
f(X) & L_{f, X}(E) \\
0 & f(X)
\end{array}\right]
$$

Proof (sketch) Evaluate $f\left(\left[\begin{array}{cc}A+\varepsilon E & E \\ 0 & A\end{array}\right]\right)$ by block-diagonalizing.
We need $\left[\begin{array}{cc}l & X \\ 0 & I\end{array}\right]$, where X solves $(A+\varepsilon E) X-X A=E$, which has solution $X=\frac{1}{\varepsilon} I$ (to block-diagonalize it, it is sufficient to find one solution, even if the Sylvester equation is singular). The evaluation gives $\left[\begin{array}{cc}f(A+\varepsilon E) & \frac{f(A+\varepsilon E)-f(A)}{\varepsilon} \\ 0 & f(A)\end{array}\right]$.

Existence of the Fréchet derivative

Theorem

If $f \in \mathcal{C}^{2 m-1}(U)$, then $L_{f, X}$ exists for each $X \in \mathbb{R}^{m \times m}$ with eigenvalues in U.

Proof (sketch) The proof of the previous theorem shows that the directional derivatives of f (seen as a map $\mathbb{R}^{m^{2}} \rightarrow \mathbb{R}^{m^{2}}$) exist and are continuous (since matrix functions are continuous). It is a classical result in multivariate calculus that then f is continuously differentiable.

Fréchet derivative and condition number

Hence, $\kappa_{\text {abs }}(f, X)=\left\|L_{f, X}\right\|$.
... with some attention to what 'norm' means here.
The norm used for $\|\widetilde{X}-X\|$ is any matrix norm on $n \times n$ matrices, and $\left\|L_{f, X}\right\|$ is the 'operator norm' (on $n^{2} \times n^{2}$ matrices) induced by it.
Easy case If we take $\|\widetilde{X}-X\|_{F}$, it corresponds to $\|\mathrm{vec} X\|_{2}$, so $\kappa_{\text {abs }}(f, X)=\left\|\widehat{L}_{f, X}\right\|_{2}$.

Eigenvalues of Fréchet derivatives [Higham book '08, Ch. 3]

How to compute the eigenvalues of a Fréchet derivative $L_{f, x}$? (sketched only)
We may assume $f(x)=p(x)$ is a polynomial. Like for the exponential,

$$
\begin{aligned}
p(X+E)= & p_{0}+(X+E)+p_{1}(X+E)^{2}+p_{2}(X+E)^{3}+\ldots \\
= & p_{0}+p_{1}(X+E)+p_{2}\left(X^{2}+E X+X E+E^{2}\right)+p_{3}\left(X^{3}+\ldots\right) \\
= & p(X)+p_{1} E+p_{2}(E X+X E)+p_{3}\left(X^{2} E+X E X+X^{2} E\right) \\
& +\cdots+O\left(\|E\|^{2}\right)
\end{aligned}
$$

Not simple to express.
$\widehat{L}=p_{0}+p_{1}\left(I \otimes X+X^{T} \otimes I\right)+p_{2}\left(I \otimes X^{2}+X^{T} \otimes X+\left(X^{2}\right)^{T} \otimes I\right)+\ldots$
Triangular if we take Schur forms $X=Q_{1} T_{1} Q_{1}^{T}, X^{T}=Q_{2} T_{2} Q_{2}^{T}$.

TL;DR: theorems

Theorem

Let X have eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. The eigenvalues of $L_{f, X}$ are

$$
f\left[\lambda_{i}, \lambda_{j}\right]:= \begin{cases}\left.\frac{f\left(\lambda_{i}\right)-f\left(\lambda_{j}\right)}{\lambda_{i}}\right) & i \neq j, \\ f^{\prime}\left(\lambda_{i}\right) & i=j .\end{cases}
$$

Theorem

Let $X=V \wedge V^{-1}$ be diagonalizable. Then, for the Frobenius norm,

$$
\kappa_{a b s}(f, X) \leq \kappa_{2}(V) \max _{i, j}\left|f\left[\lambda_{i}, \lambda_{j}\right]\right| .
$$

