Lyapunov equations

Lyapunov equation

$$
\begin{equation*}
A^{*} X+X A+Q=0, \quad Q=Q^{*} \succeq 0 \tag{L}
\end{equation*}
$$

Special case of the Sylvester equation.

Lemma

Suppose (L) has a unique solution X; then X is symmetric.
Proof: transpose everything; X^{*} is another solution.

Lyapunov equation: positivity

Lemma

Suppose A has eigenvalues in the (open) LHP. Then, if $Q \succeq 0$ implies $X \succeq 0$, and $Q \succ 0$ implies $X \succ 0$.

Proof Check that

$$
X=\int_{0}^{\infty} e^{A^{*} t} Q e^{A t} \mathrm{~d} t
$$

$\left(\right.$ via $\left.\frac{d}{d t} e^{A^{*} t} Q e^{A t}=\ldots\right)$.

Lemma

Suppose $Q \succ 0$ and $X \succ 0$. Then, A has eigenvalues in the (open) LHP.

Proof Let $A v=\lambda v$; then $0<v^{*} Q v=\ldots$
Alternative statement: A has all its eigenvalues in the LHP if there exists $X \succ 0$ such that $A^{*} X+X A \prec 0$.

Lyapunov's version

Alternative way to see it: the dynamical system $\dot{x}(t)=A x(t)$ is stable (i.e., $\lim _{t \rightarrow \infty} x(t)=0$) for all initial values if and only if there exists $X \succ 0$ such that $A^{*} X+X A \prec 0$.
Lyapunov's proof: $E(t)=x(t)^{*} X x(t)$ ('energy function') is such that $\dot{E}(t) \leq 0$.

Discrete-time version

Many of these results also come in a 'discrete-time' variant; in this case:

Stein's equation

A has all its eigenvalues in the (open) unit disc iff

$$
X-A^{*} X A=Q, \quad Q \succ 0
$$

has a solution $X \succ 0$.
Deals with stability of the discrete-time system $x_{t+1}=A x_{t}$.

Discrete-time version

Discrete-time version of the integral formula:

If A has all its eigenvalues inside the (open) unit disc then

$$
X=\sum_{k=0}^{\infty}\left(A^{*}\right)^{k} Q A^{k}
$$

$\operatorname{Proof}\left(I-A^{T} \otimes A^{*}\right) \operatorname{vec}(X)=\operatorname{vec}(Q)$, series for the inverse.

