Example: control theory

$x A x+B x+x C+D=0$

Control theory (important subject in engineering) is the study of dynamical systems + controllers.

Example can we keep an 'inverted pendulum' in the upright position by applying a steering force?
State $x(t)=\left[\begin{array}{c}\theta \\ \dot{\theta}\end{array}\right]$, where θ is the angle formed by the pendulum (12 o' clock $\leftrightarrow \theta=0$).

Free system equations:

$$
\dot{x}=\left[\begin{array}{l}
\dot{\theta} \\
\ddot{\theta}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
m g \sin x_{1}
\end{array}\right] \approx\left[\begin{array}{c}
x_{2} \\
m g x_{1}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
m g & 0
\end{array}\right] x .
$$

The system is not stable: $A=\left[\begin{array}{cc}0 & 1 \\ m g & 0\end{array}\right]$ has one positive and one negative eigenvalue.

permotte di applicere
Stato: $x=\left[\begin{array}{l}\theta \\ \dot{\theta}\end{array}\right]$

$$
x(t)=\left[\begin{array}{l}
\theta(t) \\
\dot{\theta}(t)
\end{array}\right]
$$ une forta

Equetione ifferentiale:

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
\dot{\theta} \\
\ddot{\theta}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
g \cdot \sin x_{1}
\end{array}\right]
$$

Agiongento l'stione del motorino:

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
g \sin \left(x_{1}\right)
\end{array}\right]+\left[\begin{array}{l}
0 \\
u
\end{array}\right]
$$

se i' motorion opplice une forze $U(t)$ al tempot
Se \bar{x} è piccolo (pendolo parsiverticale) $\sin x_{1} \approx x_{1}$.

$$
\dot{\dot{x}=A \cdot x+B \cdot u} \quad A=\left[\begin{array}{ll}
0 & 1 \\
g & 0
\end{array}\right), \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Il sistame sente contrallo $(u(t)=0)$ a stabile?
$\dot{x}=A_{x}$, dipende degei outonelor: di A $A=\left[\begin{array}{ll}0 & 1 \\ z & 0\end{array}\right] \quad \lambda_{12}= \pm \sqrt{g}$ (se evessi fetto il conto per il perdolo mi serebbe venuto $\left.A=\left[\begin{array}{cc}0 & 1 \\ -8 & 0\end{array}\right], \quad \Delta_{12}= \pm i \sqrt{g}\right)$ $\exp (A)$ he autoval di module $1 \rightarrow x(H)$ limitate

Example: controlling an inverted pendulum

Now we apply an additional steering force u :
$u:[0, \infty) \rightarrow \mathbb{R}$ $x:[0, \infty) \rightarrow \mathbb{R}^{2}$

$$
\dot{x}=A x+B u, \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Can we choose $u(t)$ so that the system is stable? Yes - even better: we can choose $u(t)=\underset{\sim}{F x}(t)$.
I.e., we can literally build a contraption (engine + camera) that sets the appropriate force according to the current state only (feedback control). $u=\left[\begin{array}{ll}f_{1} & f_{2}\end{array}\right] \times$ gives

$$
\dot{x}=(A+B F) x=\left[\begin{array}{cc}
0 & 1 \\
f_{1}+m g & f_{2}
\end{array}\right] x .
$$

Choosing f_{1}, f_{2} appropriately we can move the eigenvalues of $A+B F$ arbitrarily.

$$
\begin{aligned}
& F=\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right] \quad u=F x \\
& \dot{x}=A x+B u=(A+B F) x
\end{aligned}
$$

stabilita dipende degli autovalon d. $A+B F=$

$$
=\left[\begin{array}{ll}
0 & 1 \\
g & 0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
g+f_{1} & f_{2}
\end{array}\right]
$$

polin. coratteristico: $x\left(x-f_{2}\right)-(\delta+f)_{1}=$

$$
=x^{2}-x f_{2}-\left(g+f_{1}\right)
$$

\Rightarrow posse ottewne (scegliods Fopportunement) due autrovaloi s sail.

Step 1: riscrivo il mis sisteme dinamico (lineerizzendo rispetto a un punto di equilibrio $x=0$) come

$$
\dot{x}=A x+B u
$$

The general setup din. Jello stato nomen di "controlli"

$$
\dot{x}=A x+B u, \quad A \in \mathbb{R}^{\boldsymbol{n \times n}}, B \in \mathbb{R}^{n \times m} .
$$ indipententi

Can we always stabilize a system? No - counterexample:

$$
A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] .
$$

No matter what we choose, we cannot change the dynamics of the second block of variables. If A_{22} has eigenvalues outside the LHP, there is nothing we can do.

$$
\begin{aligned}
& \text { there is nothing we can do. } \\
& {\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
0
\end{array}\right]\left[F_{1} F_{2}\right]=\left(\begin{array}{c}
A_{11}+B_{1} F_{1} \\
A_{12}+B_{1} F_{2} \\
A_{22}
\end{array}\right.}
\end{aligned}
$$

=anon esiste un "feedback control" $u=F_{x}$ (e neppure un controllo $u(t)$ qualunque, perché
scrivade $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, le eq. sliff.
Soho

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
0
\end{array}\right] u=\left[\begin{array}{l}
A_{11} x_{1}+A_{12} x_{2}+B_{1} u \\
A_{22} x_{2}
\end{array}\right]
$$

\rightarrow won posso infloentare x_{2}, evolve sempre come $\quad \dot{x}_{2}=A_{22} x_{2}$

Controllability / Stabilizability

(This structure may be 'hidden' behind a change of basis, for instance $A \leftarrow K A K^{-1}, B \leftarrow K B$.

How do we check for it? Krylov spaces:

The pair (A, B) is called controllable if

$$
\operatorname{span}\left(B, A B, \ldots, A^{k} B, \ldots\right)=\mathbb{R}^{n}
$$

The pair (A, B) is called stabilizable if

$$
\left(K A K^{-1}, K B\right)=\left(\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right],\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]\right)
$$

with $\left(A_{11}, B_{1}\right)$ controllable and A_{22} stable.
$\operatorname{spen}\left(B, A B, \cdots, A^{*} B, \ldots\right)=\mathbb{R}^{n}$
a meno che io riesce o scivere

$$
A=K\left[\begin{array}{cc}
A_{11} & A_{11} \\
0 & A_{12}
\end{array}\right] K^{-1} \quad, \quad B=K\left[\begin{array}{l}
B_{1} \\
0 \\
0
\end{array}\right]
$$

(col seconide blocco nan benele).
(corrisponde a $\hat{x} \rightarrow K x$

$$
\left.K \dot{\hat{x}}=K \dot{x}=K(A x+B u)=K A K^{-1} \hat{x}+K B u\right)
$$

Freccie 1: se $A=K\left[\begin{array}{ll}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right] K^{-1}, \quad B=K\left[\begin{array}{c}B_{1} \\ 0\end{array}\right]$,
allore $A^{i} B=K\left[\begin{array}{ll}* & * \\ 0 & *\end{array}\right] K^{-1} k\left[\begin{array}{l}* \\ 0\end{array}\right]=k\left[\begin{array}{l}* \\ 0\end{array}\right]=\left[\begin{array}{l}K_{1} \\ k_{2}\end{array} \|_{1}^{*}=\left[\begin{array}{l}*\end{array}\right]=\operatorname{sen} K_{1}\right.$

Supponieno de $\operatorname{spen}\left(B, A B, \ldots A^{\prime} B, \ldots\right) \neq \mathbb{R}^{n}$ Allors, $\exists v \neq 0$ tale de

$$
v^{*} B=v^{*} A B=v^{*} A^{2} B=\ldots=0
$$

Cambis bese in mod che $V=\left[\begin{array}{lllll}0 & 0 & \cdots & 0 & 1\end{array}\right]$.
Allore, $B=\left[\begin{array}{l}B_{1} \\ 0\end{array}\right] \quad A B=\left[\begin{array}{l|l}A_{11} & A_{12} \\ A_{21} & A_{12}\end{array}\right]\left[\begin{array}{l}B_{1} \\ 0\end{array}\right]=\left[\begin{array}{l}A_{11} B_{1} \\ A_{21} B_{1}\end{array}\right]=\left[\begin{array}{l}* \\ 0\end{array}\right]$

$$
\Rightarrow A_{2} B_{1}=0
$$

M: bosts dimostrose de $v^{*} b=v^{*} A b=v^{*} A^{2} b=\ldots=0$ per $b \in \mathbb{R}^{n}$.

Bass algorithm $A+\alpha \frac{1}{b} l_{0}$ auboval. $\lambda_{i}+\alpha$ (se λ_{i} ouhoud. .tA) $\alpha \in \mathbb{R}$ ebbestonte grade $\Rightarrow \operatorname{Re}\left(\Lambda_{i}+\alpha\right)>0$ Let $\alpha>\rho(A)$; then $A+\alpha$ I has eigenvalues in the RHP, and the Lyapunov equation

$$
(A+\alpha I) X+X(A+\alpha I)^{*}=2 B B^{*}
$$

has a solution $X \succeq 0$.
We shall show that $X \succ 0$ (whenever (A, B) controllable). Then,

$$
\left(A-B B^{*} X^{-1}\right) X+X\left(A-B B^{*} X^{-1}\right)^{*}=-2 \alpha X,
$$

which proves that $A-B\left(B^{*} X^{-1}\right)$, has eigenvalues in the LHP.

$$
F=-B^{*} X^{-1} \text { stabilize il sisteme }
$$

(Actually, if (A, B) is controllable, we can find F such that $A+B F$ has any chosen spectrum.)

$$
\begin{align*}
& (A+\alpha I) X+x(A+\alpha I)^{*}=2 B B^{*} \tag{1}\\
& (-A-\alpha I) X+X(-A-\alpha I)^{*}+2 B B^{*}=0
\end{align*}
$$

$-A-\alpha I$ ha euthovelon nel $C H P, 2 B B^{*}=Q \geqslant O$

$$
\Rightarrow x \succcurlyeq 0
$$

In realfi, passiems timostroe che se (A, B) controlOabil: alloro $x>0$
Do (1) segue che

$$
\begin{align*}
& \left(A-B B^{*} X^{-1}\right) X+X\left(A-B B^{*} X^{-1}\right)^{*}+2 \alpha X=0 \tag{2}\\
& A X-B B^{*} \quad X\left(A^{*}-X^{-1} B B^{*}\right)=X A^{*}-B B^{*}
\end{align*}
$$

(2) è un'equatione di Lyapunov, Ie termine noto $l=2 \alpha X$ è >0
Le soluzione è $X>0$
$\Rightarrow A-B B^{*} X^{-1}$ ho tuttigli autovalori nel LHP .
\bar{E} un ceso particdore di (3) nella prossine slide, con $\hat{B}=\sqrt{2} B, \hat{A}=A+\alpha I$ (note che $\operatorname{spen}\left(B, A B^{\prime}, A^{2} B,-\right)$

$$
=\operatorname{spen}\left(B,(A+\alpha \mid) B,(A+\alpha \mid)^{2} B, \ldots\right) \text {. }
$$

quind. (A, B) contr. $\Leftrightarrow(A+\alpha \mid, B)$ contr.

Controllability Lyapunov equation

Let A be a stable matrix. (A, B) is controllable iff the solution of

$$
\begin{equation*}
A X+X A^{*}=B B^{*} \tag{3}
\end{equation*}
$$

is positive definite.
Proof \Rightarrow suppose (A, B) is not controllable. Then, (up to a change of basis) (e $X_{\text {, risolve }} A_{11} X_{1}+X_{11} A_{11}^{*}=B B_{1}^{*}$)

$$
\underline{\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{cc}
X_{11} & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
X_{11} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
A_{11}^{*} & 0 \\
A_{12}^{*} & A_{22}^{*}
\end{array}\right]=\left[\begin{array}{cc}
B_{1} B_{1}^{*} & 0 \\
0 & 0
\end{array}\right]} .
$$

so X is not posdef.
\Leftarrow Suppose (A, B) is controllable. Then, for each $v \neq 0, v^{*} A^{k} B$ is not zero for all $k \Longrightarrow v^{*} e^{A t} B$ is not zero for all $t \Longrightarrow$ $v^{*} X v=\int v^{*} e^{A t} B B^{*} e^{A^{*} t} v \mathrm{~d} t \neq 0$.
se $v^{*} A^{*} B=0 \quad \forall k \in \mathbb{N}$, allore

$$
V^{*} \cdot \operatorname{span}\left(B, A B, A^{2} B \ldots\right)=0
$$

e quindi lo spen uon è totto \mathbb{R}^{n}
$=0 * e^{A t} B$ non è zero per ogi t

$$
v^{*}=\left(I+A t+\frac{1}{2} A^{2} t^{2}+\ldots\right) B
$$

Ip: $\quad v^{*} \exp (t A) B=0 \quad \forall t \in[0, \infty]$
Tes: $v^{*} A^{*} B=0 \quad \forall k \in \mathbb{N}$

$$
k=0 \quad 0=v^{*} \exp (0 \cdot A) B=v^{*} B
$$

(k=1 $\exp (t A)=I+t A+o\left(t^{2}\right) \rightarrow \lim _{t \rightarrow 0} \frac{\exp (t A)-I}{t}=A$

$$
0=\lim _{t \rightarrow 0} \underbrace{v^{*}\left(\frac{\exp t A-I}{t}\right) B}_{0^{\prime \prime}}=v^{*} A B
$$

$k=2 \quad \exp (t A)=I+t A+\frac{t^{2}}{2} A^{2}+O\left(t^{3}\right)$

$$
O=\lim _{t \rightarrow 0} \frac{v^{+}}{\exp ^{2}(H A)-I-t A} B=v^{*} A^{2} B
$$

Caso più focile cle possiene fore con altri matod: se $m=1, B=b$ è un singolo vettore.
Se (A, b) è controllabile, prendo la bose $M=\left[b, A b, A^{2} b, \ldots A^{n-1} b\right] \quad$ di \mathbb{R}^{n}; in puosto bose

$$
M^{-1} b=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

