Controllability

Definition

$(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$ is controllabile iff $K(A, B)=\mathbb{R}^{n}$, where

$$
K(A, B):=\operatorname{span}\left(B, A B, A^{2} B, \ldots\right)
$$

Lemma

There exists a nonsingular $M \in \mathbb{R}^{n \times n}$ such that

$$
M^{-1} A M=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right], \quad M^{-1} B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

(with $A_{11} \in \mathbb{R}^{n_{1} \times n_{1}}, A_{22} \in \mathbb{R}^{n_{2} \times n_{2}}, B_{1} \in \mathbb{R}^{n_{1} \times m}$, and $n_{2} \neq 0$) if and only if (A, B) is not controllable.

Proof

\Rightarrow Partition $M=\left[\begin{array}{ll}M_{1} & M_{2}\end{array}\right]$ conformably. Then,
$A^{k} B=M\left[\begin{array}{c}A_{11}^{k} B_{1} \\ 0\end{array}\right]=M_{1} A_{11}^{k} B_{1}$, so $K(A, B) \subseteq \operatorname{Im} M_{1}$.
\Leftarrow Let the columns of M_{1} be a basis of $K(A, B)$, and complete it to a nonsingular $M=\left[\begin{array}{ll}M_{1} & M_{2}\end{array}\right]$. Then, $M^{-1} A M$ is block triangular (because M_{1} is A-invariant), and $M^{-1} B$ has zeros in the second block row (because the columns of B lie in $\operatorname{Im} M_{1}$).
(Linear algebra characterization: $K(A, B)$ is the smallest A-invariant subspace that contains B. It's the space Q_{n} that we obtain after we encounter breakdown in Arnoldi.)

Kalman decomposition

Kalman decomposition

For every matrix pair $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$, there is a change of basis M such that

$$
M^{-1} A M=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right], \quad M^{-1} B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

with $\left(A_{11}, B_{1}\right)$ controllable.
Proof: as above: take M_{1} such that its columns are a basis of the 'controllable space' $K(A, B)$, then complete it to a basis of \mathbb{R}^{n}.

Stabilizability

Definition

(A, B) is stabilizable if in its Kalman decomposition A_{22} is stable (i.e., $\Lambda\left(A_{22}\right) \subseteq L H P$).

Note that this definition is well-posed even if M is non-unique: the eigenvalues of A_{11} are the eigenvalues of $\left.A\right|_{K(A, B)}$, and those of A_{22} are the remaining eigenvalues of A (counting with their algebraic multiplicity).

Controllability Lyapunov equation

Theorem

If A is a stable matrix and (A, B) is controllable, then the solution of $A X+X A^{*}+B B^{*}=0$ is positive definite.

Proof We know already that $X=\int_{0}^{\infty} \exp (A t) B B^{*} \exp \left(A^{*} t\right) \mathrm{d} t \succeq 0$.
Let $v \neq 0$ be any vector. We need to show that $v^{*} X v \neq 0$. If $v^{*} \exp (t A) B \neq 0$ for some t, then we are done (it is nonzero in a neighbourhood by continuity...).
If $v^{*} \exp (t A) B=0$ for all t, then $v^{*} B=0($ taking $t=0)$,

$$
\begin{gathered}
\lim _{t \rightarrow 0} \frac{1}{t} v^{*}(\exp (t A)-I) B=v^{*} A b=0 \\
\lim _{t \rightarrow 0} \frac{1}{t^{2}} v^{*}(\exp (t A)-I-t A) B=v^{*} \frac{1}{2} A^{2} b=0
\end{gathered}
$$

