Controllability

Definition

$$(A,B)\in\mathbb{R}^{n imes n} imes\mathbb{R}^{n imes m}$$
 is controllabile iff $K(A,B)=\mathbb{R}^n$, where $K(A,B):=\operatorname{span}(B,AB,A^2B,\dots)$.

Lemma

There exists a nonsingular $M \in \mathbb{R}^{n \times n}$ such that

$$M^{-1}AM = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, \quad M^{-1}B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}$$

(with $A_{11} \in \mathbb{R}^{n_1 \times n_1}$, $A_{22} \in \mathbb{R}^{n_2 \times n_2}$, $B_1 \in \mathbb{R}^{n_1 \times m}$, and $n_2 \neq 0$) if and only if (A, B) is not controllable.

Proof

 \Rightarrow Partition $M=\begin{bmatrix}M_1&M_2\end{bmatrix}$ conformably. Then, $A^kB=M\begin{bmatrix}A_{11}^kB_1\\0\end{bmatrix}=M_1A_{11}^kB_1$, so $K(A,B)\subseteq {\sf Im}\, M_1$.

 \Leftarrow Let the columns of M_1 be a basis of K(A,B), and complete it to a nonsingular $M=\begin{bmatrix} M_1 & M_2 \end{bmatrix}$. Then, $M^{-1}AM$ is block triangular (because M_1 is A-invariant), and $M^{-1}B$ has zeros in the second block row (because the columns of B lie in $\text{Im } M_1$).

(Linear algebra characterization: K(A, B) is the smallest A-invariant subspace that contains B. It's the space Q_n that we obtain after we encounter breakdown in Arnoldi.)

Kalman decomposition

Kalman decomposition

For every matrix pair $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$, there is a change of basis M such that

$$M^{-1}AM = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, \quad M^{-1}B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix},$$

with (A_{11}, B_1) controllable.

Proof: as above: take M_1 such that its columns are a basis of the 'controllable space' K(A, B), then complete it to a basis of \mathbb{R}^n .

Stabilizability

Definition

(A, B) is stabilizable if in its Kalman decomposition A_{22} is stable (i.e., $\Lambda(A_{22}) \subseteq LHP$).

Note that this definition is well-posed even if M is non-unique: the eigenvalues of A_{11} are the eigenvalues of $A|_{K(A,B)}$, and those of A_{22} are the remaining eigenvalues of A (counting with their algebraic multiplicity).

Controllability Lyapunov equation

Theorem

If A is a stable matrix and (A, B) is controllable, then the solution of $AX + XA^* + BB^* = 0$ is positive definite.

Proof We know already that $X = \int_0^\infty \exp(At)BB^* \exp(A^*t) dt \succeq 0$.

Let $v \neq 0$ be any vector. We need to show that $v^*Xv \neq 0$.

If $v^* \exp(tA)B \neq 0$ for some t, then we are done (it is nonzero in a neighbourhood by continuity...).

If
$$v^* \exp(tA)B = 0$$
 for all t , then $v^*B = 0$ (taking $t = 0$),

$$\lim_{t \to 0} \frac{1}{t} v^* (\exp(tA) - I) B = v^* A b = 0,$$

$$\lim_{t\to 0} \frac{1}{t^2} v^*(\exp(tA) - I - tA)B = v^* \frac{1}{2} A^2 b = 0,$$

: