Optimal control

Several choices for stabilizing — for instance, you can choose different α s in Bass's algorithm.

Is there an 'optimal' one?

Linear-quadratic optimal control

Find $u:[0,\infty]\to\mathbb{R}$ (piecewise C^0 , let's say) that minimizes

$$E = \int_0^\infty x^T Q x + u^T R u \, dt$$

s.t. $\dot{x} = Ax + Bu, x(0) = x_0.$

Minimum 'energy' defined by a quadratic form $(R \succeq 0, Q \succeq 0)$.

We assume $R \succ 0$: control is never free. Trickier problem otherwise.

Optimal control — solution

Using calculus of variations tools, one can prove that (Pontryagin's maximum principle)

A pair of functions u,x solves the optimal control problem iff there exists a function $\mu(t)$ ('Lagrange multiplier') such that

$$\begin{bmatrix} 0 & I & 0 \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{\mu} \\ \dot{x} \\ \dot{u} \end{bmatrix} = \begin{bmatrix} 0 & A & B \\ A^T & Q & 0 \\ B^T & 0 & R \end{bmatrix} \begin{bmatrix} \mu \\ x \\ u \end{bmatrix},$$

$$x(0) = x_0$$
, $\lim_{t \to \infty} \begin{bmatrix} \mu \\ x \\ u \end{bmatrix} = 0$.

Structure of the problem

$$\mathcal{E}\begin{bmatrix}\dot{\mu}\\\dot{x}\\\dot{u}\end{bmatrix}=\mathcal{A}\begin{bmatrix}\mu\\x\\u\end{bmatrix},\quad\mathcal{A}=\begin{bmatrix}0&A&B\\A^T&Q&0\\B^T&0&R\end{bmatrix},\\ \mathcal{E}=\begin{bmatrix}0&I&0\\-I&0&0\\0&0&0\end{bmatrix}.$$

Pencils $\lambda \mathcal{E} - \mathcal{A}$ with $\mathcal{A} = \mathcal{A}^T$, $\mathcal{E} = -\mathcal{E}^T$ are called even.

Eigenvalue pairing: if $(\lambda \mathcal{E} - \mathcal{A})v = 0$, then $v^T(-\overline{\lambda}\mathcal{E} - \mathcal{A}) = 0$, and $-\overline{\lambda}$ is an eigenvalue, too.

On a real problem, eigenvalues usually come in quadruples, $(\lambda, \overline{\lambda}, -\lambda, -\overline{\lambda})$. They may be degenerate if λ is real or pure imaginary.

The eigenvalues

If $R \succ 0$, row/column operations give

$$\lambda \mathcal{E} - \mathcal{A} \sim \lambda \begin{bmatrix} 0 & I & 0 \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} -BR^{-1}B^T & A & 0 \\ A^T & Q & 0 \\ 0 & 0 & I \end{bmatrix}.$$

This shows that $\lambda \mathcal{E} - \mathcal{A}$ has m simple eigenvalues at ∞ , plus 2n finite eigenvalues (with multiplicity): those of

$$\begin{bmatrix} I \\ -I \end{bmatrix}^{-1} \begin{bmatrix} -BR^{-1}B^T & A \\ A^T & Q \end{bmatrix}.$$

Change of variables

The same idea, recast as a change of variables on the equations: μ, x, u solve

$$\begin{bmatrix} 0 & I & 0 \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{\mu} \\ \dot{x} \\ \dot{u} \end{bmatrix} = \begin{bmatrix} 0 & A & B \\ A^T & Q & 0 \\ B^T & 0 & R \end{bmatrix} \begin{bmatrix} \mu \\ x \\ u \end{bmatrix}$$

iff $u = -R^{-1}B^T\mu$ and μ, x solve

$$\begin{bmatrix} & I \\ -I & \end{bmatrix} \begin{bmatrix} \dot{\mu} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} -BR^{-1}B^T & A \\ A^T & Q \end{bmatrix} \begin{bmatrix} \mu \\ x \end{bmatrix}$$

or

$$\begin{bmatrix} \dot{x} \\ \dot{\mu} \end{bmatrix} = \mathcal{H} \begin{bmatrix} x \\ \mu \end{bmatrix}, \quad \mathcal{H} = \begin{bmatrix} A & -G \\ -Q & -A^T \end{bmatrix}, \quad G = BR^{-1}B^T.$$

Solving the reduced problem

Suppose that:

- ▶ \mathcal{H} has n eigenvalues in the LHP and n in the RHP. (Recall: \mathcal{H} has "even eigensymmetry").
- we find X such that $\begin{bmatrix} I \\ X \end{bmatrix}$ spans the stable (eigenvalues

$$\in$$
 LHP) invariant subspace of \mathcal{H} , i.e., $\mathcal{H} \begin{vmatrix} I \\ X \end{vmatrix} = \begin{vmatrix} I \\ X \end{vmatrix} \mathcal{R}$.

Then, the stable solutions of

$$\begin{bmatrix} \dot{x} \\ \dot{\mu} \end{bmatrix} = \mathcal{H} \begin{bmatrix} x \\ \mu \end{bmatrix}$$

are given by

$$\begin{bmatrix} x(t) \\ \mu(t) \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} \exp(\mathcal{R}t)v.$$

The initial condition $x(0) = x_0$ gives $v = x_0$. Moreover, $\mu(t) = Xx(t)$, hence $u(t) = -R^{-1}B^TXx(t)$.

Algebraic Riccati equations

We have reduced the problem to $\mathcal{H} \begin{vmatrix} I \\ X \end{vmatrix} = \begin{vmatrix} I \\ X \end{vmatrix} \mathcal{R}$, or

$$\begin{bmatrix} A & -G \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} \mathcal{R}$$

$$\mathcal{R} = A - GX, \quad -Q - A^TX = XA - XGX.$$

$$A^TX + XA + Q - XGX = 0$$
, $Q \succeq 0$, $G \succeq 0$

is called algebraic Riccati equation.

We look for a stabilizing solution, i.e., $\Lambda(\mathcal{R}) \subseteq LHP$.

(Note that
$$\Lambda(\mathcal{R}) \subset \Lambda(\mathcal{H})$$
.)

Next goal: show that we can do what we claimed in the previous slide.

Solvability conditions

Solutions of (ARE) \iff *n*-dimensional invariant subspaces of $\mathcal H$ with invertible top block.

If \mathcal{H} has distinct eigenvalues, there are at most $\binom{2n}{n}$ solutions (choose n eigenvalues out of the 2n...)

Does it have a (unique) stabilizing solution? ${\cal H}$ Must have (exactly) n eigenvalues in the LHP, and the associated invariant

subspace must be expressible as $\operatorname{Im} \begin{bmatrix} I \\ X \end{bmatrix}$.

Hamiltonian matrices

$$\mathcal{H} = egin{bmatrix} A & -G \ -Q & -A^* \end{bmatrix}, \quad Q = Q^*, \; G = G^*$$

is a Hamiltonian matrix, i.e., it satisfies $J\mathcal{H}=-\mathcal{H}^*J$, where $J=\begin{bmatrix} I\\-I\end{bmatrix}$.

(Skew-self-adjoint with respect to the antisymmetric scalar product defined by J.)

If $\mathcal{H}v=\lambda v$, then $(v^*J)\mathcal{H}=(-\overline{\lambda})(v^*J)$: eigenvalues have 'even symmetry', and the right eigenvector relative to λ is related to the left one relative to $-\overline{\lambda}$.

A similar relation can be proved for Jordan chains: λ and $-\overline{\lambda}$ have Jordan chains of the same size.

Solvability conditions

Theorem

Assume $Q \succ 0$, and (A, B) stabilizable. Then, \mathcal{H} has no eigenvalues with Re $\lambda = 0$.

$$(Q\succ 0 \text{ can be weakened to } Q\succeq 0 \text{ and } (A^T,Q^T) \text{ stabilizable.})$$
 Proof (sketch) Suppose instead $\mathcal{H}{\begin{bmatrix}z_1\\z_2\end{bmatrix}}=\imath\omega{\begin{bmatrix}z_1\\z_2\end{bmatrix}}$; from $0=\text{Re}{\begin{bmatrix}z_2^*\ z_1^*\end{bmatrix}}{\begin{bmatrix}A&-G\\-Q&-A^*\end{bmatrix}}{\begin{bmatrix}z_1\\z_2\end{bmatrix}}=z_2^*Gz_2+z_1^*Qz_1 \text{ follows that } z_1=0,$ $z_2^*B=0$. But the latter together with $z_2^*A=-\imath\omega z_2^*$ contradicts stabilizability.

Hence, \mathcal{H} has n eigenvalues in the LHP and n associated ones in the RHP: it has exactly one stabilizing subspace.

Form of the invariant subspace

We know now that there exist $U_1, U_2 \in \mathbb{R}^{n \times n}$ such that $\begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$

spans the stable invariant subspace.

Moreover, $\begin{bmatrix} U_1^* & U_2^* \end{bmatrix} J = \begin{bmatrix} U_2^* & -U_1^* \end{bmatrix}$ spans the left anti-stable invariant subspace.

Left and right invariant subspaces relative to disjoint eigenvectors are orthogonal \implies

$$0 = \begin{bmatrix} U_2^* & -U_1^* \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} = U_2^* U_1 - U_1^* U_2.$$

We'd like to show that U_1 is invertible. Then (up to changing basis in $\begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$) we can take $U_1 = I$, $U_2 = X = X^*$.

Nonsingularity of U_1

Suppose (A, B) stabilizable, $Q \succeq 0$, $G \succeq 0$. Then U_1 is invertible.

We'd like to show that U_1 is nonsingular. Suppose otherwise $U_1v=0,\ U_2v\neq 0$. Then,

$$-v^*U_2^*GU_2v = \begin{bmatrix} v^*U_2^* & 0 \end{bmatrix} \mathcal{H} \begin{bmatrix} 0 \\ U_2v \end{bmatrix} = v^* \begin{bmatrix} U_2^* & U_1^* \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \mathcal{R} = 0.$$

implies $BU_2v = 0$.

The first block row gives $U_1\mathcal{R}v=0 \Longrightarrow U_1$ is \mathcal{R} -invariant and there are $x,\ \lambda\in LHP$ such that $U_1x=0,\ \mathcal{R}x=\lambda x$. Now the second block rows gives $-A^TU_2x=\lambda U_2x$. This (together with $BU_2x=0$ from above) contradicts stabilizability.

How to solve Riccati equations

- Newton's method.
- Invariant subspace via unstructured methods (QR).
- Invariant subspace via 'semi-structured' methods (Laub trick).
- Invariant subspace via structured methods (URV).
- Doubling / Sign iteration.