Controllability

Definition

 $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$ is controllabile iff $K(A, B) = \mathbb{R}^{n}$, where $K(A, B) := \operatorname{span}(B, AB, A^{2}B, \dots).$

Lemma

There exists a nonsingular $M \in \mathbb{R}^{n \times n}$ such that

$$M^{-1}AM = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, \quad M^{-1}B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}$$

(with $A_{11} \in \mathbb{R}^{n_1 \times n_1}$, $A_{22} \in \mathbb{R}^{n_2 \times n_2}$, $B_1 \in \mathbb{R}^{n_1 \times m}$, and $n_2 \neq 0$) if and only if (A, B) is not controllable.

$$M^{-1}AM = \begin{bmatrix} A_{11}^{n} & A_{12}^{n} \\ O & A_{n} \end{bmatrix}, M^{-1}B = \begin{bmatrix} B_{1} \\ O & h_{2} \end{bmatrix}^{n}, M^{-1}B = \begin{bmatrix} M_{1} & A_{12} \\ O & A_{22} \end{bmatrix}^{k} \begin{bmatrix} B_{1} \\ O \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & * \\ O & A_{22}^{k} \end{bmatrix} \begin{bmatrix} B_{1} \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & * \\ O & A_{22}^{k} \end{bmatrix} \begin{bmatrix} B_{1} \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & * \\ O & A_{22}^{k} \end{bmatrix} \begin{bmatrix} B_{1} \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & * \\ O & A_{22}^{k} \end{bmatrix} \begin{bmatrix} B_{1} \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} = \begin{bmatrix} A_{11}^{k} & B \\ O & A_{22}^{k} \end{bmatrix} =$$

(Idea: K(AB) = spen(B, AB, ...) è A-invariante:
se v è Gub. lin. di B, AB, ..., allone en che Av lo è)
Sia M, une notrice le cui colonne sono une bese di K(AB)
e la completo a une motrice invertibile M=(M, M2)
Alloro,
1) M⁻¹B=
$$\begin{bmatrix} B_1 \\ O \end{bmatrix}$$
 (per dé le colonne di B sono
comb. lin. di quoble di M,
(se M v; = Bi, allono v;= $\begin{bmatrix} a \\ O \end{bmatrix}$)
2) M⁻¹AM= $\begin{bmatrix} A_{12} \\ O A_{22} \end{bmatrix}$: debi AM,=M, An+M2O, quiadi
 $A[M_1 M_2] = [M, M_1] \begin{bmatrix} A_{11} \\ O \\ X \end{bmatrix}$.

Proof

$$\Rightarrow \text{ Partition } M = \begin{bmatrix} M_1 & M_2 \end{bmatrix} \text{ conformably. Then,}$$
$$A^k B = M \begin{bmatrix} A_{11}^k B_1 \\ 0 \end{bmatrix} = M_1 A_{11}^k B_1, \text{ so } K(A, B) \subseteq \text{ Im } M_1.$$

 \Leftarrow Let the columns of M_1 be a basis of K(A, B), and complete it to a nonsingular $M = \begin{bmatrix} M_1 & M_2 \end{bmatrix}$. Then, $M^{-1}AM$ is block triangular (because M_1 is A-invariant), and $M^{-1}B$ has zeros in the second block row (because the columns of B lie in Im M_1).

(Linear algebra characterization: K(A, B) is the smallest *A*-invariant subspace that contains *B*. It's the space Q_n that we obtain after we encounter breakdown in Arnoldi.)

Kalman decomposition

Kalman decomposition

For every matrix pair $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$, there is a change of basis M such that

$$M^{-1}AM = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, \quad M^{-1}B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}, \begin{array}{c} n_1 \\ n_2 \end{bmatrix}$$

with (A_{11}, B_1) controllable.

Proof: as above: take M_1 such that its columns are a basis of the 'controllable space' K(A, B), then complete it to a basis of \mathbb{R}^n .

Stabilizability

Definition

(A, B) is stabilizable if in its Kalman decomposition A_{22} is stable (i.e., $\Lambda(A_{22}) \subseteq LHP$).

Note that this definition is well-posed even if M is non-unique: the eigenvalues of A_{11} are the eigenvalues of $A|_{K(A,B)}$, and those of A_{22} are the remaining eigenvalues of A (counting with their algebraic multiplicity).

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} A_{11} \times + A_{12} \times + B, H \\ A_{22} \times 2 \end{pmatrix} \xrightarrow{A - gie} stebile$$

Controllability Lyapunov equation

Theorem

If A is a stable matrix and (A, B) is controllable, then the solution of $AX + XA^* + BB^* = 0$ is positive definite.

Proof We know already that $X = \int_{0}^{\infty} \exp(At)BB^* \exp(A^*t) dt \succeq 0$. Let $v \neq 0$ be any vector. We need to show that $\underline{v^*Xv} \neq 0$. If $v^* \exp(tA)B \neq 0$ for some t, then we are done (it is nonzero in a neighbourhood by continuity...).

If
$$v^* \exp(tA)B = 0$$
 for all t , then $v^*B = 0$ (taking $t = 0$),

$$\underbrace{ \underbrace{\operatorname{A-lim}}_{t \neq 0} \underbrace{\operatorname{exp}(IA) \cdot \mathbb{I}}_{t}}_{t \neq 0} \quad \lim_{t \to 0} \underbrace{\frac{1}{t} v^* (\exp(tA) - I)B}_{t \neq 0} = v^* AB = 0,$$

$$\lim_{t \to 0} \frac{1}{t^2} v^* (\exp(tA) - I - tA)B = v^* \frac{1}{2} A^2 B = 0,$$

Se
$$\sqrt[3]{10^{\circ}} \sqrt[3]{10^{\circ}} \exp(tA)B \cdot B^{\circ} \exp(tA^{\circ}) d+)v =$$

$$\int_{0}^{\infty} \left[\sqrt[3]{2} \exp(tA)B\right] \left[\sqrt[3]{2} \exp(tA)B\right]^{*} dt = \int_{0}^{\infty} ||T^{\circ} \exp(tA)B||^{2} dt$$
Se trove $+$ take de $\sqrt[3]{2} \exp(tA)B \neq 0$, trove and $\frac{1}{2} \ln t$ on $\frac{1}{2} \ln t$ on

Remark: Il contrano à abbestanza chiano:
se (combiando bese)
$$A = \begin{bmatrix} A_{11} & A_{12} \\ O & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_{1} \\ O \end{bmatrix},$$

allors $\exp((A)B = \begin{pmatrix} \sum_{k=0}^{n} \frac{t^{k}}{k!} A^{k} \end{pmatrix} B = \sum_{k=0}^{n} \frac{t^{k}}{k!} \begin{bmatrix} A_{11}^{k}B_{1} \end{bmatrix} = \begin{bmatrix} * \\ O \end{bmatrix}$