Invariant subspace methods for CAREs

X solves CARE $A^{*} X+X A+Q=X G X$ iff

$$
\left[\begin{array}{cc}
A & -G \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{c}
I \\
X
\end{array}\right] \mathcal{R}, \quad \mathcal{R}=A-G X
$$

One can find X through an invariant subspace of the Hamiltonian.
>> [A,G,Q] = carex(4) \%if test suite is installed
>> n = length(A);
>> $H=[A-G ;-Q-A)] ;$
>> [U, T] = schur(H);
>> [U, T] =ordschur(U, T, 'lhp');
>> $X=U(n+1: 2 * n, 1: n) / U(1: n, 1: n) ;$
People are not satisfied with this method though - it is not structured backward stable.

Eigenvalues close to the imaginary axis can be 'mixed up' - try carex (14) for instance.

Symplectic transformations

Ideal setting: make transformations at each step that are orthogonal and symplectic, i.e., orthogonal w.r.t the scalar product $J=\left[\begin{array}{cc}0 & I \\ -I & 0\end{array}\right]$: they satisfy $S^{T} J S=J$.
For instance:

- If $Q \in \mathbb{R}^{n \times n}$ is any orthogonal matrix, then $\operatorname{blkdiag}(Q, Q)$ is orthogonal and symplectic.
- A Givens matrix that acts on entries k and $n+k$ (i.e., $\mathrm{G}=\operatorname{eye}(2 * \mathrm{n}) ; \mathrm{G}([\mathrm{k}, \mathrm{n}+\mathrm{k}],[\mathrm{k}, \mathrm{n}+\mathrm{k}])=[\mathrm{c} \mathrm{s} ;-\mathrm{s} \mathrm{c}] ;)$ is orthogonal and symplectic.

Laub trick: let $U=\left[\begin{array}{ll}U_{1} & U_{3} \\ U_{2} & U_{4}\end{array}\right]$ the unitary matrix produced by schur (H). Then, $\left[\begin{array}{l}U_{1} \\ U_{2}\end{array}\right]$ is an orthogonal matrix that spans the stable subspace. We know that $-J\left[\begin{array}{l}U_{1} \\ U_{2}\end{array}\right]=\left[\begin{array}{c}U_{2} \\ -U_{1}\end{array}\right]$ is orthogonal to it (and spans the left unstable invariant subspace).
It turns out that $V=\left[\begin{array}{cc}U_{1} & U_{2} \\ U_{2} & -U_{1}\end{array}\right]$ is orthogonal and symplectic,
and $V^{T} \mathcal{H} V=\left[\begin{array}{cc}R & S \\ 0 & -R^{*}\end{array}\right]$, with R upper triangular and S symmetric (Hamiltonian Schur form).

An orthogonal symplectic algorithm

This produces the same subspace as the previous method, so it is not really a 'structured' method. Can one do a 'symplectic QR' and compute the Hamiltonian Schur form using a sequence of orthosymplectic transformations?

Open problem for a while; it turns out that that Schur form does not exist for all Hamiltonian matrices (there are counterexamples with eigenvalues on the unit circle). \Longrightarrow algorithms must be unstable 'nearby'.
(This problem was known as Van Loan's curse.)

Chu-Liu-Mehrmann algorithm

Closest thing to a solution: Chu-Liu-Mehrmann algorithm. Based on a different decomposition: $\mathcal{H}=U R V^{\top}$, with U, V orthosymplectic and

$$
R=\left[\begin{array}{cc}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right]
$$

with R_{11}, R_{22}^{*} upper triangular. Can be computed 'almost' directly in $O\left(n^{3}\right)$ (it's an LU-like decomposition).

URV — simpler version (produces Hessenberg R_{22})

- Left-multiply by blkdiag(Q, Q) to get
- Left-multiply by a Givens on (1, $n+1$) to get $* * * * * *$
$0 * * * * *$
$0 * * * * *$ $0 * * * * *$
- Left-multiply by blkdiag(Q, Q) to get

Using URV

Note that $\mathcal{H}=U R V+$ symplecticity implies

$$
\mathcal{H}=V\left[\begin{array}{cc}
-R_{22}^{T} & R_{12}^{T} \\
0 & -R_{11}^{T}
\end{array}\right] U^{T} .
$$

Hence

$$
\mathcal{H}^{2}=V\left[\begin{array}{cc}
-R_{11} R_{22}^{T} & * \\
0 & -R_{22} R_{11}^{T}
\end{array}\right] V^{T}
$$

can be used to compute eigenvalues (easily) and eigenvectors of \mathcal{H} (for instance: the columns of V cause breakdown at step 2 in Arnoldi).

