Invariant subspace methods for CAREs

X solves CARE $A^*X + XA + Q = XGX$ iff

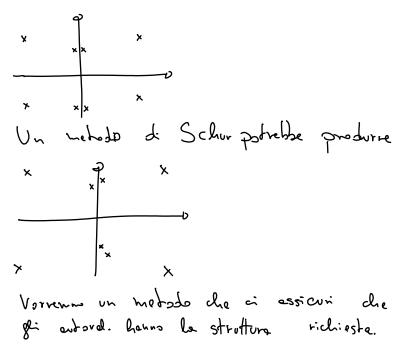
$$\begin{bmatrix} A & -G \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} \mathcal{R}, \quad \mathcal{R} = A - GX.$$

One can find X through an invariant subspace of the Hamiltonian.

```
>> [A,G,Q] = carex(4) %if test suite is installed
>> n = length(A);
>> H = [A -G; -Q -A'];
>> [U, T] = schur(H);
>> [U, T] =ordschur(U, T, 'lhp');
>> X = U(n+1:2*n, 1:n) / U(1:n, 1:n);
```

People are not satisfied with this method though — it is not structured backward stable.

Eigenvalues close to the imaginary axis can be 'mixed up' — try carex(14) for instance.



Se

$$\mathcal{H} = \begin{bmatrix} U_1 & U_3 \\ U_2 & U_4 \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix} \begin{bmatrix} U_1 & U_3 \\ U_2 & U_4 \end{bmatrix}^T,$$
allow spon $\begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$ is un softo speable invariante:
(associate agli
(associate agli
(associate agli
(b) $U_2 \end{bmatrix} = \begin{bmatrix} U_1 & U_3 \\ U_2 & U_4 \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix} \begin{bmatrix} U_1 & U_3 \\ U_2 & U_4 \end{bmatrix} \begin{bmatrix} U_1 & U_3 \\ U_2 & U_4 \end{bmatrix} \begin{bmatrix} U_1 & U_3 \\ U_2 & U_4 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$

$$= \begin{bmatrix} T_{11} \\ U_2 \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}^T,$$

$$X = U_2 U_1^{-1} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}^T,$$

Symplectic transformations

Ideal setting: make transformations at each step that are orthogonal and symplectic, i.e., orthogonal w.r.t the scalar product $J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$: they satisfy $S^T J S = J$.

For instance:

- If Q ∈ ℝ^{n×n} is any orthogonal matrix, then blkdiag(Q, Q) is orthogonal and symplectic.
- ► A Givens matrix that acts on entries k and n + k (i.e., G = eye(2*n); G([k,n+k], [k,n+k]) = [c s; -s c];) is orthogonal and symplectic.

Def: SE C^{2n×2n} si dice simplettice se $\langle v, w \rangle_{J} = \langle Sv, Sw \rangle_{J}$ per ogni $v, w \in \mathbb{C}^{2n}$ cioà V*Jw=v*S*JSw ∀v,w €>J=S*JS <u>Lemma</u>: se H Hamiltoniona, S <u>simplettice</u>, 5⁻¹HS è Hamiltoniana: <u>JH=-H*J</u> (S-'HS)* = S*H*S-* = JS'JJHJJSJ = = J(S-, H2)2 J(S-'HS)=(S'HS)*J-'= -(S-'HS)J

Laub trick: let $U = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \begin{bmatrix} U_3 \\ U_4 \end{bmatrix}$ the unitary matrix produced by (or a schur (H). Then, $\begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$ is an orthogonal matrix that spans the stable subspace. We know that $-J\begin{bmatrix} U_1\\U_2\end{bmatrix} = \begin{bmatrix} U_2\\-U_1\end{bmatrix}$ is orthogonal to it (and spans the left unstable invariant subspace). It turns out that $\mathbf{V} = \begin{bmatrix} U_1 & U_2 \\ U_2 & -U_1 \end{bmatrix}$ is orthogonal and symplectic, and $V^T \mathcal{H} V = \begin{bmatrix} R & S \\ 0 & -R^* \end{bmatrix}$, with R upper triangular and S symmetric (Hamiltonian Schur form). H U2 = U2 R perdi (U2) sperso un solt. =0 $H\left[\begin{matrix} U_1 \times \\ U_2 \times \end{matrix}\right] = \begin{matrix} U_1 \times \\ U_2 \times \end{matrix}\right] \left[\begin{matrix} R \times \\ O \times \end{matrix}\right]$

Preudo
$$\begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$$
 prodotto del metodo di Schur,
e ci attacco $-\int \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} = \begin{bmatrix} -U_2 \\ U_1 \end{bmatrix}$,
ottahando
 $S = \begin{bmatrix} U_1 & -U_2 \\ U_2 & U_1 \end{bmatrix}$. Risultoto: $S \ge Oidego nele e$
 $Simplettice:$
 $I) S = \begin{bmatrix} U_1^* & U_2^* \\ -U_2^* & U_1^* \end{bmatrix} \begin{bmatrix} U_1 & -U_2 \\ U_2 & U_1 \end{bmatrix} = \begin{bmatrix} T & O \\ O & T \end{bmatrix}$
dhe e le relexion $\begin{bmatrix} U_1^* & U_2^* \\ U_1^* & U_2^* \end{bmatrix} \begin{bmatrix} U_1 & -U_2 \\ U_2 & U_1 \end{bmatrix} = \begin{bmatrix} T & O \\ O & T \end{bmatrix}$

2) J ≦ S* JS $S^* \overline{J} S = \begin{bmatrix} U_1^* & U_2^* \\ -U_2^* & U_1^* \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} U_1 & -U_2 \\ U_2 & U_1 \end{bmatrix} =$ $= \begin{bmatrix} U_1^* & U_2^* \\ -U_2^* & U_1^* \end{bmatrix} \begin{bmatrix} U_2 & U_1 \\ -U_1 & U_2 \end{bmatrix} = \begin{bmatrix} O & \mathbf{I} \\ -\mathbf{I} & O \end{bmatrix}$

An orthogonal symplectic algorithm

This produces the same subspace as the previous method, so it is not really a 'structured' method. Can one do a 'symplectic QR' and compute the Hamiltonian Schur form using a sequence of orthosymplectic transformations?

Open problem for a while; it turns out that that Schur form does not exist for all Hamiltonian matrices (there are counterexamples with eigenvalues on the unit circle). \implies algorithms must be unstable 'nearby'.

(This problem was known as Van Loan's curse.)

Chu-Liu-Mehrmann algorithm

Closest thing to a solution: Chu–Liu–Mehrmann algorithm. Based on a different decomposition: $\mathcal{H} = URV^T$, with U, V orthosymplectic and

$$\mathsf{R} = \begin{bmatrix} \mathsf{R}_{11} & \mathsf{R}_{12} \\ \mathsf{0} & \mathsf{R}_{22} \end{bmatrix}$$

with R_{11}, R_{22}^* upper triangular.

Can be computed 'almost' directly in $O(n^3)$ (it's an LU-like decomposition).

Note that

$$\mathcal{H} = V \begin{bmatrix} -R_{22}^{\mathsf{T}} & R_{12}^{\mathsf{T}} \\ 0 & -R_{11}^{\mathsf{T}} \end{bmatrix} U^{\mathsf{T}}.$$

Hence

$$\mathcal{H}^2 = V \begin{bmatrix} -R_{11}R_{22}^T & *\\ 0 & -R_{22}R_{11}^T \end{bmatrix} V^T$$

can be used to compute eigenvalues and eigenvectors (for instance: the columns of V cause early breakdown in Arnoldi).