Sign-like methods for CAREs

Matrix sign iteration

$$
X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}), \quad X_0 = \mathcal{H}.
$$

It is not difficult to see that X_k is Hamiltonian at each step (i.e., $JX_k = -X_k^*J$). Just show that

► If M is Hamiltonian, then M^{-1} is Hamiltonian, too.

If M_1 , M_2 are Hamiltonian, then $M_1 + M_2$ is Hamiltonian, too. (Guiding idea: Hamiltonian matrices are 'like antisymmetric ones': properties that you expect for antisymmetric matrices will often hold for Hamiltonian, too.)

Structure-preserving sign iteration

In machine arithmetic, the X_k won't be exactly Hamiltonian unless we modify our algorithm to ensure that they are.

Recall: X is Hamiltonian iff $Z = JX$ is symmetric. Rewrite the iteration in terms of $Z_k := J X_k$:

$$
Z_{k+1} = \frac{1}{2}(Z_k + JZ_k^{-1}J), \quad Z_0 = JH.
$$

Will preserve symmetry exactly (assuming the method we use for inversion does).

We can incorporate scaling.

It is in some sense 'working on even pencils': given an even pencil $\lambda J - Z_k$, construct $\lambda J - Z_{k+1}$ (will see more of this idea in the following).

Towards doubling

Recall: in the doubling iteration, if we set $Y_k = (I - X_k)^{-1}(I + X_k)$, then $Y_{k+1} = -Y_k^2$.

In an ideal world without rounding errors, we could compute Y_0, Y_1, Y_2, \ldots , and then get the stable invariant subspace as ker Y_{∞} .

We can do something similar, if we work in a suitable format.

Standard Symplectic Form

Goal: write
$$
Y_0 = (I - \mathcal{H})^{-1}(I + \mathcal{H})
$$
 as

$$
Y_0 = \begin{bmatrix} I & -G_0 \\ 0 & F_0 \end{bmatrix}^{-1} \begin{bmatrix} E_0 & 0 \\ -H_0 & I \end{bmatrix}.
$$

Can be rewritten as: find M such that

$$
M\left[\left(I-\mathcal{H}\right)\left(I+\mathcal{H}\right)\right]=\left[\begin{matrix}I&G_{0}&E_{0}&0\\0&F_{0}&H_{0}&I\end{matrix}\right].
$$

Solution: M is the inverse of block columns (1*,* 4).

Structural properties: if H is Hamiltonian, Y_0 is symplectic. If Y_0 is symplectic, $E_0 = F_0^*, G_0 = G_0^*, H_0 = H_0^*.$ Moreover, if $G \succeq 0$, $H \succeq 0$, then $G_0 \succeq 0$, $H_0 \prec 0$.

(All these manipulations can be reformulated as left-multiplication of the pencil $(I - \mathcal{H}, I + \mathcal{H})$.)

Doubling algorithm

$$
\begin{aligned}\n\text{Plan Given } Y_k &= \begin{bmatrix} I & G_k \\ 0 & E_k^* \end{bmatrix}^{-1} \begin{bmatrix} E_k & 0 \\ H_k & I \end{bmatrix}, \text{ compute} \\
Y_{k+1} &= -Y_k^2 = \begin{bmatrix} I & G_{k+1} \\ 0 & E_{k+1}^* \end{bmatrix}^{-1} \begin{bmatrix} E_{k+1} & 0 \\ H_{k+1} & I \end{bmatrix}.\n\end{aligned}
$$

Similar to the 'inverse-free sign method' described earlier.

If
$$
Y_k = \mathcal{M}_k^{-1} \mathcal{N}_k
$$
, then $-Y_k^2 = -\mathcal{M}_k^{-1} \mathcal{N}_k \mathcal{M}_k^{-1} \mathcal{N}_k = \mathcal{M}_k^{-1} \widehat{\mathcal{M}}_k^{-1} \widehat{\mathcal{N}}_k \mathcal{N}_k = (\widehat{\mathcal{M}}_k \mathcal{M}_k)^{-1} (\widehat{\mathcal{N}}_k \mathcal{N}_k)$, where $\widehat{\mathcal{M}}_k$, $\widehat{\mathcal{N}}_k$ satisfy $\widehat{\mathcal{M}}_k^{-1} \widehat{\mathcal{N}}_k = -\mathcal{N}_k \mathcal{M}_k^{-1}$, i.e.,

$$
\begin{bmatrix} \widehat{\mathcal{M}}_k & \widehat{\mathcal{N}}_k \end{bmatrix} \begin{bmatrix} \mathcal{N}_k \\ \mathcal{M}_k \end{bmatrix} = 0.
$$

Doubling: inversion trick

$$
\begin{bmatrix} I & \widehat{G}_k & \widehat{E}_k & 0 \\ 0 & \widehat{F}_k & \widehat{H}_k & I \end{bmatrix} \begin{bmatrix} E_k & 0 \\ H_k & I \\ I & G_k \\ 0 & E_k^* \end{bmatrix} = 0
$$

holds if

$$
\begin{bmatrix}\n\hat{G}_k & \hat{E}_k \\
\hat{F}_k & \hat{H}_k\n\end{bmatrix} = -\begin{bmatrix}\nE_k & 0 \\
0 & E_k^*\n\end{bmatrix} \begin{bmatrix}\nH_k & I \\
I & G_k\n\end{bmatrix}^{-1}
$$
\n
$$
= \begin{bmatrix}\nE_k & 0 \\
0 & E_k^*\n\end{bmatrix} \begin{bmatrix}\nG_k(I - H_k G_k)^{-1} & -(I - G_k H_k)^{-1} \\
-(I - H_k G_k)^{-1} & H_k(I - G_k H_k)^{-1}\n\end{bmatrix}.
$$

Doubling: the formulas

Putting everything together,

$$
\begin{bmatrix} E_{k+1} & 0 \ H_{k+1} & I \end{bmatrix} = \begin{bmatrix} -E_k(I - G_k H_k)^{-1} & 0 \ E_k^* H_k(I - G_k H_k)^{-1} & I \end{bmatrix} \begin{bmatrix} E_k & 0 \ H_k & I \end{bmatrix}
$$

$$
= \begin{bmatrix} -E_k(I - G_k H_k)^{-1} E_k & 0 \ H_k + E_k^* H_k(I - G_k H_k)^{-1} E_k & I \end{bmatrix}
$$

and an analogous computation gives E_{k+1}^* , G_{k+1} :

Structured doubling algorithm

$$
E_{k+1} = -E_k(I - G_k H_k)^{-1} E_k,
$$

\n
$$
G_{k+1} = G_k + E_k G_k (I - H_k G_k)^{-1} E_k^*,
$$

\n
$$
H_{k+1} = H_k + E_k^* H_k (I - G_k H_k)^{-1} E_k.
$$

SDA: details

Note that (even when the middle term does not converge)

 $G_k (I - H_k G_k)^{-1} = G_k + G_k H_k G_k + G_k H_k G_k H_k G_k + \cdots = (I - G_k H_k)^{-1} G_k,$

and this matrix is symmetric. If $G_k = B_k B_k^*$, then it can also be rewritten as $B_k(I - B_k^*H_kB_k)^{-1}B_k^*$ (inverting a symmetric matrix).

Monotonicity If
$$
H_k \preceq 0
$$
 then $G_k(I - H_k G_k)^{-1} \succeq 0$. Hence,
 $0 \preceq G_0 \preceq G_1 \preceq \ldots$, and $0 \succeq H_0 \succeq H_1 \succeq H_2 \succeq \ldots$

Cost As much as a $2n \times 2n$ inversion $M^{-1}N$, if you put everything together. Unlike the sign algorithm, we have a bound $\sigma_{\min}(I - H_k G_k) > 1$.

SDA: the dual equation

To analyze convergence, we need to introduce another matrix. Let Y be the matrix such that

$$
\mathcal{H}\begin{bmatrix} -Y \\ I \end{bmatrix} = \begin{bmatrix} A & -G \\ -Q & -A^* \end{bmatrix} \begin{bmatrix} -Y \\ I \end{bmatrix} = \begin{bmatrix} -Y \\ I \end{bmatrix} \widehat{\mathcal{R}}
$$

is the anti-stable invariant subspace of H, i.e., $\Lambda(\widehat{\mathcal{R}}) \subset RHP$.

Why does it exist? Because $\begin{bmatrix} I \end{bmatrix}$ Y 1 spans the stable subspace of $\mathcal{H}^* = -J\mathcal{H}J$, and we can repeat our arguments on it (in the version with (A,B) and $(A^{\mathcal{T}},C^{\mathcal{T}})$ controllable)

SDA: convergence (intuitively)

Intuitive view E_k approximately squared at each time. Hence

$$
\mathcal{H}_k = \begin{bmatrix} I & G_k \\ 0 & E_k^* \end{bmatrix}^{-1} \begin{bmatrix} E_k & 0 \\ H_k & I \end{bmatrix}
$$

has n eigenvalues \rightarrow 0 and n that \rightarrow $\infty.$ ker \mathcal{H}_k \approx \lceil $-H_k$ 1 , so $-H_L \rightarrow X$

Dually, "ker
$$
\mathcal{H}_k^{-1}
$$
" (a thing that shouldn't exist...) $\approx \begin{bmatrix} -G_k \\ I \end{bmatrix}$, so $G_k \to Y$.

SDA convergence (formally)

More formally

$$
\mathcal{H}_0\begin{bmatrix} I \\ X \end{bmatrix} = (I - \mathcal{H})^{-1}(I + \mathcal{H})\begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} (I - \mathcal{R})^{-1}(I + \mathcal{R}).
$$

where $\mathcal{S} = (I - \mathcal{R})^{-1}(I + \mathcal{R})$ has all eigenvalues in the unit circle.

$$
\begin{bmatrix} I & G_k \\ 0 & E_k^* \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} \begin{bmatrix} E_k & 0 \\ H_k & I \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} S^{2^k}.
$$

which implies

$$
E_k = (I + G_k X)S^{2^k},
$$

\n
$$
H_k + X = E_k^* X S^{2^k} = (S^{2^k})^* (I + XG_k)S^{2^k} \succeq 0.
$$

The same computation on the dual equation gives $G_k \preceq Y$, so G_k is bounded and $E_k \to 0, H_k + X \to 0$ (quadratically as $\mathcal{S}^{2^k}).$