
Large-scale methods for Lyapunov equations
We give a hint of the methods used for large-scale equations.

We focus on Lyapunov equations, AX + XA∗ + BB∗ = 0.
(Then we can solve CAREs using Newton’s method, for instance.)

Assumptions: A large and sparse with Λ(A) ⊂ LHP. B ∈ Rn×m,
with m� n.

Actually, we may suppose B = b ∈ Rn without loss of generality: a
rank-m matrix is the sum of m rank-1 matrices, and the equation
is linear.

Assume A symmetric, normal or ‘almost normal’. The algorithms
often work for generic A, but the analysis works better for normal
matrices.



ADI (alternating-direction implicit) iteration
Let pk < 0 ∈ R, so that A + pk I is never singular (and A− pk I
may be singular if pk is an eigenvalue of A).

Rewrite the Lyapunov equation as

(A + pk I)X + X (A∗ − pk I) + bb∗ = 0.

and formulate as a fixed-point equation (starting from X0 = 0)

Xk+1 = (A + pk I)−1(−bb∗ − Xk(A∗ − pk I)).

Ugly, breaks symmetry: to restore it, make two steps with same pk :

Xk+ 1
2

= (A + pk I)−1(−bb∗ − Xk(A∗ − pk I)),

Xk+1 = (−bb∗ − (A− pk I)Xk+ 1
2
)(A∗ + pk I)−1

= −2Re(pk)(A + pk I)−1bb∗(A + pk I)−∗ + fpk (A)Xk fpk (A)∗,

with fpk (x) = x−pk
x+pk

= 1− 2Re(pk) 1
x+pk

.



Low-rank ADI

Xk+1 = −2Re(pk)(A + pk I)−1bb∗(A + pk I)−∗ + fpk (A)Xk fpk (A)∗

Can be rewritten in terms of the ‘low-rank factor’ of Xk = ZkZ ∗k :

Zk+1 =
[√
−2Re(pk)(A + pk I)−1b fpk (A)Zk

]
.

or in a more efficient form with only one inversion at each step:

Zk =
[
v1 v2 . . . vk

]
, vk+1 = αkvk + βk(A + pk I)−1vk .

(easier to see by looking at the first steps).



ADI: convergence
Convergence depends on the choices of pk . Intuitively: good if
A− pk I is small and A + pk I is large. Suggests taking pk as (some
of) the eigenvalues of A.

More formally:

Xk+1−X∗ = fpk (A)(Xk −X∗)fpk (A)∗ = · · · = g(A)(X0−X∗)g(A)∗,

where g(x) =
∏k

i=0
x−pi
x+pi

.

If A = V ΛV−1, then

‖g(A)‖ ≤ κ(V ) max
λ∈Λ(A)

k∏
i=0

|λ− pi |
|λ+ pi |

.

How to choose pk ’s that make this small? Easy if A has few /
clustered eigenvalues.



ADI convergence

ηk = min
p0,...,pk

max
λ∈Λ(A)

k−1∏
i=0

|λ− pi |
|λ+ pi |

.

In general, tricky approximation theory problem. Typical approach:
find an enclosing region for the eigenvalues of A (for instance, if
A = A∗, all eigenvalues are in [λmin, λmax]); look for a polynomial
that is ‘small’ on this region and ‘large’ on [−λmax,−λmin].

In many cases, ηk decays with k — exponentially, or anyway fast.

Consequence The solution X has decaying singular values / low
numerical rank.

(Good thing, because otherwise the problem would be hopeless: X
is full.)



Residual computation
For Xk = ZkZ ∗k , with Zk ∈ Rn×k , we have

AZkZ ∗k +ZkZ ∗k A∗+BB∗ =
[
Zk AZk B

] 0 I 0
I 0 0
0 0 I

 [
Zk AZk B

]∗
.

Using QR or SVD of the tall thin
[
Zk AZk B

]
, we can compute

residual norms in O(nk2).



Rational Arnoldi
The computed Zk has columns of the form r(A)b, where
r(x) = q(x)/p(x), with denominator
p(x) = (x − p0)(x − p1) . . . (x − pk−1).

Definition
The rational Krylov subspace with poles p0, p1, . . . , pk−1 is

Rk(A, b) = {p(A)−1q(A)b : deg q < k} = p(A)−1Kk(A, b).

An orthogonal basis can be computed with a variant of Arnoldi: at
each step, multiply the last vector vk by (A− pk I)−1 and
orthogonalize against the previous ones.

Plan First compute this subspace, then solve the projected
equation.



Solving projected equations
Given an orthonormal basis Uk of Rk(A, b):
1. Set Xk = UkYkU∗k ;
2. Assume ‘orthogonal residual’: U∗k (AXk + XkA∗+ BB∗)Uk = 0.

Produces a projected Lyapunov equation

(U∗k AUk)Y + Y (U∗k AUk)∗ + U∗k BB∗Uk = 0.

Difficulty 1 Even if A stable, U∗k AUk is not necessarily so.
Difficulty 2 (main one, common to ADI): good pole selection.
Pole selection can be critical for convergence. No good general
strategies. Usually one tries some extremal eigenvalues of A and
A−1 as pk .


