Large-scale methods for Lyapunov equations

We give a hint of the methods used for large-scale equations.

We focus on Lyapunov equations, AX + XA* + BB* = 0.
(Then we can solve CAREs using Newton's method, for instance.)

Assumptions: A large and sparse with A(A) C LHP. B € R™™,
with m < n.

Actually, we may suppose B = b € R" without loss of generality:
rank-m matrix is the sum of m rank-1 matrices, and the equation
is linear.
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Assume A symmetric, normal or ‘almost normal’. The algorithms
often work for generic A, but the analysis works better for normal
matrices.



ADI (alternating-direction implicit) iteration

Let px < 0 € R, so that A+ pi! is never singular (and A — py/
may be singular if py is an eigenvalue of A).

Rewrite the Lyapunov equation as
(A+ p)X + X(A* — pil) + bb* = 0.
and formulate as a fixed-point equation (starting from Xy = 0)
Xis1 = (A+ pil) 7L (=bb* — Xi(A* = pil)).
Ugly, breaks symmetry: to restore it, make two steps with same py:
Xip1 = (A+ pi) "L (—=bb* — X (A* — pil)),

X1 = (=bb™ — (A= Bl) X, 1)(A” + pel) !
= —2Re(pi)(A+ pil)” 1bb*(A+pk/)- + Fo (A) Xk (A),

with fp, (x) = X+ =1-2 Re(pk)Xerk



Low-rank ADI

Xir1 = —2Re(pr)(A + pil) “1bb* (A + prd)™* + £, (A) Xk F (A)*
Can be rewritten in terms of the ‘low-rank factor’ of X, = Z, Z;:
Ziyr = [V=2Re(p)(A+ pil)Ib £ (A)Z] .
or in a more efficient form with only one inversion at each step:
Zy = {Vl o Vk} Vi1 = vk + Br(A+ prd) L.

(easier to see by looking at the first steps).



ADI: convergence

Convergence depends on the choices of pk. Intuitively: good if
A — pil is small and A + pil is large. Suggests taking py as (some
of) the eigenvalues of A.

More formally:

Xir1 = X = fp (A)( Xk = X ) (A)" = - - = g(A)(Xo — Xs)g(A),

where g(x) = [T, X+Z:

If A= VAV, then
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How to choose py's that make this small? Easy if A has few /
clustered eigenvalues.



ADI convergence
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In general, tricky approximation theory problem. Typical approach:
find an enclosing region for the eigenvalues of A (for instance, if
A = A*, all eigenvalues are in [Amin, Amax]); look for a polynomial
that is ‘small’ on this region and ‘large’ on [—Amax;, —Amin]-
In many cases, 7, decays with k — exponentially, or anyway fast.
Consequence The solution X has decaying singular values / low
numerical rank.

(Good thing, because otherwise the problem would be hopeless: X
is full.)



Residual computation

For Xy = ZxZ;, with Z) € Rk we have

AZZi+ZZA+BB" = |Z AZc B 2 AZ B}*
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Using QR or SVD of the tall thin [Zk AZy B}, we can compute

residual norms in O(nk?).



Rational Arnoldi

The computed Zx has columns of the form r(A)b, where
r(x) = g(x)/p(x), with denominator

p(x) = (x — po)(x = Pr) - (X — px_1).

Definition

The rational Krylov subspace with poles pg, p1, ..., pk_1 is

Ri(A, b) = {p(A)"'q(A)b: degq < k} = p(A) " Kk(A, b).

An orthogonal basis can be computed with a variant of Arnoldi: at
each step, multiply the last vector v, by (A — pi/)~! and
orthogonalize against the previous ones.

Plan First compute this subspace, then solve the projected
equation.



Solving projected equations

Given an orthonormal basis Uy of Ri(A, b):
1. Set X, = UkYkU,t;
2. Assume ‘orthogonal residual’: Uj(AXk + XkA* + BB*) Uy = 0.

Produces a projected Lyapunov equation
(UFAUR)Y + Y (UL AU + UgBB* U = 0.

Difficulty 1 Even if A stable, U; AU is not necessarily so.
Difficulty 2 (main one, common to ADI): good pole selection.
Pole selection can be critical for convergence. No good general
strategies. Usually one tries some extremal eigenvalues of A and
A1 as py.



