Sylvester equations

Goal represent linear functions $\mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p \times q}$.
For instance, to deal with problems like the following one.

$$
\begin{aligned}
& \text { Sylvester equation } \square \square-\Pi \square=\square \square \square \square \square \\
& \qquad A X-X B=C \mid \\
& A \in \mathbb{C}^{m \times m}, C, X \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times n} .
\end{aligned}
$$

This must be a $m n \times m n$ linear system, right?
Vectorization gives an explicit way to map it to a vector.

Vectorization: definition

Vectorization: comments

Column-major order: leftmost index 'changes more often'. Matches Fortran, Matlab standard (C/C++ prefer row-major instead).
Converting indices in the matrix into indices in the vector:

$$
\begin{array}{ll}
(X)_{i j}=(\operatorname{vec} X)_{i+m j} & \text { 0-based } \\
(X)_{i j}=(\operatorname{vec} X)_{i+m(j-1)} & \text { 1-based }
\end{array}
$$

$\operatorname{vec}(A X B)$

First, we will work out the representation of a simple linear map, $X \mapsto A X B$ for fixed matrices A, B of compatible dimensions). If $X \in \mathbb{R}^{m \times n}, A X B \in \mathbb{R}^{p \times q}$, we need the $p q \times m n$ matrix that maps sec X to $\operatorname{vec}(A X B)$.

$$
\begin{gathered}
(A X B)_{h l}=\sum_{j}(A X)_{h j}(B)_{j l}=\sum_{j} \sum_{i} A_{h i} X_{i j} B_{j l} \\
=\left[\begin{array}{ccccccc}
A_{h 1} B_{1 /} & A_{h 2} B_{1 /} & \ldots & A_{h m} B_{1 /}\left|\begin{array}{llll}
& A_{h 1} B_{2 l} & A_{h 2} B_{2 l} & \ldots
\end{array} A_{h m} B_{2 l}\right| \ldots \\
\mid A_{h 1} B_{n l} & A_{h 2} B_{n l} & A_{h m} B_{n l} &] \text { vec } X
\end{array}\right.
\end{gathered}
$$

$\sum A_{1 p_{1}} x_{h k} B_{k 1}$

Kronecker product: definition

$$
\operatorname{vec}(A X B)=\left[\begin{array}{cccc}
b_{11} A & b_{21} A & \ldots & b_{n 1} A \\
b_{12} A & b_{22} A & \ldots & b_{n 2} A \\
\vdots & \vdots & \ddots & \vdots \\
b_{1 q} A & b_{2 q} A & \ldots & b_{n q} A
\end{array}\right] \operatorname{vec} X
$$

Each block is a multiple of A, with coefficient given by the corresponding entry of B^{\top}.

Definition

$$
X \otimes Y:=\left[\begin{array}{cccc}
x_{11} Y & x_{12} Y & \ldots & x_{1 n} Y \\
x_{21} Y & x_{22} Y & \ldots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
x_{m 1} Y & x_{m 2} Y & \ldots & x_{m n} Y
\end{array}\right]
$$

so the matrix above is $B^{\top} \otimes A$.

Properties of Kronecker products

$$
X \otimes Y=\left[\begin{array}{cccc}
x_{11} Y & x_{12} Y & \ldots & x_{1 n} Y \\
x_{21} Y & x_{22} Y & \ldots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
x_{m 1} Y & x_{m 2} Y & \ldots & x_{m n} Y
\end{array}\right]
$$

- pec $A X B=\left(B^{\top} \otimes A\right)$ eec X. (Warning: not B^{*}, if complex).
- $(A \otimes B)(C \otimes D)=(A C \otimes B D)$, when dimensions are compatible. Proof: $B\left(D X C^{\top}\right) A^{\top}=(B D) X(A C)^{\top}$.
- $(A \otimes B)^{\top}=A^{\top} \otimes B^{\top}$.
- orthogonal \otimes orthogonal $=$ orthogonal.
- upper triangular \otimes upper triangular $=$ upper triangular.
- One can "factor out" several decompositions, egg.,
orth. lief. orth.

$$
A \otimes B=\left(\underline{\left(U_{1} S_{1} V_{1}^{*}\right.}\right) \otimes(\underline{\left.U_{2} S_{2} V_{2}^{*}\right)}=\underbrace{\left(U_{1} \otimes U_{2}\right)}(\underbrace{S_{1} \otimes S_{2}})\left(V_{1} \otimes V_{2}\right)^{*}
$$

Solvability criterion

Theorem

The Sylvester equation is solvable for all C iff $\Lambda(A) \cap \Lambda(B)=\emptyset$.

$$
\begin{aligned}
\triangle A X-X B=C & \Longleftrightarrow \\
& \left(I_{n} \otimes A-B^{\top} \otimes I_{m}\right) \operatorname{vec}(X)=\operatorname{vec}(C) .
\end{aligned}
$$

Schur decompositions of $A, B^{\top}: A=Q_{A} T_{A} Q_{A}^{*}, B^{\top}=Q_{B} T_{B} Q_{B}^{*}$. Then,

$$
I_{n} \otimes A-B^{\top} \otimes I_{m}=\left(Q_{B} \otimes Q_{A}\right)\left(I_{n} \otimes T_{A}+T_{B} \otimes I_{m}\right)\left(Q_{B} \otimes Q_{A}\right)^{*}
$$

is a Schur decomposition.
What is on the diagonal of $I_{n} \otimes T_{A}+T_{B} \otimes I_{m}$?
If $\Lambda(A)=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}, \Lambda(B)=\left\{\mu_{1}, \ldots, \mu_{n}\right\}$, then it's
$\Lambda\left(I_{n} \otimes A-B^{\top} \otimes I_{m}\right)=\left\{\lambda_{i}-\mu_{j}: i, j\right\}$.

Solution algorithms

The naive algorithm costs $O\left((m n)^{3}\right)$. One can get down to $O\left(m^{3} n^{2}\right)$ (full steps of GMRES, for instance.)
Bartels-Stewart algorithm (1972): $O\left(m^{3}+n^{3}\right)$.
Idea: invert factor by factor the decomposition

$$
\left(Q_{B} \otimes Q_{A}\right)\left(I_{n} \otimes T_{A}+T_{B} \otimes I_{m}\right)\left(Q_{B} \otimes Q_{A}\right)^{*}
$$

- Solving orthogonal systems \Longleftrightarrow multiplying by their transpose, $O\left(m^{3}+n^{3}\right)$ using the \otimes structure.
- Solving upper triangular system \Longleftrightarrow back-substitution; costs $O(n n z)=O\left(m^{3}+n^{3}\right)$.

Bartels-Stewart algorithm

A more operational description...
Step 1: reduce to a triangular equation.

$$
\begin{gathered}
Q_{A} T_{A} Q_{A}^{*} X-X Q_{B} T_{B}^{*} Q_{B}^{*}=C \\
T_{A} \widehat{X}-\widehat{X} T_{B}^{*}=\widehat{C}, \quad \widehat{X}=Q_{A}^{*} X Q_{B}, \widehat{C}=\widehat{Q_{A}^{*} C Q_{B}} .
\end{gathered}
$$

Step 2: We can compute each entry $X_{i j}$, by using the (i, j) th equation, as long as we have computed all the entries below and to the right of $X_{i j}$.

Comments

- Works also with the real Schur form: back-sub yields block equations which are tiny 2×2 or 4×4 Sylvesters.
| - Backward stable (as a system of $m n$ linear equations): it's orthogonal transformations + back-sub.
- Not backward stable in the sense of $\widetilde{A} \widetilde{X}-\widetilde{X} \widetilde{B}=\widetilde{C}$ [Higham '93].
(Sketch of proof: backward error given by a linear least squares system with matrix $\left[\begin{array}{llll}\widetilde{X}^{\top} \otimes I & I \otimes \widetilde{X} & I\end{array}\right]$). Its singular values depend on those of \widetilde{X}.)

Comments
Condition number: depends on

$$
\operatorname{sep}(A, B) \triangleq=\sigma_{\min }\left(I \otimes A-B^{\top} \otimes I\right)=\operatorname{mim}_{Z} \stackrel{\|A Z-Z B\|_{F}}{\|Z\|_{F}} .
$$

If A, B normal, this is simply the minimum difference of their eigenvalues. Otherwise, it might be larger; no simple expression.

$$
\sigma_{\min }(M)=\min _{v \neq 0} \frac{\|M v\|_{2}}{\|v\|_{2}}
$$

$\operatorname{sep}(A, B)=0$ se A, B ham autovel. omani, >0 altrimenti
se A, B normeti: $T_{A} T_{B}$ diefonali

$$
\left.\sigma_{\min }\left(\left|\otimes A-B^{\top} \otimes\right|\right)=\sigma_{\min }\left(\left|\otimes T_{A}-T_{B} \otimes\right|\right)=\min _{i, j}\left(f_{A}\right)_{i i}-\left(T_{B}\right)_{j j}\right)
$$

Decoupling eigenvalues

Solving a Sylvester equation means finding

$$
\left[\begin{array}{cc}
I & -X \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]=\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right] .
$$

Idea Indicates how 'difficult' (ill-conditioned) it is to go from block-triangular to block-diagonal. (Compare also with the scalar case / Jordan form.)
Similar problem: reordering Schur forms (swapping blocks). One uses the Q factor from the $Q R$ of $\left[\begin{array}{cc}1 & X \\ 0 & 1\end{array}\right] \ldots$

Invariant subspaces

Invariant subspace (for a matrix M): any subspace \mathcal{U} such that $M \mathcal{U} \subseteq \mathcal{U}$. Completing a basis U_{1} to one $U=\left[U_{1} U_{2}\right]$ of \mathbb{C}^{m}, we get

$$
U^{-1} M U=\left[\begin{array}{ll}
A & C \\
0 & B
\end{array}\right]
$$

$M U_{1}=U_{1} A . \Lambda(A) \subseteq \Lambda(M)$.
Idea: invariant subspaces are 'the span of some eigenvectors' (usually).
Example: stable invariant subspace: x s.t. $\lim _{k \rightarrow \infty} A^{k} x=0$

Examples (stable invariant subspaces)

Example $1 \operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ (eigenvectors).
Example 2 Invariant subspaces of $\left[\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right]$.
Example 3 Invariant subspaces of a larger Jordan matrix.
(That's the general case - idea: find Jordan form of the linear $\operatorname{map} \mathcal{U} \mapsto \mathcal{U}, x \rightarrow M x$.)

Sensitivity of invariant subspaces

If I perturb M to $M+\delta_{M}$, how much does U_{1} change?
Proof (sketch:)

- Suppose $U=I$ for simplicity (just a change of basis).
- $M+\delta M=\left[\begin{array}{cc}A+\delta_{A} & C+\delta_{C} \\ \delta_{D} & B+\delta_{B}\end{array}\right]$
- Look for a transformation $V^{-1}(M+\delta M) V$ of the form $V=\left[\begin{array}{cc}1 & 0 \\ x & 1\end{array}\right]$ that zeroes out the $(2,1)$ block.
- Formulate a Riccati equation

$$
X A-B X=\delta_{D}-X(C+\delta C) X-X \delta_{A}+\delta_{B} X
$$

- See it as a fixed-point problem

$$
X_{k+1}=T^{-1}\left(\delta_{D}-X(C+\delta C) X-X \delta_{A}+\delta_{B} X\right)
$$

- Pass to norms, show that the map sends a ball $B(0, \rho)$ to itself: $\|X\|_{F} \leq\left\|T^{-1}\right\|(\ldots)$. For a sufficiently small perturbation, it does.

Theorem [Stewart Sun book V.2.2]

Let $M=\left[\begin{array}{ll}A & B \\ 0 & C\end{array}\right], \delta_{M}=\left[\begin{array}{ll}\delta_{A} & \delta_{B} \\ \delta_{D} & \delta_{C}\end{array}\right], a=\left\|\delta_{A}\right\|$ and so on. If $4(\operatorname{sep}(A, B)-a-b)^{2}-d(\|C\|+c) \geq 0$, then there is a (unique) X with $\|X\| \leq 2 \frac{d}{\operatorname{sep}(A, B)-a-b}$ such that $\left[\begin{array}{c}I \\ X\end{array}\right]$ is an invariant subspace of $M+\delta_{M}$.
(Not exactly what we obtain directly from the above argument handles a and b in a slightly different way.)

Applications of Sylvester equations

Apart from the ones we have already seen:

- As a step to compute matrix functions.
- Stability of linear dynamical systems. Lyapunov equations $A X+X A^{\top}=B, B$ symmetric.
- As a step to solve more complicated matrix equations (Newton's method \rightarrow linearization).

We will re-encounter them later in the course (time permitting).

