Sylvester equations

Goal represent linear functions $\mathbb{R}^{m \times n} \to \mathbb{R}^{p \times q}$.

For instance, to deal with problems like the following one.

Sylvester equation

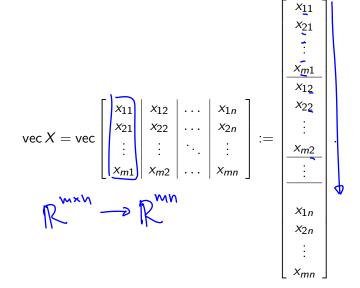
$$AX - XB = C$$

$$A \in \mathbb{C}^{m \times m}$$
, $C, X \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{n \times n}$.

This must be a $mn \times mn$ linear system, right?

Vectorization gives an explicit way to map it to a vector.

Vectorization: definition



Vectorization: comments

Column-major order: leftmost index 'changes more often'. Matches Fortran, Matlab standard (C/C++ prefer row-major instead). Converting indices in the matrix into indices in the vector:

$$(X)_{ij} = (\operatorname{vec} X)_{i+mj}$$
 0-based,
 $(X)_{ij} = (\operatorname{vec} X)_{i+m(j-1)}$ 1-based.

vec(AXB)

First, we will work out the representation of a simple linear map, $X \mapsto AXB$ (for fixed matrices A, B of compatible dimensions).

If $X \in \mathbb{R}^{m \times n}$, $AXB \in \mathbb{R}^{p \times q}$, we need the $pq \times mn$ matrix that maps vec(X) to vec(AXB).

$$(AXB)_{hl} = \sum_{j} (AX)_{hj} (B)_{jl} = \sum_{j} \sum_{i} A_{hi} X_{ij} B_{jl}$$

$$= \begin{bmatrix} A_{h1}B_{1l} & A_{h2}B_{1l} & \dots & A_{hm}B_{1l} \mid A_{h1}B_{2l} & A_{h2}B_{2l} & \dots & A_{hm}B_{2l} \mid \dots \\ \mid A_{h1}B_{nl} & A_{h2}B_{nl} & A_{hm}B_{nl} \end{bmatrix} \text{vec } X$$

Kronecker product: definition

$$vec(AXB) = \begin{bmatrix} b_{11}A & b_{21}A & \dots & b_{n1}A \\ b_{12}A & b_{22}A & \dots & b_{n2}A \\ \vdots & \vdots & \ddots & \vdots \\ b_{1q}A & b_{2q}A & \dots & b_{nq}A \end{bmatrix} vec X$$

Each block is a multiple of A, with coefficient given by the corresponding entry of B^{\top} .

Definition

$$X \otimes Y := \begin{bmatrix} x_{11}Y & x_{12}Y & \dots & x_{1n}Y \\ x_{21}Y & x_{22}Y & \dots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ x_{m1}Y & x_{m2}Y & \dots & x_{mn}Y \end{bmatrix}.$$

so the matrix above is $B^{\top} \otimes A$.

Properties of Kronecker products

$$X \otimes Y = \begin{bmatrix} x_{11}Y & x_{12}Y & \dots & x_{1n}Y \\ x_{21}Y & x_{22}Y & \dots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ x_{m1}Y & x_{m2}Y & \dots & x_{mn}Y \end{bmatrix}.$$

- ▶ vec $AXB = (B^{\top} \otimes A)$ vec X. (Warning: not B^* , if complex).
- ▶ $(A \otimes B)(C \otimes D) = (AC \otimes BD)$, when dimensions are compatible. Proof: $B(DXC^{\top})A^{\top} = (BD)X(AC)^{\top}$.
- $(A \otimes B)^{\top} = A^{\top} \otimes B^{\top}.$
- ightharpoonup orthogonal \otimes orthogonal = orthogonal.
- lacktriang u upper triangular = upper triangular.
- One can "factor out" several decompositions, e.g., orde. $A \otimes B = (U_1 S_1 V_1^*) \otimes (\underline{U_2 S_2 V_2^*}) = (U_1 \otimes U_2)(S_1 \otimes S_2)(V_1 \otimes V_2)^*.$

Solvability criterion

Theorem

The Sylvester equation is solvable for all C iff $\Lambda(A) \cap \Lambda(B) = \emptyset$.

$$AX - XB = C \iff (I_n \otimes A - B^\top \otimes I_m) \operatorname{vec}(X) = \operatorname{vec}(C).$$

Schur decompositions of A, B^{\top} : $A = Q_A T_A Q_A^*, B^{\top} = Q_B T_B Q_B^*$. Then,

$$I_n \otimes A - B^{\top} \otimes I_m = (Q_B \otimes Q_A)(I_n \otimes T_A + T_B \otimes I_m)(Q_B \otimes Q_A)^*.$$

is a Schur decomposition.

What is on the diagonal of $I_n \otimes T_A + T_B \otimes I_m$? If $\Lambda(A) = \{\lambda_1, \dots, \lambda_m\}$, $\Lambda(B) = \{\mu_1, \dots, \mu_n\}$, then it's $\Lambda(I_n \otimes A - B^\top \otimes I_m) = \{\lambda_i - \mu_j : i, j\}$.

Solution algorithms

The naive algorithm costs $O((mn)^3)$. One can get down to $O(m^3n^2)$ (full steps of GMRES, for instance.)

Bartels–Stewart algorithm (1972): $O(m^3 + n^3)$.

Idea: invert factor by factor the decomposition

$$(Q_B \otimes Q_A)(I_n \otimes T_A + T_B \otimes I_m)(Q_B \otimes Q_A)^*.$$

- Solving orthogonal systems \iff multiplying by their transpose, $O(m^3 + n^3)$ using the \otimes structure.
- Solving upper triangular system \iff back-substitution; costs $O(\text{nnz}) = O(m^3 + n^3)$.

Bartels-Stewart algorithm

A more operational description...

Step 1: reduce to a triangular equation.

$$Q_A T_A Q_A^* X - X Q_B T_B^* Q_B^* = C$$

$$T_A \widehat{X} - \widehat{X} T_B^* = \widehat{C}, \quad \widehat{X} = Q_A^* X Q_B, \widehat{C} = \widehat{Q_A^* C Q_B}.$$

Step 2: We can compute each entry X_{ij} , by using the (i, j)th equation, as long as we have computed all the entries below and to the right of X_{ij} .



Comments

- Works also with the real Schur form: back-sub yields block equations which are tiny 2×2 or 4×4 Sylvesters.
- ▶ Backward stable (as a system of *mn* linear equations): it's orthogonal transformations + back-sub.
- Not backward stable in the sense of $\widetilde{A}\widetilde{X} \widetilde{X}\widetilde{B} = \widetilde{C}$ [Higham '93].

(Sketch of proof: backward error given by a linear least squares system with matrix $\begin{bmatrix} \widetilde{X}^\top \otimes I & I \otimes \widetilde{X} & I \end{bmatrix}$). Its singular values depend on those of \widetilde{X} .)

Comments

Condition number: depends on

$$\operatorname{sep}(A,B) = \sigma_{\min}(I \otimes A - B^{\top} \otimes I) = \min_{Z} \frac{\|AZ - ZB\|_{F}}{\|Z\|_{F}}.$$

If A, B normal, this is simply the minimum difference of their eigenvalues. Otherwise, it might be larger; no simple expression.

Decoupling eigenvalues

Solving a Sylvester equation means finding

$$\begin{bmatrix} I & -X \\ 0 & I \end{bmatrix} \begin{bmatrix} A & C \\ 0 & B \end{bmatrix} \begin{bmatrix} I & X \\ 0 & I \end{bmatrix} = \begin{bmatrix} A & \mathbf{0} \\ 0 & B \end{bmatrix}.$$

Idea Indicates how 'difficult' (ill-conditioned) it is to go from block-triangular to block-diagonal. (Compare also with the scalar case / Jordan form.)

Similar problem: reordering Schur forms (swapping blocks). One uses the Q factor from the QR of $\begin{bmatrix} I & X \\ 0 & I \end{bmatrix}$...

Invariant subspaces

Invariant subspace (for a matrix M): any subspace \mathcal{U} such that $M\mathcal{U}\subseteq\mathcal{U}$. Completing a basis U_1 to one $U=[\ U_1\ U_2\]$ of \mathbb{C}^m , we get

$$U^{-1}MU = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix}.$$

 $MU_1 = U_1A$. $\Lambda(A) \subseteq \Lambda(M)$.

Idea: invariant subspaces are 'the span of some eigenvectors' (usually).

Example: stable invariant subspace: x s.t. $\lim_{k\to\infty} A^k x = 0$

Examples (stable invariant subspaces)

Example 1 span $(v_1, v_2, ..., v_k)$ (eigenvectors).

Example 2 Invariant subspaces of $\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$.

Example 3 Invariant subspaces of a larger Jordan matrix.

(That's the general case — idea: find Jordan form of the linear map $\mathcal{U}\mapsto\mathcal{U},\,x\to\mathit{Mx}.$)

Sensitivity of invariant subspaces

If I perturb M to $M + \delta_M$, how much does U_1 change?

Proof (sketch:)

- ▶ Suppose U = I for simplicity (just a change of basis).
- $M + \delta M = \begin{bmatrix} A + \delta_A & C + \delta_C \\ \delta_D & B + \delta_B \end{bmatrix}$
- ▶ Look for a transformation $V^{-1}(M + \delta M)V$ of the form $V = \begin{bmatrix} I & 0 \\ X & I \end{bmatrix}$ that zeroes out the (2,1) block.
- Formulate a Riccati equation $XA BX = \delta_D X(C + \delta C)X X\delta_A + \delta_B X.$
- See it as a fixed-point problem

$$X_{k+1} = T^{-1}(\delta_D - X(C + \delta C)X - X\delta_A + \delta_B X)$$

Pass to norms, show that the map sends a ball $B(0, \rho)$ to itself: $||X||_F \le ||T^{-1}||(...)$. For a sufficiently small perturbation, it does.

Theorem [Stewart Sun book V.2.2]

invariant subspace of $M + \delta_M$.

Let
$$M = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$$
, $\delta_M = \begin{bmatrix} \delta_A & \delta_B \\ \delta_D & \delta_C \end{bmatrix}$, $a = \|\delta_A\|$ and so on.

If $4(\operatorname{sep}(A,B)-a-b)^2-d(\|C\|+c)\geq 0$, then there is a

(unique)
$$X$$
 with $||X|| \le 2 \frac{d}{\operatorname{sep}(A,B)-a-b}$ such that $\begin{bmatrix} I \\ X \end{bmatrix}$ is an

(Not exactly what we obtain directly from the above argument handles a and b in a slightly different way.)

Applications of Sylvester equations

Apart from the ones we have already seen:

- As a step to compute matrix functions.
- Stability of linear dynamical systems. Lyapunov equations $AX + XA^{\top} = B$, B symmetric.
- As a step to solve more complicated matrix equations (Newton's method → linearization).

We will re-encounter them later in the course (time permitting).