Matrix pencils

Definition: Matrix pencil

A + xB, with $A, B \in \mathbb{C}^{m \times n}$, x indeterminate.

A pencil is called regular if n = m and det(A + xB) does not vanish identically, i.e., if there is $\lambda \in \mathbb{C}$ for which it is square invertible.

An eigenvalue λ is a value for which det $(A + \lambda B) = 0$. Eigenvector, Jordan chains...

If det(A + xB) has degree less than *n*, the 'missing' eigenvalues are said to be "at infinity".

Example

$$\begin{bmatrix} x+1 & x \\ x & x+1 \end{bmatrix} \quad \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$$

Eigenvalues of singular pencils

Can still be defined via 'unusual rank drop'. For instance:

$$A + xB = \begin{bmatrix} 2 & x & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ x & x & 0 \end{bmatrix}$$

has typical rank 2. More formally, $\operatorname{rank}_{\mathbb{C}(x)}(A + xB) = 2$. But A + 2B has rank 1.

Generalized Schur factorization

Theorem

For any pair of square $A, B \in \mathbb{C}^{m \times m}$, one can find orthogonal Q, Z such that $QAZ = T_A, QBZ = T_B$ are upper triangular (at the same time).

Regular unless $(T_A)_{ii} = (T_B)_{ii} = 0$ for some *i*.

Eigenvalues = $\frac{(T_A)_{ii}}{(T_B)_{ii}}$ (incl. ∞).

Canonical form

Equivalence relation \sim : for each two square $P \in \mathbb{C}^{m \times m}$, $Q \in \mathbb{C}^{n \times n}$ square invertible, A + xB and P(A + xB)Q are said to be equivalent.

Equivalent \implies same eigenvalues, singularity...

Is there a canonical form for this equivalence relation?

If *B* is square nonsingular, there is little new in this theory: $A + xB \sim J - xI$, where *J* is the Jordan canonical form of $-B^{-1}A$ (or $-AB^{-1}$). Computing eigenvalues of $A + xB \iff$ computing eigenvalues of $-B^{-1}A$

Theorem (Weierstrass canonical form)

For a regular matrix pencil $A + xB \in \mathbb{C}[x]^{n \times n}$, there are nonsingular $P, Q \in \mathbb{C}^{n \times n}$ such that P(A + xB)Q is the direct sum (blkdiag) of blocks of the forms

$$J_{\lambda}(x) = \begin{bmatrix} \lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{bmatrix} - xI, \quad J_{\infty}(x) = I - x \begin{bmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix}.$$

WCF — Proof

Proof (sketch):

Underlying idea: make a projective transform $x \mapsto \frac{1}{x-c}$ such that the new point at ∞ is a certain c s.t. A + cB is nonsingular; then it's just a Jordan form.

• Take c such that A + cB is invertible;

•
$$A + xB \sim I + (x - c)(A + cB)^{-1}B;$$

•
$$A + xB \sim I + (x - c)$$
 blkdiag (J_1, \ldots, J_s) ,

• Consider separately each $I + (x - c)J_i = I + (x - c)(\lambda I + N)$.

▶ If $\lambda = 0$, block $\sim I - xM$, where M = toeplitztriu(0, 1, ...).

► If
$$\lambda \neq 0$$
, block $\sim M - xI$, where $M = \text{toeplitztriu}(\frac{c\lambda-1}{\lambda}, \frac{1}{\lambda^2}, \dots)$.

Jordan chains

Jordan chains can be constructed: $AQ = P^{-1}$ blkdiag(·), $BQ = P^{-1}$ blkdiag(·).

Call q_j the columns of Q, p_j those of P^{-1} .

• at
$$\lambda$$
: $-Aq_1 = p_1 = \lambda Bq_1$, $-Aq_2 = p_2 = Bq_1 + \lambda Bq_2$,....
• at ∞ : $-Bq_1 = 0$, $-Bq_2 = Aq_1$,....

Theorem (Kronecker canonical form)

For a regular matrix pencil $A + xB \in \mathbb{C}[x]^{m \times n}$, there are nonsingular $P \in \mathbb{C}^{m \times m}$, $Q \in \mathbb{C}^{n \times n}$ such that P(A + xB)Q is the direct sum (blkdiag) of blocks of the form $J_{\lambda}(x), J_{\infty}(x)$, and

$$\begin{bmatrix} 1 & x & & & \\ & 1 & x & & \\ & & \ddots & \ddots & \\ & & & 1 & x \end{bmatrix} \in \mathbb{C}[x]^{k \times (k+1)}, \qquad \begin{bmatrix} 1 & & & & \\ x & 1 & & & \\ & x & \ddots & & \\ & & \ddots & 1 & \\ & & & x \end{bmatrix} \in \mathbb{C}[x]^{(k+1) \times k},$$

(This includes 1×0 and 0×1 empty blocks).

Examples

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & x \\ 1 & x \end{bmatrix}, \begin{bmatrix} 0 & 1 & x \\ 1 & 0 & 0 \\ x & 0 & 0 \end{bmatrix}, \begin{bmatrix} * & * \\ * & * \\ * & * \end{bmatrix} \dots$$

Kernel in $\mathbb{C}(x)$

The singular blocks in the KCF are related to kernel in $\mathbb{C}(x)$.

The $(k \times (k+1))$ Kronecker blocks have kernel $[(-1)^k x^k \quad (-1)^{k-1} x^{k-1} \quad \dots \quad -x \quad 1]^T$, the other blocks have full column rank.

This can be used to characterize $\ker_{\mathbb{C}(x)}(A + Bx)$, using the fact that ker blkdiag $(C, D) = \text{blkdiag}(\ker C, \ker D)$.

Remark: it can be proved that this procedure gives a minimal basis, i.e., all other polynomial bases of $\ker_{\mathbb{C}(x)}(A + Bx)$ have higher degrees.

Proof (sketch): [Gantmacher book '59]

- Suppose (A + xB)v(x) = 0 for some $v \in \mathbb{C}(x)^n$
- We may assume v = v₀ + v₁x + · · · + v_dx^d ∈ ℂ[x]ⁿ, clearing denominators.
- This implies singularity of $(d+1) \times d \begin{vmatrix} A \\ B \\ \ddots \\ \vdots \\ B \\ A \end{vmatrix}$.

We wish to show that the v_i are linearly independent. Suppose they are not so; then one can choose α(x) = α₀ + α₁x + ··· + α_ex^e (of minimal degree e ≤ d) such that w(x) = α(x)v(x) has a zero coefficient w_e. But then Aw₀ = 0, Aw₁ + Bw₀ = 0, ..., Bw_{e-1} = 0, which contradicts minimality of d.

(cont.)

• Take bases $V = [v_0, v_1, ..., v_d, *]$, and $W = [Av_1, ..., Av_d, *]$. Then,

$$W^{-1}(A+Bx)V = \begin{bmatrix} K(x) & L(x) \\ 0 & M(x) \end{bmatrix}$$

where K(x) is a $d \times (d+1)$ Kronecker block.

- Repeat on M(x) until all the kernel is gone, obtaining a block triangular pencil.
- ▶ Repeat on M^T(x) until all the left kernel is gone, obtaining a block triangular pencil W⁻¹(A + Bx)V = S(x) =

$$\begin{bmatrix} S_{1,1}(x) & S_{1,2}(x) & \dots & S_{1,k}(x) \\ 0 & S_{2,2}(x) & \ddots & \vdots \\ \vdots & \ddots & S_{k-1,k-1}(x) & S_{k-1,k}(x) \\ 0 & \dots & 0 & S_{k,k}(x) \end{bmatrix}$$

Then, one can 'decouple' each pair of blocks with $\begin{bmatrix} I & X \\ 0 & I \end{bmatrix} S(x) \begin{bmatrix} I & Y \\ 0 & I \end{bmatrix}$, and X, Y solve certain paired Sylvester equations... (some work needed; we do not show details).

Application: differential-algebraic equations

Linear systems of ODEs in the form

 $B\dot{x} = Ax + f(t),$

where A, B are constant matrices, appear in several applications; for instance, finite element methods often return equations with a 'mass matrix' B in front of the differential term.

When B is invertible, all is good. When B is not, several 'pathological' behaviors may arise. (Note that the Cauchy existence/uniqueness theorem does not apply to this form!)

With a change of variables, one may assume (A, B) in KCF. What equations correspond to the various blocks? Examples

(Similar theory for difference equations $Bx_{k+1} = Ax_k + f_k$.)