Matrix pencils

Definition: Matrix pencil

$A+x B$, with $A, B \in \mathbb{C}^{m \times n}, x$ indeterminate.
A pencil is called regular if $n=m$ and $\operatorname{det}(A+x B)$ does not vanish identically, i.e., if there is $\lambda \in \mathbb{C}$ for which it is square invertible.

An eigenvalue λ is a value for which $\operatorname{det}(A+\lambda B)=0$.
Eigenvector, Jordan chains. . .
If $\operatorname{det}(A+x B)$ has degree less than n, the 'missing' eigenvalues are said to be "at infinity".

Example

$$
\left[\begin{array}{cc}
x+1 & x \\
x & x+1
\end{array}\right]\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]
$$

Eigenvalues of singular pencils

Can still be defined via 'unusual rank drop'. For instance:

$$
A+x B=\left[\begin{array}{lll}
2 & x & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
x & x & 0
\end{array}\right]
$$

has typical rank 2. More formally, $\operatorname{rank}_{\mathbb{C}(x)}(A+x B)=2$.
But $A+2 B$ has rank 1 .

Generalized Schur factorization

Theorem

For any pair of square $A, B \in \mathbb{C}^{m \times m}$, one can find orthogonal Q, Z such that $Q A Z=T_{A}, Q B Z=T_{B}$ are upper triangular (at the same time).

Regular unless $\left(T_{A}\right)_{i i}=\left(T_{B}\right)_{i i}=0$ for some i.
Eigenvalues $=\frac{\left(T_{A}\right)_{i i}}{\left(T_{B}\right)_{i i}}$ (incl. $\left.\infty\right)$.

Canonical form

Equivalence relation \sim : for each two square $P \in \mathbb{C}^{m \times m}, Q \in \mathbb{C}^{n \times n}$ square invertible, $A+x B$ and $P(A+x B) Q$ are said to be equivalent.

Equivalent \Longrightarrow same eigenvalues, singularity...

Is there a canonical form for this equivalence relation?

If B is square nonsingular, there is little new in this theory:
$A+x B \sim J-x I$, where J is the Jordan canonical form of $-B^{-1} A$ (or $-A B^{-1}$).
Computing eigenvalues of $A+x B \Longleftrightarrow$ computing eigenvalues of $-B^{-1} A$

Theorem (Weierstrass canonical form)

For a regular matrix pencil $A+x B \in \mathbb{C}[x]^{n \times n}$, there are nonsingular $P, Q \in \mathbb{C}^{n \times n}$ such that $P(A+x B) Q$ is the direct sum (blkdiag) of blocks of the forms

$$
J_{\lambda}(x)=\left[\begin{array}{cccc}
\lambda & 1 & & \\
& \lambda & \ddots & \\
& & \ddots & 1 \\
& & & \lambda
\end{array}\right]-x I, \quad J_{\infty}(x)=I-x\left[\begin{array}{cccc}
0 & 1 & & \\
& 0 & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right]
$$

WCF - Proof

Proof (sketch):
Underlying idea: make a projective transform $x \mapsto \frac{1}{x-c}$ such that the new point at ∞ is a certain c s.t. $A+c B$ is nonsingular; then it's just a Jordan form.

- Take c such that $A+c B$ is invertible;
- $A+x B \sim I+(x-c)(A+c B)^{-1} B$;
- $A+x B \sim I+(x-c) \operatorname{blkdiag}\left(J_{1}, \ldots, J_{s}\right)$,
- Consider separately each $I+(x-c) J_{i}=I+(x-c)(\lambda I+N)$.
- If $\lambda=0$, block $\sim I-x M$, where $M=$ toeplitztriu $(0,1, \ldots)$.
- If $\lambda \neq 0$, block $\sim M-x$ l, where $M=$ toeplitztriu $\left(\frac{c \lambda-1}{\lambda}, \frac{1}{\lambda^{2}}, \ldots\right)$.

Jordan chains

Jordan chains can be constructed:
$A Q=P^{-1} \operatorname{blkdiag}(\cdot), B Q=P^{-1} \operatorname{blkdiag}(\cdot)$.
Call q_{j} the columns of Q, p_{j} those of P^{-1}.

- at $\lambda:-A q_{1}=p_{1}=\lambda B q_{1},-A q_{2}=p_{2}=B q_{1}+\lambda B q_{2}, \ldots$.
- at $\infty:-B q_{1}=0,-B q_{2}=A q_{1}, \ldots$.

Theorem (Kronecker canonical form)

For a regular matrix pencil $A+x B \in \mathbb{C}[x]^{m \times n}$, there are nonsingular $P \in \mathbb{C}^{m \times m}, Q \in \mathbb{C}^{n \times n}$ such that $P(A+x B) Q$ is the direct sum (blkdiag) of blocks of the form $J_{\lambda}(x), J_{\infty}(x)$, and

$$
\left[\begin{array}{ccccc}
1 & x & & & \\
& 1 & x & & \\
& & \ddots & \ddots & \\
& & & 1 & x
\end{array}\right] \in \mathbb{C}[x]^{k \times(k+1)},\left[\begin{array}{cccc}
1 & & & \\
x & 1 & & \\
& x & \ddots & \\
& & \ddots & 1 \\
& & & x
\end{array}\right] \in \mathbb{C}[x]^{(k+1) \times k}
$$

(This includes 1×0 and 0×1 empty blocks).

Examples

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
1 & x \\
1 & x
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 1 & x \\
1 & 0 & 0 \\
x & 0 & 0
\end{array}\right], \quad\left[\begin{array}{cc}
* & * \\
* & * \\
* & *
\end{array}\right] \ldots
$$

Kernel in $\mathbb{C}(x)$

The singular blocks in the KCF are related to kernel in $\mathbb{C}(x)$.
The $(k \times(k+1))$ Kronecker blocks have kernel
$\left[\begin{array}{lllll}(-1)^{k} x^{k} & (-1)^{k-1} x^{k-1} & \ldots & -x & 1\end{array}\right]^{T}$, the other blocks have
full column rank.
This can be used to characterize $\operatorname{ker}_{\mathbb{C}(x)}(A+B x)$, using the fact that ker blkdiag $(C, D)=\operatorname{blkdiag}(\operatorname{ker} C, \operatorname{ker} D)$.
Remark: it can be proved that this procedure gives a minimal basis, i.e., all other polynomial bases of $\operatorname{ker}_{\mathbb{C}(x)}(A+B x)$ have higher degrees.

Proof (sketch): [Gantmacher book '59]

- Suppose $(A+x B) v(x)=0$ for some $v \in \mathbb{C}(x)^{n}$
- We may assume $v=v_{0}+v_{1} x+\cdots+v_{d} x^{d} \in \mathbb{C}[x]^{n}$, clearing denominators.
- This implies singularity of $(d+1) \times d\left[\begin{array}{cccc}A & & & \\ B & A & & \\ & \ddots & \ddots & \\ & & B & A \\ & & & B\end{array}\right]$.
- Assume d minimal.
- We wish to show that the v_{i} are linearly independent. Suppose they are not so; then one can choose $\alpha(x)=\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{e} x^{e}$ (of minimal degree $e \leq d$) such that $w(x)=\alpha(x) v(x)$ has a zero coefficient w_{e}. But then $A w_{0}=0, A w_{1}+B w_{0}=0, \ldots, B w_{e-1}=0$, which contradicts minimality of d.
(cont.)
- Take bases $V=\left[v_{0}, v_{1}, \ldots, v_{d}, *\right]$, and $W=\left[A v_{1}, \ldots, A v_{d}, *\right]$. Then,

$$
W^{-1}(A+B x) V=\left[\begin{array}{cc}
K(x) & L(x) \\
0 & M(x)
\end{array}\right]
$$ where $K(x)$ is a $d \times(d+1)$ Kronecker block.

- Repeat on $M(x)$ until all the kernel is gone, obtaining a block triangular pencil.
- Repeat on $M^{T}(x)$ until all the left kernel is gone, obtaining a block triangular pencil $W^{-1}(A+B x) V=S(x)=$

$$
\left[\begin{array}{cccc}
S_{1,1}(x) & S_{1,2}(x) & \ldots & S_{1, k}(x) \\
0 & S_{2,2}(x) & \ddots & \vdots \\
\vdots & \ddots & S_{k-1, k-1}(x) & S_{k-1, k}(x) \\
0 & \cdots & 0 & S_{k, k}(x)
\end{array}\right]
$$

- Then, one can 'decouple' each pair of blocks with $\left[\begin{array}{cc}I & X \\ 0 & I\end{array}\right] S(x)\left[\begin{array}{ll}I & Y \\ 0 & I\end{array}\right]$, and X, Y solve certain paired Sylvester equations... (some work needed; we do not show details).

Application: differential-algebraic equations

Linear systems of ODEs in the form

$$
B \dot{x}=A x+f(t)
$$

where A, B are constant matrices, appear in several applications; for instance, finite element methods often return equations with a 'mass matrix' B in front of the differential term.

When B is invertible, all is good. When B is not, several 'pathological' behaviors may arise. (Note that the Cauchy existence/uniqueness theorem does not apply to this form!)

With a change of variables, one may assume (A, B) in KCF. What equations correspond to the various blocks? Examples
(Similar theory for difference equations $B x_{k+1}=A x_{k}+f_{k}$.)

