Matrix polynomials
A matrix polynomial is $A(x)=A_{0}+A_{1} x+A_{2} x^{2}+\cdots+A_{d} x^{d}$.,
We assume for now $A_{i} \in \mathbb{C}^{m \times m}$.
d grade (not exactly degree: we admit zero leading coefficients.)
Eigenvalues/vectors are pairs such that $A(\lambda) v=0$.
If the polynomial is regular $(\operatorname{det} A(x)$ is not identically zero), then there is at most $d m$ of them. They can be at ∞, like for pencils.

$$
\operatorname{det}(A(x))=0 \Rightarrow \text { singolare }
$$

$\operatorname{det}(A(x)) \neq 0$ (come polinemi) \Rightarrow repalore
Esisteranne $\lambda \in \mathbb{C}$ t.c. $\operatorname{det}(A(A))=0$, si chimere autovedori
$A(A) v=0, v$ aohovettoni $v \neq 0$!
Esistono al pius dim outovalari

Reversal and infinite eigenvalues

Reversal of a matrix polynomial: same coefficients but in the opposite order:

$$
\operatorname{Rev}\left(A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}\right)=A_{3}+A_{2} x+A_{1} x^{2}+A_{0} x^{3}
$$

Lemma

Let $A(x)$ be a regular matrix polynomial. The eigenvalues of $\operatorname{Rev} A(x)$ are $\frac{1}{\lambda_{i}}$, where λ_{i} are the eigenvalues of $A(x)$. This includes also eigenvalues at ∞, with the convention that $\frac{1}{0}=\infty$ and $\frac{1}{\infty}=0$.

Proof: direct verification for $\lambda \notin\{0, \infty\}$. Homogenize $\operatorname{det} A(x)$ to count eigvls at 0 and ∞.

The companion linearization

Theorem

Let $A(x)=A_{0}+A_{1} x+A_{2} x^{2}+\cdots+A_{d} x^{d}$ be a matrix polynomial. Then, $\operatorname{det} A(x)=+\operatorname{det} C(x)$, where $C(x)$ is the pencil ("Frobenius companion form")

$$
C(x)=\left[\begin{array}{ccccc}
A_{d} x+A_{d-1} & A_{d-2} & \ldots & A_{1} & A_{0} \\
\hline I_{m} & -x I_{m} & & & \\
& I_{m} & -x I_{m} & & \\
& & \ddots & \ddots & \\
& & & I_{m} & -x I_{m}
\end{array}\right] \in \mathbb{C}[x]^{d m \times d m}
$$

We prove something stronger: there are $E(x), F(x) \in \mathbb{C}[x]^{d m \times d m}$ with determinant a nonzero constant s.t.
$E(x) C(x) F(x)=\operatorname{blkdiag}\left(A(x), I_{(d-1) m}\right)$.
Proof (sketch): make linear combinations of columns to eliminate the blocks $-x$.

Other linearizations

Other pencils with the same property $E(x) C(x) F(x)=\operatorname{blkdiag}\left(A(x), I_{(d-1) m}\right)$ can be constructed they are called linearizations.

For instance,

Some final projects available on linearizations and methods to construct them.

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & A_{0}
\end{array}\right] \cdot\left[\begin{array}{cc}
A_{2} x+A_{1} & A 0 \\
I & -x I
\end{array}\right]=
$$

più comede perdé preserve simmetris.

Eigenvector recovery

Theorem

$v \neq 0$ is an eigenvector of $A(x)$ (with eigvl $\lambda \neq \infty$) iff

$$
w(\lambda, v)=\left[\begin{array}{c}
\lambda^{d-1} v \\
\lambda^{d-2} v \\
\vdots \\
v
\end{array}\right]
$$

is an eigenvector of $C(x)$.
Proof: direct verification. Start calling v the last block of $w \ldots$

Eigenvectors are not independent

Small surprise: the eigenvectors of $A(x)$ are (usually) not linearly independent.
(How could they be? There are too many of them...)
For instance,

$$
A(x)=\left[\begin{array}{cc}
(x-1)(x-2) & 0 \\
0 & (x-3)(x-4)
\end{array}\right]
$$

However, $w\left(\lambda_{i}, v_{i}\right)$ are linearly independent.

Application

What do we use linearization / eigenvalues of matrix polynomials for?
Linear differential equations: (assume $\operatorname{det}\left(A_{2}\right) \neq 0$)

$$
\begin{equation*}
A_{2} \ddot{x}+A_{1} \dot{x}+A_{0} x=0, \quad x:\left[t_{0}, t_{f}\right] \rightarrow \mathbb{R}^{n} \tag{ode}
\end{equation*}
$$

Special solutions: $e^{\lambda t} v$, where (λ, v) eigenpair of the matrix polynomial.
General solution: via linearization of $A_{2} x^{2}+A_{1} x+A_{0}$ (matrix exponential of $-C_{1}^{-1} C_{0}$).
(Stable solutions: invariant subspace formed by eigenvalues with $\operatorname{Re} \lambda<0$.)

Jordan chains [Gohberg-Lancaster-Rodman book, Sec. 1.4]

One can define Jordan chains of a matrix polynomial using derivatives:

$$
\begin{aligned}
& A(\lambda) v_{0}=0 \\
& A^{\prime}(\lambda) v_{0}+A(\lambda) v_{1}=0, \\
& \frac{1}{2} A^{\prime \prime}(\lambda) v_{0}+A^{\prime}(\lambda) v_{1}+A(\lambda) v_{2}=0
\end{aligned}
$$

With this definition, $v_{0} e^{\lambda t},\left(v_{0} t+v_{1}\right) e^{\lambda t},\left(v_{0} t^{2}+v_{1} t+v_{2}\right) e^{\lambda t}, \ldots$ are special solutions of (ode).
$A(x)$ has a length k Jordan chain at $\lambda \Longleftrightarrow$ there is a vector polynomial $v(x)$ such that $(x-\lambda)^{k} \mid P(x) v(x)$.

How to define Jordan chains at ∞ ? As Jordan chains at zero of $\operatorname{Rev} A(x)$.

The problem with linearizations and $\lambda=\infty$

The relation $C(x) \sim D(x)$ iff $C(x)=E(x) D(x) F(x)$ preserves the lengths of Jordan chains at $\lambda \in \mathbb{C}$ (why?), but not of those at infinity. This can be seen already for degree 1: the pencils

$$
D(x)=I+0 x=\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]
$$

and

$$
C(x)=\left[\begin{array}{ll}
1 & x \\
& 1
\end{array}\right]=D(x) F(x) \quad \text { with } F(x)=\left[\begin{array}{cc}
1 & x \\
& 1
\end{array}\right]
$$

have different Jordan structures at ∞.

Strong linearizations

A linearization is said to be strong if $\operatorname{Rev} L(x)$ is also a linearization of $\operatorname{Rev} A(x)$.

Result

The companion pencil $C(x)$ is a strong linearization.
Proof: again linear combinations of columns to 'fold up' the polynomial $\operatorname{Rev} A(x)$.

Smith form [Gohberg-Lancaster-Rodman book, appendix S1]

Quick review of other invariants for matrix polynomials. . .

Smith normal form

There are matrices $E(x), F(x)$ with determinant 1 such that $E(x) A(x) F(x)=\operatorname{diag}\left(d_{1}(x), d_{2}(x), \ldots, d_{r}(x), 0,0, \ldots, 0\right)$, and $d_{i}(x) \mid d_{i+1}(x)$ for all i.

Actually an algebra result - holds in every PID. (Proof idea: a sort of back-and-forth Gaussian elimination like the Gauss-Jordan elimination used to compute matrix inverses. Instead of division, use Bézout identities).
The $d_{i} \mathrm{~s}$ are uniquely defined (GCDs of all $i \times i$ minors).
Reveals:

- Rank over $\mathbb{C}(x)$;
- Eigenvalues (roots of $d_{r}(x)$);
- Sizes of Jordan chains (depend on how many $d_{i}(\lambda)$ vanish).

Minimal indices [Forney, '72]

Quick review of other invariants for matrix polynomials. . . The generalization of sizes of singular Kronecker blocks are minimal indices.

Like in the degree-1 case, $\operatorname{ker}_{\mathbb{C}(x)} A(x)$ and $\operatorname{ker}_{\mathbb{C}(x)} A^{T}(x)$ admit polynomial bases with degrees "as small as possible" - these degrees are called minimal indices.

Linearizations do not preserve minimal indices - but often they change them predictably. For instance, for $C(x)$, right minimal indices are preserved, left minimal indices are increased by $d-1$.

