
Matrix polynomials
A matrix polynomial is A(x) = A0 + A1x + A2x2 + · · ·+ Adxd .

We assume for now Ai ∈ Cm×m.

d grade (not exactly degree: we admit zero leading coefficients.)

Eigenvalues/vectors are pairs such that A(λ)v = 0.

If the polynomial is regular (det A(x) is not identically zero), then
there is at most dm of them. They can be at ∞, like for pencils.



Reversal and infinite eigenvalues
Reversal of a matrix polynomial: same coefficients but in the
opposite order:

Rev(A0 + A1x + A2x2 + A3x3) = A3 + A2x + A1x2 + A0x3.

Lemma
Let A(x) be a regular matrix polynomial. The eigenvalues of
Rev A(x) are 1

λi
, where λi are the eigenvalues of A(x). This

includes also eigenvalues at ∞, with the convention that 1
0 =∞

and 1
∞ = 0.

Proof: direct verification for λ 6∈ {0,∞}. Homogenize det A(x) to
count eigvls at 0 and ∞.



The companion linearization

Theorem
Let A(x) = A0 + A1x + A2x2 + · · ·+ Adxd be a matrix
polynomial. Then, det A(x) = det C(x), where C(x) is the pencil
(“Frobenius companion form”)

C(x) =


Adx + Ad−1 Ad−2 . . . A1 A0

Im −xIm
Im −xIm

. . . . . .
Im −xIm

 ∈ C[x ]dm×dm.

We prove something stronger: there are E (x),F (x) ∈ C(x)dm×dm

with determinant a nonzero constant s.t.
E (x)C(x)F (x) = blkdiag(A(x), I(d−1)m).
Proof (sketch): make linear combinations of columns to eliminate
the blocks −xI.



Other linearizations
Other pencils with the same property
E (x)C(x)F (x) = blkdiag(A(x), I(d−1)m) can be constructed —
they are called linearizations.

For instance,

x
[
A2 0
0 −A0

]
+

[
A1 A0
A0 0

]
.

is a linearization if A0 is nonsingular.

Some final projects available on linearizations and methods to
construct them.



Eigenvector recovery

Theorem
v 6= 0 is an eigenvector of A(x) (with eigvl λ 6=∞) iff

w(λ, v) =


λd−1v
λd−2v

...
v


is an eigenvector of C(x).

Proof: direct verification. Start calling v the last block of w . . . .



Eigenvectors are not independent
Small surprise: the eigenvectors of A(x) are (usually) not linearly
independent.
(How could they be? There are too many of them. . . )
For instance,

A(x) =
[
(x − 1)(x − 2) 0

0 (x − 3)(x − 4)

]

However, w(λi , vi) are linearly independent.



Application
What do we use linearization / eigenvalues of matrix polynomials
for?
Linear differential equations: (assume det(A2) 6= 0)

A2ẍ + A1ẋ + A0x = 0, x : [t0, tf ]→ Rn. (ode)

Special solutions: eλtv , where (λ, v) eigenpair of the matrix
polynomial.

General solution: via linearization of A2x2 + A1x + A0 (matrix
exponential of −C−1

1 C0).

(Stable solutions: invariant subspace formed by eigenvalues with
Reλ < 0.)



Jordan chains [Gohberg-Lancaster-Rodman book, Sec. 1.4]

One can define Jordan chains of a matrix polynomial using
derivatives:

A(λ)v0 = 0,
A′(λ)v0 + A(λ)v1 = 0,
1
2A′′(λ)v0 + A′(λ)v1 + A(λ)v2 = 0
...

With this definition, v0eλt , (v0t + v1)eλt , (v0t2 + v1t + v2)eλt , . . .
are special solutions of (ode).

A(x) has a length-k Jordan chain at λ ⇐⇒ there is a vector
polynomial v(x) such that (x − λ)k | P(x)v(x).

How to define Jordan chains at ∞? As Jordan chains at zero of
Rev A(x).



The problem with linearizations and λ =∞
The relation C(x) ∼ D(x) iff C(x) = E (x)D(x)F (x) preserves the
lengths of Jordan chains at λ ∈ C (why?), but not of those at
infinity. This can be seen already for degree 1: the pencils

D(x) = I + 0x =
[
1

1

]

and

C(x) =
[
1 x

1

]
= D(x)F (x) with F (x) =

[
1 x

1

]

have different Jordan structures at ∞.



Strong linearizations
A linearization is said to be strong if Rev L(x) is also a linearization
of Rev A(x).

Result
The companion pencil C(x) is a strong linearization.

Proof: again linear combinations of columns to ‘fold up’ the
polynomial Rev A(x).



Smith form [Gohberg–Lancaster–Rodman book, appendix S1]

Quick review of other invariants for matrix polynomials. . .

Smith normal form
There are matrices E (x), F (x) with determinant 1 such that
E (x)A(x)F (x) = diag(d1(x), d2(x), . . . , dr (x), 0, 0, . . . , 0), and
di(x) | di+1(x) for all i .

Actually an algebra result — holds in every PID. (Proof idea: a
sort of back-and-forth Gaussian elimination like the Gauss-Jordan
elimination used to compute matrix inverses. Instead of division,
use Bézout identities).
The dis are uniquely defined (GCDs of all i × i minors).
Reveals:
I Rank over C(x);
I Eigenvalues (roots of dr (x));
I Sizes of Jordan chains (depend on how many di(λ) vanish).



Minimal indices [Forney, ’72]

Quick review of other invariants for matrix polynomials. . .
The generalization of sizes of singular Kronecker blocks are
minimal indices.

Like in the degree-1 case, kerC(x) A(x) and kerC(x) AT (x) admit
polynomial bases with degrees “as small as possible” — these
degrees are called minimal indices.

Linearizations do not preserve minimal indices — but often they
change them predictably. For instance, for C(x), right minimal
indices are preserved, left minimal indices are increased by d − 1.


