Characterization of Jordan chains

Lemma

$A(x) \in \mathbb{C}[x]^{m \times m}$ has a Jordan chain $v_{0}, v_{1}, \ldots, v_{k-1}$ at $\lambda \neq \infty$ of length (exactly) k iff $(x-\lambda)^{k}$ divides (exactly) $A(x) v(x)$, where

$$
\begin{aligned}
v(x)=v_{0}+v_{1}(x-\lambda)+v_{2}(x-\lambda)^{2} & +\cdots+v_{k-1}(x-\lambda)^{k-1} \\
& +\left(\text { any multiple of }(x-\lambda)^{k}\right)
\end{aligned}
$$

Proof Write down $A(x)$ as a Taylor polynomial in $(x-\lambda)$:

$$
A(x)=A(\lambda)+A^{\prime}(\lambda)(x-\lambda)+\frac{A^{\prime \prime}(\lambda)}{2}(x-\lambda)^{2}+\cdots+\frac{A^{(d)}}{d!}(x-\lambda)^{d}
$$

Then, the first k powers of $x-\lambda$ in the product $A(x) v(x)$ vanish \Longleftrightarrow Jordan chain conditions.

Preservation of Jordan chains

Lemma

Let $L(x), B(x) \in \mathbb{C}[x]^{m \times m}$ be matrix polynomials.
Assume that there are $E(x), F(x) \in \mathbb{C}[x]^{m \times m}$ with constant nonzero determinant such that $E(x) L(x) F(x)=B(x)$.
Then, $B(x)$ has a Jordan chain at λ of length k with associated polynomial $v(x)$ iff $L(x)$ has a Jordan chain at λ of length k with associated polynomial $F(x) v(x)$.

Proof

$$
\begin{aligned}
(x-\lambda)^{k} \mid B(x) v(x) & \Longrightarrow(x-\lambda)^{k} \mid E(x) L(x) F(x) v(x) \\
& \Longrightarrow(x-\lambda)^{k} \mid L(x) F(x) v(x),
\end{aligned}
$$

since $E(\lambda)$ is invertible. We can reverse the reasoning because an analogous polynomial relation holds $E(x)^{-1} B(x) F(x)^{-1}=L(x)$.

Linearization preserves (finite) Jordan chains

For a linearization,

$$
E(x) L(x) F(x)=\operatorname{diag}(A(x), I, I, \ldots, I)
$$

The (finite) Jordan chains of the RHS are given by

$$
\left[\begin{array}{c}
v(x) \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $v(x)$ is a Jordan chain of $A(x)(B(x)$ singular $\Longleftrightarrow A(x)$ singular). Hence, the Jordan chains of $L(x)$ are given by the first coefficients in the expansion in powers of $x-\lambda$ of

$$
F(x)\left[\begin{array}{c}
v(x) \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Jordan chain recovery for $C(x)$

For the Frobenius companion linearization, we can take a slight shortcut:

$$
C(x)\left[\begin{array}{ccccc}
1 & x & x^{2} & \ldots & x^{d-1} \\
& 1 & \ddots & \ddots & \vdots \\
& & \ddots & \ddots & x^{2} \\
& & & 1 & x \\
& & & & 1
\end{array}\right]=\left[\begin{array}{ccccc}
* & * & \cdots & * & A(x) \\
I & & & & \\
& I & & & \\
& & \ddots & & \\
& & & I &
\end{array}\right]
$$

so the Jordan chains are given by expanding in powers of $x-\lambda$

$$
\left[\begin{array}{ccccc}
1 & x & x^{2} & \ldots & x^{d-1} \\
& 1 & \ddots & \ddots & \vdots \\
& & \ddots & \ddots & x^{2} \\
& & & 1 & x \\
& & & & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
v_{0}+v_{1}(x-\lambda)+\ldots
\end{array}\right]
$$

(Not particularly nice to write apart from the first one.)

Remark — finiteness

- All of this is valid only for finite λ.
- For $\lambda=\infty$, there is no preservation of Jordan chains. Counterexample: $E(x)=I_{2}, A(x)=I_{2}+0 x, F(x)=\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right]$.
- That's why we introduced strong linearizations.
- Recovery formulas for Jordan chains at ∞ follows from recovery formulas for Jordan chains at 0 for the linearization $\operatorname{rev} L(x)$ of $\operatorname{rev} A(x)$.

