
Polynomials of matrices
Another different way to make polynomials and matrices interact:
take a scalar polynomial, and apply a (square) matrix to it, e.g.,

p(x) = 1 + 3x − 5x2 =⇒ p(A) = I + 3A− 5A2.

Lemma
If A = S blkdiag(J1, J2, . . . , Js)S−1 is a Jordan form, then
p(A) = S blkdiag(p(J1), p(J2), . . . , p(Js))S−1, and

p(Ji ) =


p(λi ) p′(λi ) . . . 1

k p(k)(λi )
p(λi )

. . . ...

. . . p′(λi )
p(λi )

 .

(Proof: Taylor expansion of p around λ.)



Functions of matrices [Higham book, ’08]

We can extend the same definition to arbitrary scalar functions:
Given a function f : U ⊆ C→ C, we say that f is defined on A if f
is defined and differentiable at least mg (λi )− 1 times on each
eigenvalue λi of A.

Definition attempt
If A = S blkdiag(J1, J2, . . . , Js)S−1 is a Jordan form, then
f (A) = S blkdiag(f (J1), f (J2), . . . , f (Js))S−1, where

f (Ji ) =


f (λi ) f ′(λi ) . . . 1

k f (k)(λi )
f (λi )

. . . ...

. . . f ′(λi )
f (λi )

 .

(Reasonable doubt: is it independent of the choice of S?)



Hermite interpolation

Theorem
Given distinct points x1, x2, . . . , xn, multiplicities m1,m2, . . . ,mn,
there exists a unique polynomial of degree
d ≤ m1 + m2 + · · ·+ mn such that (for all i = 1, . . . , n)

p(xi ) = yi ,0, p′(xi ) = yi ,1, . . . , p(mi−1)(xi ) = yi ,mi−1,

where the yij are prescribed values.

Proof (sketch)
I Interpolation conditions ⇐⇒ square linear system Vp = y ,

where p is the vector of polynomial coefficients.
I We prove that V has no kernel. If Vz = 0 for a vector z , then

the associated polynomial z(x) has roots at xi of multiplicity
mi . By degree reasons it must be the zero polynomial.



Alternate definition: via Hermite interpolation

Definition
f (A) = p(A), where p is a polynomial such that f (λi ) =
p(λi ), f ′(λi ) = p′(λi ), . . . , f (mg (λi )−1)(λi ) = p(mg (λi )−1)(λi ) for
each i .

We may use this as a definition of f (A) (and it does not depend on
S).
Obvious from the definitions that it coincides with the previous
one.

Remark: if A ∈ Cm×m has multiple Jordan blocks with the same
eigenvalue, these may be fewer than m conditions.
Remark: be careful when you say “all matrix functions are
polynomials”, because p depends on A.



Some properties

I If the eigenvalues of A are λ1, . . . , λs , the eigenvalues of f (A)
are f (λ1), . . . , f (λs). (Remark: geometric multiplicities may
drop)

I f (A)g(A) = g(A)f (A) = (fg)(A) (since they are all
polynomials in A).

I If fn → f together with ‘enough derivatives’ (for instance
because they are analytic and the convergence is uniform),
then fn(A)→ f (A).

I If a sequence of matrices An → A, then f (An)→ f (A).
Proof: let pn be the (Hermite) interpolating polynomial on
the eigenvalues of An. Interpolating polynomials are
continuous in the nodes (not clear from our proof, one would
need to remake it with Newton ‘divided differences’ formulas),
so pn → p (coefficient by coefficient). Then
‖pn(An)−p(A)‖ ≤ ‖pn(An)−p(An)‖+‖p(An)−p(A)‖ ≤ . . . .



Example: square root

A =


4 1

4 1
4

0

 , f (x) =
√

x

We look for an interpolating polynomial with

p(0) = 0, p(4) = 2, p′(4) = f ′(4) = 1
4 , p′′(4) = f ′′(4) = − 1

32 .

I.e., 
0 0 0 1
43 42 4 1

3 · 42 2 · 4 1 0
6 · 4 2 0 0




p3
p2
p1
p0

 =


0
2
1
4
− 1

32

 ,
p(x) = 3

256x3 − 5
32x2 + 15

16x .



Example – continues

p(A) = 3
256A3 − 5

32A2 + 15
16A =


2 1

4
1
64

2 1
4
2

0

 .
(One can check that f (A)2 = A.)



Example – square root

A =
[
0 1
0 0

]
, f (x) =

√
x

does not exist (because f ′(0) is not defined).

(Indeed, there is no matrix such that X 2 = A: every 2× 2
nilpotent matrix X has Jordan form equal to A, thus X 2 = 0.)



Example – matrix exponential

A = S


−1

0
1 1

1

 S−1, f (x) = exp(x).

exp(A) = S


e−1

1
e e

e

 S−1

Can also be obtained as I + A + 1
2A2 + 1

6A3 + . . .
(not immediate, for Jordan blocks)



Example – matrix sign

A = S


−3

−2
1 1

1

 S−1, f (x) = sign(x) =
{
1 Re x > 0,
−1 Re x < 0.

f (A) = S


−1

−1
1

1

 S−1.

Not constant (for general S).

Instead, we can recover stable / unstable invariant subspaces of A
as ker(f (A)± I).

If we found a way to compute f (A) without diagonalizing, we
could use it to compute eigenvalues via bisection. . .



Example – complex square root

A =
[
0 1
−1 0

]
, f (x) =

√
x

We can play around with branches: let us say f (i) = 1√
2(1 + i),

f (−i) = 1√
2(1− i).

Polynomial: p(x) = 1√
2(1 + x).

p(A) = 1√
2

[
1 1
−1 1

]
.

(This is the so-called principal square root – we have chosen the
values of f (±i) in the right half-plane — other choices are
possible).

(We get a non-real square root of A, if we choose non-conjugate
values for f (i) and f (−i))



Example – nonprimary square root
With our definition, if we have

A = S

1 1
2

 S−1, f (x) =
√

x

we cannot get

f (A) = S

1 −1 √
2

 S−1 :

either f (1) = 1, or f (1) = −1. . .

This would also be a solution of X 2 = A, though.



Nonprimary matrix functions
If a matrix A has multiple eigenvalues, one could also define a
‘square root’ by choosing different signs on Jordan blocks with the

same eigenvalue: for instance,
[
1
−1

]
as a square root of I2 (or

also V
[
1
−1

]
V−1 for any invertible V . . . ).

These are called nonprimary matrix functions (and they are not
matrix functions with our definition).
They all satisfy f (A)2 = A.
These are not polynomials in A.



Cauchy integrals

If f is analytic on and inside a contour Γ that encloses the
eigenvalues of A,

f (A) = 1
2πi

∫
Γ

f (z)(zI − A)−1dz .

Generalizes the analogous scalar formula.

Proof If A = V ΛV−1 ∈ Cm×m is diagonalizable, the integral equals

V


1

2πi
∫

Γ
f (z)
z−λ1

dz . . .
1

2πi
∫

Γ
f (z)

z−λm
dz

 V−1 = V

f (λ1)
. . .

f (λm)

 V−1.

By continuity, the equality holds also for non-diagonalizable A.



Methods
Matrix functions arise in several areas: solving ODEs (e.g. exp A),
matrix analysis (square roots), physics, . . .

Main methods to compute them:
I Factorizations (eigendecompositions, Schur. . . ),
I Matrix versions of scalar iterations (e.g., Newton on x2 = a),
I Interpolation / approximation,
I Complex integrals.


