Methods for general matrix functions

We now explore methods for matrix functions in general (not restricting to specific choices of f). [Higham book, Ch. 4]

Simple strategy (if A diagonalizable): $A = V \Lambda V^{-1}$, then

$$f(A) = Vf(\Lambda)V^{-1} = V\begin{bmatrix} f(\lambda_1) & & \\ & \ddots & \\ & & f(\lambda_m) \end{bmatrix}V^{-1}.$$

Works fine if A is symmetric/Hermitian/normal (and Q orthogonal). Otherwise, errors on $f(\lambda_i)$ (or in the diagonalization itself) are amplified by a factor $\kappa(V)$ — possibly much higher than the conditioning of the problem.

Example: sqrt of $\begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$ or matrices close to it.

Alternative: evaluating polynomials in matrix arguments.

Polynomial evaluation

How to evaluate polynomials in a matrix argument?

Unlike scalar polynomials, Horner method (i.e., $(\ldots(p_dA+p_{d-1})A+p_{d-2})A+\ldots)$ for matrix arguments is no better than 'direct' evaluation (build powers of A incrementally and sum them).

Even better: divide the terms into 'chunks' of size approx. \sqrt{d} , e.g.,

$$(p_8A^2+p_7A+p_6)(A^3)^2+(p_5A^2+p_4A+p_3)A^3+(p_2A^2+p_1A_1+p_0).$$

(known as Paterson-Stockmayer method. Fewer multiplications, but requires more storage.)

Stability of polynomial evaluation methods

All these polynomial evaluation methods are stable only with respect to the 'absolute value' polynomial.

Theorem

The value \tilde{Y} computed by any of these methods satisfies

$$|\tilde{Y} - p(X)| \le O(n\mathbf{u})(|p_0| + |p_1||X| + |p_2||X|^2 + \dots + |p_d||X|^d).$$

All OK if p and X only contain nonnegative values, but in all cases in which there is cancellation this could be troublesome (example later).

Approximating with polynomials

Interpolation in the eigenvalues + evaluation of polynomials not really used much, in practice.

If one already knows the eigenvalues of a matrix, typically one relies on methods based on the Schur form (more later).

Numerically, even if $|f(x) - p(x)| < \varepsilon$ for each x, this only implies

$$||f(A) - p(A)|| = ||V(f(\Lambda) - p(\Lambda))V^{-1}|| \le \kappa(V)\varepsilon,$$

so you may expect trouble if A is non-diagonalizable (again!) or close to it.

One needs to study these approximation properties directly "at the matrix level".

Convergence of Taylor series

Theorem [Higham book Thm. 4.7]

Suppose $f = \sum_{k=0}^{\infty} f_k (x - \alpha)^k$, with $f_k = \frac{f^{(k)}(\alpha)}{k!}$, is a Taylor series with convergence radius r. Then,

$$\lim_{d\to\infty}\sum_{l=0}^d f_k(X-\alpha I)^k=f(A)$$

for each A whose eigenvalues satisfy $|\lambda_i - \alpha| < r$.

Proof:

- ► Taylor polynomials $p_d(x) = \sum_{k=0}^d f_k(x \alpha)^k$ converge (uniformly) to f(x) when $|x \alpha| < r$
- ▶ $p_d^{(k)}(x)$ is the Taylor polynomial of $f^{(k)}$ (of degree d-k), and it has the same radius of convergence.
- Write $p_d(X)$ in terms of its Jordan decomposition; all entries are of the form $p_d^{(k)}(\lambda_i)$ and converge to the corresponding derivatives.

The problem with Taylor

Taylor series do not solve every problem satisfactorily. Example: exponential of a 2×2 matrix.

$$A = \begin{bmatrix} 0 & \alpha \\ -\alpha & 0 \end{bmatrix} \quad \exp(A) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}.$$

For $\alpha=30$, even summing a lot of terms gives poor precision, because the intermediate terms of the series grow a lot (the "hump phenomenon") with respect to the final result: cancellation.

Unlike the scalar case, even switching to $(\exp(-A))^{-1}$ does not help.

eig(A)=
$$\pm 3Di$$

Probl. analogo calcolando exp(-30): concellorine, termini
a sepi: alterni.
Par reali negativi, si nimedia can exp(-30) = $\frac{1}{\exp(30)}$

Padé approximations

Variant: Padé approximations, i.e., rational approximations.

Padé approximant (at x = 0)

For almost every f analytic at 0 and for every choice of degrees deg p, deg q, one can find a rational function $\frac{p(x)}{q(x)}$ such that

$$f(x) - \frac{p(x)}{q(x)} = \mathcal{O}(x^{\deg p + \deg q + 1}).$$

i.e., "matches first $\deg p + \deg q$ terms of the MacLaurin series". (Count degrees of freedom to get a hint of why it works.)

Proof: series expansion of f(x)q(x) = p(x) gives a linear system.

For many functions, Padé approximants converge faster than Taylor series.

We will examine them for specific functions, e.g. the exponential.

Parlett recurrence

When Jordan is unstable, use Schur.

Can one compute matrix functions using the Schur form of A?

Example

$$A = \begin{bmatrix} t_{11} & t_{12} \\ 0 & t_{22} \end{bmatrix}, \quad f(A) = \begin{bmatrix} s_{11} & s_{12} \\ 0 & s_{22} \end{bmatrix}.$$

Clearly, $s_{11} = f(t_{11})$, $s_{22} = f(t_{22})$.

Trick: expanding Af(A) = f(A)A, one gets an equation for s_{12} :

$$t_{11}s_{12} + t_{12}s_{22} = s_{11}t_{12} + s_{12}t_{22} \implies s_{12} = t_{12}\frac{s_{11} - s_{22}}{t_{11} - t_{22}}.$$

(If $t_{11} = t_{22}$, the equation is not solvable and we already know that the finite difference becomes a derivative).

Parlett recurrence — II

The same idea works for larger blocks (provided we compute things in the correct order):

$$A = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ & t_{22} & t_{23} \\ & & t_{33} \end{bmatrix}, \quad f(A) = \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ & s_{22} & s_{23} \\ & & s_{33} \end{bmatrix},$$

$$t_{11}s_{13} + t_{12}s_{23} + t_{13}s_{33} = s_{11}t_{13} + s_{12}t_{23} + s_{13}t_{33}.$$

Very similar to the algorithm we used to solve Sylvester equations. In some sense, we are solving the (singular) Sylvester equation AX - XA = 0 for X = f(A), after setting specific elements on its diagonal.

The same idea works blockwise: the quotients become Sylvester equations.

Parlett recurrence — III

Algorithm (Schur-Parlett method)

- 1. Compute Schur form $A = QTQ^*$;
- 2. Partition T into blocks with 'well-separated eigenvalues';
- 3. Compute $f(T_{ii})$ (e.g., with Taylor series in the centroid of its eigenvalues);
- 4. Use recurrences to compute off-diagonal blocks of f(T);
- 5. Return $f(A) = Qf(T)Q^*$.

Tries to get 'best of both worlds': uses Taylor expansion when the eigenvalues are close, recurrences when they are distant.

Matlab's funm does this (for selected functions, or when the user provides derivatives).

Parlett recurrence and block diagonalization

The Parlett recurrence is 'almost the same thing' as block diagonalization + evaluation.

Consider the case of 2 blocks for simplicity. T can be block-diagonalized via

$$W^{-1}TW = \begin{bmatrix} I & -X \\ 0 & I \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix} \begin{bmatrix} I & X \\ 0 & I \end{bmatrix} = \begin{bmatrix} T_{11} & \\ & T_{22} \end{bmatrix}$$

where X solves $T_{11}X - XT_{22} + T_{12} = 0$ (Sylvester equation). Then

$$f(T) = W \begin{bmatrix} f(T_{11}) & & \\ & f(T_{22}) \end{bmatrix} W^{-1} = \begin{bmatrix} f(T_{11}) & Xf(T_{22}) - f(T_{11})X \\ & f(T_{22}) \end{bmatrix}.$$

(Note indeed that $S = Xf(T_{22}) - f(T_{11})X$ solves the Sylvester equation appearing in the Parlett recurrence.)

So both methods solve a Sylvester equation with operator $Z \mapsto T_{11}Z - ZT_{22}$.