
The matrix exponential
We start our discussion of specific matrix functions from expm(A).

Easy to come up with ways that turn out to be unstable. [Moler,
Van Loan, “Nineteen dubious ways to compute the exponential of a matrix”,
’78 & ’03].
Example truncated Taylor series, I + A + 1

2A2 + 1
6A3 · · ·+ 1

k!A
k .

Typical example that this is unstable also for scalars (cancellation
if x < 0). For scalars, cheap fix via exp(−x) = exp(x)−1. For
matrices, often we have both positive and negative eigenvalues.

Growth in matrix powers
The main problem in computing matrix power series: intermediate
growth of coefficients.
Example Even on a nilpotent matrix, entries may grow.

A =


0 10

0 10
0 10

0

 , A2 =


0 0 100

0 0 100
0 0

0

 , A3 =


0 0 0 1000

0 0 0
0 0

0

 .
Intrinsic problem on non-normal matrices. Growth + cancellation
= trouble.

(On normal matrices, ‖Ak‖ = ‖A‖k = |λmax|k .)

“Humps”
Similarly, exp(tA) may grow for small values of t before ‘settling
down’.
Example

>> A = [-0.97 25; 0 -0.3];
>> t = linspace(0,20,100);
>> for i = 1:length(t); y(i) = norm(expm(t(i)*A)); end
>> plot(t, y)

For the same reason, it is also a bad idea to use an ODE solver on

X ′(t) = AX (t), X (0) = I;

Nice fact: explicit Euler produces exp(At) ≈ (I + t
nA)n.

Padé approximants
Padé approximants to the exponential (in x = 0) are known
explicitly.

Padé approximants to exp(x)
|exp(x)− Npq(x)/Dpq(x)| = O(xp+q+1), where

Npq(x) =
p∑

j=0

(p + q − j)!p!
(p + q)!j!(p − j)!x j ,

Dpq(x) =
q∑

j=0

(p + q − j)!q!
(p + q)!j!(q − j)!(−x)j .

exp(A) ≈ (Dpq(A))−1Npq(A).
The main danger comes from Dpq(A)−1.
For large p, q, Dpq(A) ≈ exp(−1

2A). κ(Dpq(A)) ≈ e− 1
2 λmin

e− 1
2 λmax

.

Backward error of Padé approximants
Are Padé approximants reliable when ‖A‖ is small, at least?

Recall: perfect scalar approximation does not imply good matrix
approximation.

Let H = f (A), where f (x) = log(e−x Npq(x)
Dpq(x)). H is a matrix

function, so it commutes with A.
(Note that e−x Npq(x)

Dpq(x) = 1 + O(xp+q+1), so the log exists for x
sufficiently small).
One has exp(H) = exp(−A)(Dpq(A))−1Npq(A), so

(Dpq(A))−1Npq(A) = exp(A) exp(H) = exp(A + H)

(since A and H commute).

We can regard H as a sort of ‘backward error’: the Padé
approximant (Dpq(A))−1Npq(A) is the exact exponential of a
certain perturbed matrix A + H.

Can one bound ‖H‖‖A‖ ?

Bounding ‖H‖
H = f (A), where f (x) = log(e−x Npq(x)

Dpq(x)).
f is analytic, so f (x) = c1xp+q+1 + c2xp+q+2 + c3xp+q+3 +

H = f (A) = c1Ap+q+1 + c2Ap+q+2 + c3xp+q+3 + . . .

‖H‖ ≤ |c1|‖A‖p+q+1 + |c2|‖A‖p+q+2 + |c3|‖A‖p+q+3 + . . .

All these quantities can be computed, explicitly or with
Mathematica (but it’s a lot of work).
Luckily, someone did it for us. For instance:

[Higham book ’08, p. 244]

If p = q = 13 and ‖A‖ ≤ 5.4, then ‖H‖‖A‖ ≤ u (machine precision).

Scaling and squaring
What if ‖A‖ > 5.4? Trick: exp(A) = (exp(1

s A))s .

Algorithm (scaling and squaring)

1. Find s = 2k such that ‖1
s A‖ ≤ 5.4.

2. Compute F = D13,13(B)−1N13,13(B), where D13,13 and N13,13
are given polynomials and B = 1

s A.
3. Compute F 2k by repeated squaring.

Why 13? Chosen to minimize number of operations.
Note that we can evaluate D13,13 and N13,13 with 6 matmuls, using
Paterson-Stockmeyer.

This is Matlab’s expm, currently (more or less — approximants of
degree smaller than 13 are used in some cases).

Is scaling and squaring stable?
Note that ‘humps’ may still give problems: exp(B) may be much
larger than exp(A) = exp(B)2k , leading to cancellation in the
squares.

Is scaling and squaring stable for all matrices? Yes numerically, but
no definitive answer.

