Conditioning of computing matrix functions

Recall: the condition number of a differentiable f : R™ — R" is
the norm of its Jacobian. So_ub': Mo
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Fréchet derivative

Direct generalization of the Jacobian to matrix functions:

Definition

The Fréchet derivative of a matrix function f is the linear operator

Lex : R™X™ — RTX™ (when it exists) suc

f(X+ E) = f(X) +‘Lf,X(E)

h that

[+ o(lIE)-

l.e., in a neighbourhood of X, f behaves like a linear function.



Example
f(x) = x2, f(X) = X2

(X 4+ E)?=X?+ XE + EX + E? = X?> + XE + EX +o(|| E||?).
Lt x(E)
f,X

L¢ x is a linear operator that maps matrices to matrices — we can
consider its vectorized version:

~

L:vecE — vecls x(E).

In this case, R
L=X"®l+I®X.

L is the “usual” Jacobian of the map vec X — vec f(X).



Properties

Follow from those of Jacobians:

> Lrygx = Lrx + Lgx.

> Lrogx = Lrg(x) o Lgx-

> Levx) = Lix
Example Let g(y) = /y (principal branch: we take the root in the
right half-plane), Y with no real nonpositive eigenvalue.

Then g(y) is the inverse of f(x) = x2, and its Fréchet derivative
F = Lg y(E) is the matrix such that L¢ x(F) = E, i.e.,

XF+FX=E, X=f(Y)=YY2

(solution of a Sylvester equation). X has eigenvalues in the right
half-plane, so the Sylvester equation is always solvable:
AX)NA(=X) = 0.



Derivative of the exponential
Derivative of the matrix exponential:

1 1
exp(X+E):I+(X+E)—|—§(X+E)2+§(X+E)3+...
1

1
:l+(X+E)+§(X2+EX+XE+E2)+3|
1 1
= exp(X) + E + S(EX + XE) + §(X2E+XEX + X2E)
+---+ O E[?)

(X2+...)

Not simple to express.

- 1 1
L= /+5(/®X+XT®/)+§(/®X2+XT®X+(X2)T®/)+...



Trick to compute L¢ x(E)

Let f be Fréchet differentiable. Then,
p X E|\ _|f(X) Lex(E)
0 X|/ | 0 f(X) |-

A+ecE E

Proof (sketch) Evaluate f < 0 A]) by block-diagonalizing.

We need l(l) )f] where X solves (A+ cE)X — XA = E, which

has solution X = %l (to block-diagonalize it, it is sufficient to find
one solution, even if the Sylvester equation is singular). The
[

luati i
evaluation gives 0 £(A)




Existence of the Fréchet derivative

Theorem

If f € C?>™~1(U), then L¢ x exists for each X € R™*™ with
eigenvalues in U.

Proof (sketch) The proof of the previous theorem shows that the
directional derivatives of f (seen as a map R™ — R’"Q) exist and
are continuous (since matrix functions are continuous). It is a
classical result in multivariate calculus that then f is continuously
differentiable.



Fréchet derivative and condition number
Hence, Kaps(f, X) = ||Lf x||.
.. with some attention to what ‘norm’ means here.

The norm used for || X — X]| is any matrix norm on n X n matrices,

and ||L¢ x|| is the ‘operator norm’ (on n? x n? matrices) induced
by it.

Easy case If we take X — X||g, it corresponds to |[vec X2, so
Kabs(f, X) = || Le x]l2-
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Eigenvalues of Fréchet derivatives [Higham book ‘08, Ch. 3]

How to compute the eigenvalues of a Fréchet derivative L¢ x7

(sketched only)
We may replace f(x) with its interpolating polynomial p(x) on the
spectrum of A (and twice the multiplicities, to make sure the

‘trick” with [§ £] works).

PX+E)=po+ (X+E)+p(X+E)P?+p(X+E)P+
= po + p1(X + E) + pa(X? + EX + XE + E?) + p3(X> +
= p(X) + p1E + p2(EX + XE) + p3(X2E + XEX + X2E)
+---+ O(|E[?)

Not simple to express.

L=pot+p(loX+XT@N)+p(IoX2+XT @ X+(X?)T 1)+



Eigenvalues of Fréchet derivatives
More formally,

d k

We can reduce it to a triangular matrix if we take Schur forms
X=NhQ! XT=QNha/.
Its eigenvalues are

d k
oD AT Z Pk

k=0 h=1 Ai
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TL;DR: theorems

rTheorem
Let X have eigenvalues A1, ..., A,. The eigenvalues of L¢ x are
fN)—FN) &
fDor] =] =% 7D
f'(\i) i=j.
-
Theorem

Let X = VAV be diagonalizable. Then, for the Frobenius norm,

ﬁabs(fyx) < 52(\/) maX’f[)‘” AJ:H
L)

Captures at least one of the two factors for ill-conditioning, i.e.,
eigenvalues. The other factor, non-normality, is trickier to account
for properly.



