The matrix sign function \b\ //
1 Rex >0, \\
\

sign(x) = ¢ —1 Rex < 0,
undefined Rex = 0.

Suppose the Jordan form of A is reblocked as

A [vl vz] [Jol O] [vl vz}_l,

b

where J; contains all eigenvalues in the LHP (left half-plane) and
J> in the RHP. Then,

sign(A) = Vi V] [_' /] v vz]_l.

sign(A) is always diagonalizable with eigenvalues +1. sign(A) £/
gives the projections on the span of the eigenvectors in the
RHP/LHP (unstable/stable invariant subspace).



Sign and square root

Useful formula: sign(A) = A(A?)~1/2 where A'/2 is the principal
square root of A (all eigenvalues in the right half-plane), and
A~1/2 is its inverse.

X

Proof: consider eigenvalues, sign(x) = O

(Care with signs.)

Theorem

If AB has no eigenvalues on R<q (hence neither does BA), then
. |0 A 0 C _
Sign [B o] - lc—l 0] , C=A(BA)2

Proof (sketch) Use sign(A) = A(A?)~1/2 (and then sign(A)? = /).

For instance,
|0 Al | 0o A2
sign 1ol = a1 o |-



Conditioning
From the theorems on the Fréchet derivative, for a diagonalizable A

2

MiNRe \;<0, Re \; >0/ Ai — Aj

Kabs(sign(A)) < ka(V)

Tells only part of the truth: computing sign(A) is “better” than a
full diagonalization: it is not sensitive to close eigenvalues that are
far from the imaginary axis.



4=AN"  A=SN=NS

|
Theorem S = %\Xh(’lﬂ N= CL\L)/Z

Condition number

Kabs(sign, A) = [({@ N+ NT @ )7'(1 - ST & S)|,
where N = (A%)1/2,

Proof (sketch): let L = Lggn a(E). Then, up to second-order
factors, (A+ E)(S+L)=(S+L)(A+E)and (S+L)>=1.
Some manipulations give NA + AN = E — SES.

In particular, sep(N, —N) plays a role.

Remark: if all eigenvalues of A are in the RHP, then the formula
gives K ps(sign, A) = 0.

Makes sense, since sign(A) = sign(A + E) = [ for all E for which
eigenvalues do not cross the imaginary axis. . .



Schur-Parlett method

We can compute sign(A) with a Schur decomposition. It makes
sense to reorder it so that eigenvalues in the LHP come first:
A(T11) € LHP, A(Tx) C RHP.

sam | Ti1 T2 * _ |- X
QAQ—[O -,-22], Qf(A)Q—[O I]
where X solves T13.X — XTop = —f(T11) Tio + T12f (Ta2) = 2 T2,

Condition number of this Sylvester equation: depends on
sep(T11, T22).




Schur-Parlett for the sign

1. Compute A= QTQ".
2. Reorder Schur decomposition so that eigenvalues in the LHP
come first.

3. Solve Sylvester equation for X.
4. sign(A) = Q[‘O’ )f]QT.



Newton for the matrix sign
Most popular algorithm:

Newton for the matrix sign

sign(A) = limg_, o Xk, where

1 _
Xi+1 = E(Xk + X1, Xo=A

Suppose A diagonalizable: then we may consider the scalar version
of the iteration on each eigenvalue A:

1( +1> xg +1 \
X = < | X — | = —— X0 = A.
k+1 2 k Xk 2k ’ 0

Fixed points: +1 (with local quadratic convergence). Eigenvalues
in the RHP stay in the RHP (and same for LHP).

(It's Newton's method on f(x) = x2 — 1, which justifies the name).



Convergence analysis of the scalar iteration
Trick: change of variables (Cayley transform)

_I+4x y—1

= —, with inverse x = ——.
y 1_X,W| inv X P

If x € RHP, then |x + 1| > |[x — 1| = y outside the unit disk.
If x € LHP, then |x — 1| > |x + 1| = y inside the unit disk.
(“Poor man'’s exponential)

Xkt1 = % (xk + Xik) corresponds to yy11 = —y,f (check it!).

If we start from xg € LHP, then |yg| < 1, then limy, =0 (i.e.,
lim Xk = —1).

If we start from xo € RHP, then |yp| > 1, the squares diverge, and
limy, = oo (i.e., limx, = 1).



Convergence analysis of the matrix iteration

The same proof works, as long as A does not have the eigenvalue 1
(invertibility). Small modification to fix this case, too:
Change of variables:

Yi = (Xk—S)(X+S)7L,  with inverse Xy = (I— Yi) " 2(/+ Yi)S.

All the X are rational functions of A, so they commute with it
and with S.
Analyzing eigenvalues: the inverse exists and p(Yx) < 1.

Yirr = (X H(XR 41— 25X ) X (XE + 1+ 25X,) ™ = Y2

Y, — 0, hence X, — S.



The algorithm
1. Xo = A
2. Repeat Xx11 = %(Xk + Xk_l), until convergence.

We really need to compute that matrix inverse (unusual in
numerical linear algebra. . .)



Scaling
If x, > 1, then

1 ( n 1) 1
Xkr1== Xk +— ) = =x
k1 = 5 | Xk " o Xk
and “the iteration is an expensive way to divide by 2" [Higham].
Same if x, <« 1 — the iteration just multiplies by 2.

Similarly, for matrices, convergence cannot occur until each
eigenvalue has converged to +1.

Trick: replace A with puA for a scalar g > 0 — they have the same
sign. Choose this i so that eigenvalues ~ 1.
(Once, or at each step.)



Scaling possibilities

Possibility 1: (determinantal scaling): choose y = (det A)~/", so
that det A = 1. Reduces “mean distance” from 1. Cheap to
compute, since we already need to invert A.

Possibility 2: (spectral scaling): choose u so that
[Amin(4A) Amax (2A)| = 1. (We can use the power method to
estimate them.)

Possibility 3: (norm scaling): choose p so that
Tmin(tA)omax(pA) = 1. (Again via the power method for omin.)

Surprisingly, on a matrix with real eigenvalues Possibility 2 gives
convergence in a finite number of iterations, if done at each step:
the first iteration maps Amin(A) and Amax(A) to eigenvalues with
the same modulus; then the second iteration adds a third
eigenvalue with the same modulus. ..



Other iterations

There is an elegant framework to determine other iterations locally
convergent to sign(x) (in a neighbourhood of +1): start from

gn(2) = o

and replace the square root using a Padé approximant of
(1—x)2.
In the end, they produce iteration functions of the form

(1+2)" +(1-2)

S sy T

Advantage of using the Newton-sign iteration: it has the correct
basins of attraction (convergence is global and not only local).



Stability of the sign iterations
The stability analysis is complicated. [Bai Demmel '98 and Byers
Mehrmann He '97]

While it works well in practice, the Newton iteration is not
backward stable.

The sign is not even stable under small perturbations: assuming

(up to a change of basis) A = [Aél ﬁ;g] then

| | IEI
sign(A+ E) —sign(A)| S — 71— 3
|sign( ) — sign(A)] sep(A11, Ax)3

Nevertheless, the invariant subspaces it produces are: A+ E has a
stable invariant subspace of the form [)’<] with

Ixj < —AEL
sep(Ai11, A2)

(Cfr. invariant subspace stability bound from the first lectures.)



Inversion-free sign

Suppose that we are given M, N such that A= M~IN. Can we
compute sign(A) without inverting M? Yes.

1 1
X1 = 5(A+A—1) = 5(/\/1—1/\/ + N7tm)

= MY (N+MN"IM)
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assuming we can find M, N such that MN—t = (1.
Then the same computations produce My, No, M3, N3, . ..



Inversion-free sign
How to find M, Nl such that MN—! = (1~ {?

M

MM = NN, or [I\Aﬂ N} [—N] = 0. We can obtain M,N from a

kernel.

Computing this kernel can be much more accurate than inverting
M and/or N, e.g.,

| — |
L
| I— |
[l
O O
_ O 0n O

All this is a sort of ‘linear algebra on pencils’: we map N — xM to
N; — xMy (one final project on this).



