
The matrix sign function

sign(x) =


1 Re x > 0,
−1 Re x < 0,
undefined Re x = 0.

Suppose the Jordan form of A is reblocked as

A =
[
V1 V2

] [J1
J2

] [
V1 V2

]−1
,

where J1 contains all eigenvalues in the LHP (left half-plane) and
J2 in the RHP. Then,

sign(A) =
[
V1 V2

] [−I
I

] [
V1 V2

]−1
.

sign(A) is always diagonalizable with eigenvalues ±1. sign(A)± I
gives the projections on the span of the eigenvectors in the
RHP/LHP (unstable/stable invariant subspace).



Sign and square root
Useful formula: sign(A) = A(A2)−1/2, where A1/2 is the principal
square root of A (all eigenvalues in the right half-plane), and
A−1/2 is its inverse.
Proof: consider eigenvalues, sign(x) = x

(x2)1/2 . (Care with signs.)

Theorem
If AB has no eigenvalues on R≤0 (hence neither does BA), then

sign
[
0 A
B 0

]
=
[

0 C
C−1 0

]
, C = A(BA)−1/2.

Proof (sketch) Use sign(A) = A(A2)−1/2 (and then sign(A)2 = I).
For instance,

sign
[
0 A
I 0

]
=
[

0 A1/2

A−1/2 0

]
.



Conditioning
From the theorems on the Fréchet derivative, for a diagonalizable A

κabs(sign(A)) ≤ κ2(V ) 2
minReλi<0,Reλj>0|λi − λj |

Tells only part of the truth: computing sign(A) is “better” than a
full diagonalization: it is not sensitive to close eigenvalues that are
far from the imaginary axis.



Condition number

Theorem

κabs(sign,A) = ‖(I ⊗ N + NT ⊗ I)−1(I − ST ⊗ S)‖,

where N = (A2)1/2.

Proof (sketch): let L = Lsign,A(E ). Then, up to second-order
factors, (A + E )(S + L) = (S + L)(A + E ) and (S + L)2 = I.
Some manipulations give NA + AN = E − SES.

In particular, sep(N,−N) plays a role.

Remark: if all eigenvalues of A are in the RHP, then the formula
gives κabs(sign,A) = 0.
Makes sense, since sign(A) = sign(A + E ) = I for all E for which
eigenvalues do not cross the imaginary axis. . .



Schur-Parlett method
We can compute sign(A) with a Schur decomposition. It makes
sense to reorder it so that eigenvalues in the LHP come first:
Λ(T11) ⊆ LHP, Λ(T22) ⊆ RHP.

Q∗AQ =
[
T11 T12
0 T22

]
, Q∗f (A)Q =

[
−I X
0 I

]

where X solves T11X − XT22 = −f (T11)T12 + T12f (T22) = 2T12.

Condition number of this Sylvester equation: depends on
sep(T11,T22).



Schur-Parlett for the sign

1. Compute A = QTQT .
2. Reorder Schur decomposition so that eigenvalues in the LHP

come first.
3. Solve Sylvester equation for X .
4. sign(A) = Q

[
−I X
0 I

]
QT .



Newton for the matrix sign
Most popular algorithm:

Newton for the matrix sign
sign(A) = limk→∞ Xk , where

Xk+1 = 1
2(Xk + X−1

k ), X0 = A.

Suppose A diagonalizable: then we may consider the scalar version
of the iteration on each eigenvalue λ:

xk+1 = 1
2

(
xk + 1

xk

)
= x2

k + 1
2xk

, x0 = λ.

Fixed points: ±1 (with local quadratic convergence). Eigenvalues
in the RHP stay in the RHP (and same for LHP).

(It’s Newton’s method on f (x) = x2− 1, which justifies the name).



Convergence analysis of the scalar iteration
Trick: change of variables (Cayley transform)

y = 1 + x
1− x , with inverse x = y − 1

y + 1 .

If x ∈ RHP, then |x + 1| > |x − 1| =⇒ y outside the unit disk.
If x ∈ LHP, then |x − 1| > |x + 1| =⇒ y inside the unit disk.
(“Poor man’s exponential”)

xk+1 = 1
2

(
xk + 1

xk

)
corresponds to yk+1 = −y2

k (check it!).

If we start from x0 ∈ LHP, then |y0| < 1, then lim yk = 0 (i.e.,
lim xk = −1).
If we start from x0 ∈ RHP, then |y0| > 1, the squares diverge, and
lim yk =∞ (i.e., lim xk = 1).



Convergence analysis of the matrix iteration
The same proof works, as long as A does not have the eigenvalue 1
(invertibility). Small modification to fix this case, too:
Change of variables:

Yk = (Xk−S)(Xk +S)−1, with inverse Xk = (I−Yk)−1(I +Yk)S.

All the Xk are rational functions of A, so they commute with it
and with S.
Analyzing eigenvalues: the inverse exists and ρ(Yk) < 1.

Yk+1 = (X−1
k (X 2

k + I − 2SXk))Xk(X 2
k + I + 2SXk)−1 = Y 2

k .

Yk → 0, hence Xk → S.



The algorithm

1. X0 = A.
2. Repeat Xk+1 = 1

2(Xk + X−1
k ), until convergence.

We really need to compute that matrix inverse (unusual in
numerical linear algebra. . . )



Scaling
If xk � 1, then

xk+1 = 1
2

(
xk + 1

xk

)
≈ 1

2xk ,

and “the iteration is an expensive way to divide by 2” [Higham].
Same if xk � 1 — the iteration just multiplies by 2.

Similarly, for matrices, convergence cannot occur until each
eigenvalue has converged to ±1.

Trick: replace A with µA for a scalar µ > 0 — they have the same
sign. Choose this µ so that eigenvalues ≈ 1.
(Once, or at each step.)



Scaling possibilities
Possibility 1: (determinantal scaling): choose µ = (det A)−1/n, so
that det A = 1. Reduces “mean distance” from 1. Cheap to
compute, since we already need to invert A.
Possibility 2: (spectral scaling): choose µ so that
|λmin(µA)λmax(µA)| = 1. (We can use the power method to
estimate them.)
Possibility 3: (norm scaling): choose µ so that
σmin(µA)σmax(µA) = 1. (Again via the power method for σmin.)

Surprisingly, on a matrix with real eigenvalues Possibility 2 gives
convergence in a finite number of iterations, if done at each step:
the first iteration maps λmin(A) and λmax(A) to eigenvalues with
the same modulus; then the second iteration adds a third
eigenvalue with the same modulus. . .



Other iterations
There is an elegant framework to determine other iterations locally
convergent to sign(x) (in a neighbourhood of ±1): start from

sign(z) = z
(z2)1/2 ,

and replace the square root using a Padé approximant of
(1− x)1/2.
In the end, they produce iteration functions of the form

fr (z) = (1 + z)r + (1− z)r

(1 + z)r − (1− z)r .

Advantage of using the Newton-sign iteration: it has the correct
basins of attraction (convergence is global and not only local).



Stability of the sign iterations
The stability analysis is complicated. [Bai Demmel ’98 and Byers
Mehrmann He ’97]

While it works well in practice, the Newton iteration is not
backward stable.
The sign is not even stable under small perturbations: assuming
(up to a change of basis) A =

[
A11 A12
0 A22

]
, then

‖sign(A + E )− sign(A)‖ . ‖E‖
sep(A11,A22)3 .

Nevertheless, the invariant subspaces it produces are: A + E has a
stable invariant subspace of the form

[ I
X
]
, with

‖X‖ . ‖E‖
sep(A11,A22) .

(Cfr. invariant subspace stability bound from the first lectures.)



Inversion-free sign
Suppose that we are given M,N such that A = M−1N. Can we
compute sign(A) without inverting M? Yes.

X1 = 1
2(A + A−1) = 1

2(M−1N + N−1M)

= 1
2M−1(N + MN−1M)

= 1
2M−1(N + M̂−1N̂M)

= 1
2M−1M̂−1(M̂N + N̂M)

= (M̂M) 12(M̂N + N̂M) =: M−1
1 N1.

assuming we can find M̂, N̂ such that MN−1 = M̂−1N̂.
Then the same computations produce M2,N2,M3,N3, . . .



Inversion-free sign
How to find M̂, N̂ such that MN−1 = M̂−1N̂?

M̂M = N̂N, or
[
M̂ N̂

] [ M
−N

]
= 0. We can obtain M̂, N̂ from a

kernel.

Computing this kernel can be much more accurate than inverting
M and/or N, e.g., [

M
−N

]
=


1 0
0 ε
ε 0
0 1

 .

All this is a sort of ‘linear algebra on pencils’: we map N − xM to
N1 − xM1 (one final project on this).


