The matrix sign function

$$sign(x) = \begin{cases} 1 & \text{Re } x > 0, \\ -1 & \text{Re } x < 0, \\ \text{undefined} & \text{Re } x = 0. \end{cases}$$

Suppose the Jordan form of A is reblocked as

$$A = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \begin{bmatrix} J_1 & \ & J_2 \end{bmatrix} \begin{bmatrix} V_1 & V_2 \end{bmatrix}^{-1},$$

where J_1 contains all eigenvalues in the LHP (left half-plane) and J_2 in the RHP. Then,

$$sign(A) = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \begin{bmatrix} -I & I \end{bmatrix} \begin{bmatrix} V_1 & V_2 \end{bmatrix}^{-1}.$$

 $\operatorname{sign}(A)$ is always diagonalizable with eigenvalues ± 1 . $\operatorname{sign}(A) \pm I$ gives the projections on the span of the eigenvectors in the RHP/LHP (unstable/stable invariant subspace).

Sign and square root

Useful formula: $sign(A) = A(A^2)^{-1/2}$, where $A^{1/2}$ is the principal square root of A (all eigenvalues in the right half-plane), and $A^{-1/2}$ is its inverse.

Proof: consider eigenvalues, $sign(x) = \frac{x}{(x^2)^{1/2}}$. (Care with signs.)

Theorem

If AB has no eigenvalues on $\mathbb{R}_{\leq 0}$ (hence neither does BA), then

$$\text{sign}\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} = \begin{bmatrix} 0 & C \\ C^{-1} & 0 \end{bmatrix}, \quad C = A(BA)^{-1/2}.$$

Proof (sketch) Use $sign(A) = A(A^2)^{-1/2}$ (and then $sign(A)^2 = I$). For instance,

$$\mathsf{sign} \begin{bmatrix} 0 & A \\ I & 0 \end{bmatrix} = \begin{bmatrix} 0 & A^{1/2} \\ A^{-1/2} & 0 \end{bmatrix}.$$

Conditioning

From the theorems on the Fréchet derivative, for a diagonalizable A

$$\kappa_{abs}(\operatorname{sign}(A)) \le \kappa_2(V) \frac{2}{\min_{\operatorname{Re} \lambda_i < 0, \operatorname{Re} \lambda_j > 0} |\lambda_i - \lambda_j|}$$

Tells only part of the truth: computing sign(A) is "better" than a full diagonalization: it is not sensitive to close eigenvalues that are far from the imaginary axis.

Condition number

Theorem

$$\kappa_{abs}(\text{sign},A) = \|(I \otimes N + N^T \otimes I)^{-1}(I - S^T \otimes S)\|,$$
 where $N = (A^2)^{1/2}$.

Proof (sketch): let $L = L_{\text{sign},A}(E)$. Then, up to second-order factors, (A+E)(S+L) = (S+L)(A+E) and $(S+L)^2 = I$. Some manipulations give NA + AN = E - SES.

In particular, sep(N, -N) plays a role.

Remark: if all eigenvalues of A are in the RHP, then the formula gives $\kappa_{abs}(\text{sign}, A) = 0$.

Makes sense, since sign(A) = sign(A + E) = I for all E for which eigenvalues do not cross the imaginary axis. . .

Schur-Parlett method

We can compute sign(A) with a Schur decomposition. It makes sense to reorder it so that eigenvalues in the LHP come first: $\Lambda(T_{11}) \subseteq LHP$, $\Lambda(T_{22}) \subseteq RHP$.

$$Q^*AQ = \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix}, \quad Q^*f(A)Q = \begin{bmatrix} -I & X \\ 0 & I \end{bmatrix}$$

where X solves $T_{11}X - XT_{22} = -f(T_{11})T_{12} + T_{12}f(T_{22}) = 2T_{12}$.

Condition number of this Sylvester equation: depends on $sep(T_{11}, T_{22})$.

Schur-Parlett for the sign

- 1. Compute $A = QTQ^T$.
- 2. Reorder Schur decomposition so that eigenvalues in the LHP come first.
- 3. Solve Sylvester equation for X.
- 4. $\operatorname{sign}(A) = Q \begin{bmatrix} -I & X \\ 0 & I \end{bmatrix} Q^T$.

Newton for the matrix sign

Most popular algorithm:

Newton for the matrix sign

 $sign(A) = \lim_{k \to \infty} X_k$, where

$$X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}), \quad X_0 = A.$$

Suppose A diagonalizable: then we may consider the scalar version of the iteration on each eigenvalue λ :

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{1}{x_k} \right) = \frac{x_k^2 + 1}{2x_k}, \quad x_0 = \lambda.$$

Fixed points: ± 1 (with local quadratic convergence). Eigenvalues in the RHP stay in the RHP (and same for LHP).

(It's Newton's method on $f(x) = x^2 - 1$, which justifies the name).

Convergence analysis of the scalar iteration

Trick: change of variables (Cayley transform)

$$y = \frac{1+x}{1-x}$$
, with inverse $x = \frac{y-1}{y+1}$.

If $x \in \mathsf{RHP}$, then $|x+1| > |x-1| \implies y$ outside the unit disk. If $x \in \mathsf{LHP}$, then $|x-1| > |x+1| \implies y$ inside the unit disk. ("Poor man's exponential")

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{1}{x_k} \right)$$
 corresponds to $y_{k+1} = -y_k^2$ (check it!).

If we start from $x_0 \in \mathsf{LHP}$, then $|y_0| < 1$, then $\limsup_k = 0$ (i.e., $\lim x_k = -1$).

If we start from $x_0 \in \mathsf{RHP}$, then $|y_0| > 1$, the squares diverge, and $\lim y_k = \infty$ (i.e., $\lim x_k = 1$).

Convergence analysis of the matrix iteration

The same proof works, as long as A does not have the eigenvalue 1 (invertibility). Small modification to fix this case, too: Change of variables:

$$Y_k = (X_k - S)(X_k + S)^{-1}$$
, with inverse $X_k = (I - Y_k)^{-1}(I + Y_k)S$.

All the X_k are rational functions of A, so they commute with it and with S.

Analyzing eigenvalues: the inverse exists and $\rho(Y_k) < 1$.

$$Y_{k+1} = (X_k^{-1}(X_k^2 + I - 2SX_k))X_k(X_k^2 + I + 2SX_k)^{-1} = Y_k^2.$$

 $Y_k \to 0$, hence $X_k \to S$.

The algorithm

- 1. $X_0 = A$. 2. Repeat $X_{k+1} = \frac{1}{2}(X_k + X_k^{-1})$, until convergence.

We really need to compute that matrix inverse (unusual in numerical linear algebra...)

If $x_k \gg 1$, then

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{1}{x_k} \right) \approx \frac{1}{2} x_k,$$

and "the iteration is an expensive way to divide by 2" [Higham]. Same if $x_k \ll 1$ — the iteration just multiplies by 2.

Similarly, for matrices, convergence cannot occur until each eigenvalue has converged to $\pm 1. \,$

Trick: replace A with μA for a scalar $\mu>0$ — they have the same sign. Choose this μ so that eigenvalues ≈ 1 . (Once, or at each step.)

Scaling possibilities

Possibility 1: (determinantal scaling): choose $\mu = (\det A)^{-1/n}$, so that $\det A = 1$. Reduces "mean distance" from 1. Cheap to compute, since we already need to invert A.

Possibility 2: (spectral scaling): choose μ so that $|\lambda_{\min}(\mu A)\lambda_{\max}(\mu A)|=1$. (We can use the power method to estimate them.)

Possibility 3: (norm scaling): choose μ so that $\sigma_{\min}(\mu A)\sigma_{\max}(\mu A)=1$. (Again via the power method for σ_{\min} .)

Surprisingly, on a matrix with real eigenvalues Possibility 2 gives convergence in a finite number of iterations, if done at each step: the first iteration maps $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$ to eigenvalues with the same modulus; then the second iteration adds a third eigenvalue with the same modulus. . .

Other iterations

There is an elegant framework to determine other iterations locally convergent to sign(x) (in a neighbourhood of ± 1): start from

$$\int \operatorname{sign}(z) = \frac{z}{(z^2)^{1/2}}, \int z = \left(\left| -\left(\left| -\frac{1}{\xi^2} \right| \right) \right|^2 \right)$$

and replace the square root using a Padé approximant of $(1-x)^{1/2}$. In the end, they produce iteration functions of the form $(1-x)^{1/2}$.

$$f_r(z) = \frac{(1+z)^r + (1-z)^r}{(1+z)^r - (1-z)^r}.$$

Advantage of using the Newton-sign iteration: it has the correct basins of attraction (convergence is global and not only local).

Stability of the sign iterations

The stability analysis is complicated. [Bai Demmel '98 and Byers Mehrmann He '97]

While it works well in practice, the Newton iteration is not backward stable.

The sign is not even stable under small perturbations: assuming (up to a change of basis)
$$A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$$
, then spm $\begin{bmatrix} \bot \\ O \end{bmatrix}$ $\|sign(A + E) - sign(A)\| \lesssim \frac{\|E\|}{sep(A_{11}, A_{22})^3}$

Nevertheless, the invariant subspaces it produces are: A + E has a stable invariant subspace of the form $\begin{bmatrix} I \\ X \end{bmatrix}$, with

$$||X||\lesssim \frac{||E||}{\operatorname{sep}(A_{11},A_{22})}.$$

(Cfr. invariant subspace stability bound from the first lectures.)

Inversion-free sign (

Suppose that we are given M, N such that $A = M^{-1}N$. Can we compute sign(A) without inverting M? Yes.

$$X_{1} = \frac{1}{2}(A + A^{-1}) = \frac{1}{2}(M^{-1}N + N^{-1}M)$$

$$= \frac{1}{2}M^{-1}(N + MN^{-1}M)$$

$$= \frac{1}{2}M^{-1}(N + \hat{M}^{-1}\hat{N}M)$$

$$= \frac{1}{2}M^{-1}\hat{M}^{-1}(\hat{M}N + \hat{N}M)$$

$$= (\hat{M}M)\frac{1}{2}(\hat{M}N + \hat{N}M) =: M_{1}^{-1}N_{1}.$$

assuming we can find \hat{M} , \hat{N} such that $MN^{-1} = \hat{M}^{-1}\hat{N}$. Then the same computations produce M_2 , N_2 , M_3 , N_3 , ...

Inversion-free sign

How to find \hat{M} , \hat{N} such that $MN^{-1} = \hat{M}^{-1}\hat{N}$?

$$\hat{M}M = \hat{N}N$$
, or $\begin{bmatrix} \hat{M} & \hat{N} \end{bmatrix} \begin{bmatrix} M \\ -N \end{bmatrix} = 0$. We can obtain \hat{M} , \hat{N} from a kernel.

Computing this kernel can be much more accurate than inverting M and/or N, e.g.,

$$\begin{bmatrix} M \\ -N \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \varepsilon \\ \varepsilon & 0 \\ 0 & 1 \end{bmatrix}.$$

All this is a sort of 'linear algebra on pencils': we map N-xM to N_1-xM_1 (one final project on this).