The matrix square root

Next (and last, for us) matrix function: A2, principal square root.

Al/2 is well defined unless A has:

P Real eigenvalues \; < 0, or

> Non-trivial Jordan blocks at \; = 0 (because g(x) = x1/? is

not differentiable).
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Schur method

Recall: Schur method:
1. Reduce to a triangular T using a Schur form;
2. Compute diagonal of S = f(T);

3. Compute off-diagonal entries from ST = TS
Involves a denominator tj; — tj;: if it is 0, we must work on
blocks.

In the case of A2, we can use S2 = T to get the off-diagonal
entries instead:

SiiSij + Si,i+1Si+1,j + -+ + SijSj = tjj.

Involves a denominator s;; + sj;: always invertible because
sii + 55 € RHP.

<V |t's backward stable (not complicated to show it).
(This is what Matlab uses, by the way.)



Newton method

Newton method on X2 — A:
Xir1 = Xk — E,  where E solves EX) + X E = X? — A.

Much more expensive than the Schur method: we solve a Sylvster
equation at each step (and this requires a Schur form).

Trick: If Xo commutes with A (for instance, taking Xo = a/), then
E = (2Xo) " }(X2 — A) and E, X; commute with A, too, ...

Resulting iteration:

(Modified) Newton iteration

1
Xiy1 = §(xk + X tA), Xo=al

At each step, XA = AX..



Square root and sign

(Modified) Newton iteration

1 _
Xiy1 = §(Xk + X tA), Xo=al

Pre-multiply by A=1/2, and use commutativity:

ATY2X, _! AV2X + (ATY2X)7Y), ATY2Xy = aATV2
o

This is the sign iteration! A_l/sz — sign(A‘l/Z) = /.
Hence,

Xi — A2 ie., the modified Newton iteration converges (for each
starting point Xp = a/ with a > 0).



Local convergence
True Newton

Xiy1 = Xk — E,  where E solves EX) + X E = X7 — A.

This is a Newton method, so it converges quadratically (locally).
Modified Newton
1 =il
X1 = E(Xk + Xk A)
The two iterations coincide, if XgA = AXp. ...in exact arithmetic!
In practice, this property is lost numerically. We need to study the

convergence of MN separately.

MN is the fixed-point iteration associated to
h(X) = (X + XLA).



Local stability

Local stability of a fixed-point iteration depends on the eigenvalues
of its Jacobian in the fixed-point.

The Jacobian / Fréchet derivative of h(X) = 3(X + X~1A) is
1 —1py-1
Ly x(E) = §(E+X EXTA)

(use (X +E) 1 —X"1=(X+E)EXt = X1EX"L+o(||E|)).
Hence Ly, 412 = 3(E + A7Y/2EAY/?), or

Kpae =3 (14 (AT @ A-1/2),

It has eigenvalues % + %)\}/2)\;1/2, where \; are the eigenvalues of
A.

It's easy to construct cases in which L, 1> has eigenvalues with
modulus > 1, hence A'/? is an unstable fixed point of h(X).



DB iteration

However, the stability properties are significantly different for slight
variations of the modified Newton’s method.

Setting Y = A~1X\, we can get

DB iteration [Denman—Beavers, '76]

1 _
Xiy1 = E(Xk + Y,

1 _
Yiy1 = §(Yk +X. 1),

This one satisfies lim(Xg, Yx) = (A2, A=1/2), and it is locally
stable.



Local stability of the DB iteration
We have

F—X1EX!
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All (X,Y) = (M, M~1) are fixed points, and in these the Jacobian
is idempotent, i.e., (KDB,(B,B_l))2 = KDB,(B,B_l)'

E— Y—lFY—ll

This implies local stability (even if the eigenvalues are +1).

Other variants available [Higham book, Ch. 6].



