
The matrix square root
Next (and last, for us) matrix function: A1/2, principal square root.

A1/2 is well defined unless A has:
I Real eigenvalues λi < 0, or
I Non-trivial Jordan blocks at λi = 0 (because g(x) = x1/2 is

not differentiable).



Condition number / sensitivity
The Fréchet derivative of f (X ) = X 2 is

Lf ,X (E ) = XE + EX , L̂ = I ⊗ X + XT ⊗ I.

The Fréchet derivative of g(Y ) = Y 1/2 is its inverse,

L̂g ,Y = (I ⊗ Y 1/2 + (Y 1/2)T ⊗ I)−1

with eigenvalues 1
λ

1/2
i +λ1/2

j
, i , j = 1, . . . , n.

In particular, g is ill-conditioned for matrices that either:
I have a small eigenvalue (taking i = j), or
I have two complex conjugate eigenvalues close to the negative

real axis (because then λ1/2
i ≈ ai , λ1/2

j ≈ −ai).



Schur method
Recall: Schur method:

1. Reduce to a triangular T using a Schur form;
2. Compute diagonal of S = f (T );
3. Compute off-diagonal entries from ST = TS

Involves a denominator tii − tjj : if it is 0, we must work on
blocks.

In the case of A1/2, we can use S2 = T to get the off-diagonal
entries instead:

siisij + si ,i+1si+1,j + · · ·+ sijsjj = tij .

Involves a denominator sii + sjj : always invertible because
sii + sjj ∈ RHP.

It’s backward stable (not complicated to show it).
(This is what Matlab uses, by the way.)



Newton method
Newton method on X 2 − A:

Xk+1 = Xk − E , where E solves EXk + XkE = X 2
k − A.

Much more expensive than the Schur method: we solve a Sylvster
equation at each step (and this requires a Schur form).

Trick: If X0 commutes with A (for instance, taking X0 = αI), then
E = (2X0)−1(X 2

0 − A) and E ,X1 commute with A, too, . . .

Resulting iteration:

(Modified) Newton iteration

Xk+1 = 1
2(Xk + X−1

k A), X0 = αI.

At each step, XkA = AXk .



Square root and sign

(Modified) Newton iteration

Xk+1 = 1
2(Xk + X−1

k A), X0 = αI.

Pre-multiply by A−1/2, and use commutativity:

A−1/2Xk+1 = 1
2
(
A−1/2Xk + (A−1/2Xk)−1

)
, A−1/2X0 = αA−1/2.

This is the sign iteration! A−1/2Xk → sign(A−1/2) = I.
Hence,

Xk → A1/2, i.e., the modified Newton iteration converges (for each
starting point X0 = αI with α > 0).



Local convergence

True Newton
Xk+1 = Xk − E , where E solves EXk + XkE = X 2

k − A.

This is a Newton method, so it converges quadratically (locally).

Modified Newton

Xk+1 = 1
2(Xk + X−1

k A).

The two iterations coincide, if X0A = AX0. . . . in exact arithmetic!
In practice, this property is lost numerically. We need to study the
convergence of MN separately.

MN is the fixed-point iteration associated to
h(X ) = 1

2(X + X−1A).



Local stability
Local stability of a fixed-point iteration depends on the eigenvalues
of its Jacobian in the fixed-point.

The Jacobian / Fréchet derivative of h(X ) = 1
2(X + X−1A) is

Lh,X (E ) = 1
2(E + X−1EX−1A)

(use (X + E )−1−X−1 = (X + E )−1EX−1 = X−1EX−1 + o(‖E‖)).

Hence Lh,A1/2 = 1
2(E + A−1/2EA1/2), or

Kh,A1/2 = 1
2

(
I + (A1/2)T ⊗ A−1/2

)
.

It has eigenvalues 1
2 + 1

2λ
1/2
i λ

−1/2
j , where λi are the eigenvalues of

A.

It’s easy to construct cases in which Lh,A1/2 has eigenvalues with
modulus > 1, hence A1/2 is an unstable fixed point of h(X ).



DB iteration
However, the stability properties are significantly different for slight
variations of the modified Newton’s method.

Setting Yk = A−1Xk , we can get

DB iteration [Denman–Beavers, ’76]

Xk+1 = 1
2(Xk + Y −1

k ),

Yk+1 = 1
2(Yk + X−1

k ),

This one satisfies lim(Xk ,Yk) = (A1/2,A−1/2), and it is locally
stable.



Local stability of the DB iteration
We have

LDB,(X ,Y )(
[
E
F

]
) = 1

2

[
E − Y −1FY −1

F − X−1EX−1

]
All (X ,Y ) = (M,M−1) are fixed points, and in these the Jacobian
is idempotent, i.e., (KDB,(B,B−1))2 = KDB,(B,B−1).

This implies local stability (even if the eigenvalues are ±1).

Other variants available [Higham book, Ch. 6].


