The matrix square root

Next (and last, for us) matrix function: $A^{1 / 2}$, principal square root.
$A^{1 / 2}$ is well defined unless A has:

- Real eigenvalues $\lambda_{i}<0$, or
- Non-trivial Jordan blocks at $\lambda_{i}=0$ (because $g(x)=x^{1 / 2}$ is not differentiable).

Condition number / sensitivity

$$
(x+E)^{2}=x^{2}+E x+x E+o(\|E\|)
$$

The Fréchet derivative of $f(X)=X^{2}$ is pate livers

$$
L_{f, X}(E)=X E+E X, \quad \widehat{L}=I \otimes X+X^{T} \otimes I
$$

The Fréchet derivative of $g(Y)=Y^{1 / 2}$ is its inverse,

$$
\widehat{L}_{g, Y} \neq\left(I \otimes Y^{1 / 2}+\left(Y^{1 / 2}\right)^{T} \otimes I\right)^{-1}
$$

with eigenvalues $\frac{1}{\lambda_{i}^{1 / 2}+\lambda_{j}^{1 / 2}}, i, j=1, \ldots, n .(\lambda$: ouborel. Ai $Y)$
In particular, g is ill-conditioned for matrices that either:

- have a small eigenvalue (taking $i=j$), or
- have two complex conjugate eigenvalues close to the negative real axis (because then $\lambda_{i}^{1 / 2} \approx a i, \lambda_{j}^{1 / 2} \approx-a i$).

Schur method

Recall: Schur method:

1. Reduce to a triangular T using a Schur form;
2. Compute diagonal of $S=f(T)$;
3. Compute off-diagonal entries from $S T=T S$ Involves a denominator $t_{i i}-t_{j j}$: if it is 0 , we must work on blocks.

In the case of $A^{1 / 2}$, we can use $S^{2}=T$ to get the off-diagonal entries instead:

$$
s_{i i} s_{i j}+s_{i, i+1} s_{i+1, j}+\cdots+s_{i j} s_{j j}=t_{i j}
$$

Involves a denominator $s_{i i}+s_{j j}$: always invertible because $s_{i j}+s_{j j} \in R H P$.

C It's backward stable (not complicated to show it). (This is what Matlab uses, by the way.)

Newton method

Newton method on $X^{2}-A$:

$$
X_{k+1}=X_{k}-E, \quad \text { where } E \text { solves } E X_{k}+X_{k} E=X_{k}^{2}-A
$$

Much more expensive than the Schur method: we solve a Sylvster equation at each step (and this requires a Schur form).

Trick: If X_{0} commutes with A (for instance, taking $X_{0}=\alpha I$), then $E=\left(2 X_{0}\right)^{-1}\left(X_{0}^{2}-A\right)$ and E, X_{1} commute with A, too, \ldots

Resulting iteration:

(Modified) Newton iteration

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1} A\right), \quad X_{0}=\alpha I
$$

At each step, $X_{k} A=A X_{k}$.

Square root and sign

(Modified) Newton iteration

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1} A\right), \quad X_{0}=\alpha I
$$

Pre-multiply by $A^{-1 / 2}$, and use commutativity:
$A^{-1 / 2} X_{k+1}=\frac{1}{2}\left(A^{-1 / 2} X_{k}+\left(A^{-1 / 2} X_{k}\right)^{-1}\right), \quad A^{-1 / 2} X_{0}=\alpha A^{-1 / 2}$.
This is the sign iteration! $A^{-1 / 2} X_{k} \rightarrow \operatorname{sign}\left(A^{-1 / 2}\right)=I$. Hence,
$X_{k} \rightarrow A^{1 / 2}$, i.e., the modified Newton iteration converges (for each starting point $X_{0}=\alpha /$ with $\alpha>0$).

Local convergence

True Newton

$$
X_{k+1}=X_{k}-E, \quad \text { where } E \text { solves } E X_{k}+X_{k} E=X_{k}^{2}-A
$$

This is a Newton method, so it converges quadratically (locally).

Modified Newton

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1} A\right)
$$

The two iterations coincide, if $X_{0} A=A X_{0} \ldots$ in exact arithmetic! In practice, this property is lost numerically. We need to study the convergence of MN separately.

MN is the fixed-point iteration associated to $h(X)=\frac{1}{2}\left(X+X^{-1} A\right)$.

Local stability

Local stability of a fixed-point iteration depends on the eigenvalues of its Jacobian in the fixed-point.

The Jacobian / Fréchet derivative of $h(X)=\frac{1}{2}\left(X+X^{-1} A\right)$ is

$$
L_{h, X}(E)=\frac{1}{2}\left(E+X^{-1} E X^{-1} A\right)
$$

(use $(X+E)^{-1}-X^{-1}=(X+E)^{-1} E X^{-1}=X^{-1} E X^{-1}+o(\|E\|)$).
Hence $L_{h, A^{1 / 2}}=\frac{1}{2}\left(E+A^{-1 / 2} E A^{1 / 2}\right)$, or
$K_{h, A^{1 / 2}}=\frac{1}{2}\left(I+\left(A^{1 / 2}\right)^{T} \otimes A^{-1 / 2}\right)$.
It has eigenvalues $\frac{1}{2}+\frac{1}{2} \lambda_{i}^{1 / 2} \lambda_{j}^{-1 / 2}$, where λ_{i} are the eigenvalues of A.

It's easy to construct cases in which $L_{h, A^{1 / 2}}$ has eigenvalues with modulus >1, hence $A^{1 / 2}$ is an unstable fixed point of $h(X)$.

DB iteration

However, the stability properties are significantly different for slight variations of the modified Newton's method.

Setting $Y_{k}=A^{-1} X_{k}$, we can get

DB iteration [Denman-Beavers, '76]

$$
\begin{aligned}
& X_{k+1}=\frac{1}{2}\left(X_{k}+Y_{k}^{-1}\right) \\
& Y_{k+1}=\frac{1}{2}\left(Y_{k}+X_{k}^{-1}\right)
\end{aligned}
$$

This one satisfies $\lim \left(X_{k}, Y_{k}\right)=\left(A^{1 / 2}, A^{-1 / 2}\right)$, and it is locally stable.

Local stability of the DB iteration

We have

$$
L_{D B,(X, Y)}\left(\left[\begin{array}{l}
E \\
F
\end{array}\right]\right)=\frac{1}{2}\left[\begin{array}{l}
E-Y^{-1} F Y^{-1} \\
F-X^{-1} E X^{-1}
\end{array}\right]
$$

All $(X, Y)=\left(M, M^{-1}\right)$ are fixed points, and in these the Jacobian is idempotent, i.e., $\left(K_{D B,\left(B, B^{-1}\right)}\right)^{2}=K_{D B,\left(B, B^{-1}\right)}$.
This implies local stability (even if the eigenvalues are ± 1).
Other variants available [Higham book, Ch. 6].

