Functions of large-scale matrices

How do we compute $f(A)$ if A is large and sparse? Huge recent research topic.

Most of the time, one wants $f(A) b$ rather than $f(A)$, because $f(A)$ is full (unless there is special structure in $f(A)$, e.g., it's a banded matrix).
The main techniques are those we have seen in the beginning.

- Replace f with an approximating polynomial (or rational function) on a region U that includes the spectrum of A (how?).
- Contour integration.
- Ad-hoc methods, involving e.g. discretization of differential equations: for instance, $\exp (A) b=v(1)$ where $\dot{v}(t)=A v(t)$, $v(0)=b$.

Arnoldi for matrix functions

Another possibility with the "Swiss-army knife algorithm" for large matrices: Arnoldi.

Recap: Arnoldi iteration

- Constructs a "partial Hessenberg reduction", i.e., gives the leading columns $Q_{k}=Q(:, 1: k)$ of Q and the leading block $H_{k}=H(1: k, 1: k)$ of H such that $A=Q H Q^{*}$.
- Idea: (modified) Gram-Schmidt orthogonalization of $K_{k}(A, b)=\operatorname{span}\left(b, A b, \ldots, A^{k-1} b\right)$.
- Start from $q_{1}=b /\|b\|$; at each step j take $A q_{j}$ and orthogonalize it against all previous vectors q_{i}.
- $A Q_{k}=Q_{k} H_{k}+Q(:, k+1) H(k+1, k) e_{k}^{T}$

Arnoldi, matrix functions, and polynomial approximations

Arnoldi (with k steps) computes the action of A exactly on $K_{k-1}(A, b)$, i.e., all polynomials of degree $k-1$. In particular,

$$
p(A) b=Q_{k} p\left(H_{k}\right) e_{1} .
$$

Idea: let's compute $f(A) b \approx Q_{k} f\left(H_{k}\right) e_{1}$. This approximation is exact for polynomials of degree $\leq k-1$.

Moreover,

$$
Q_{k} f\left(H_{k}\right) e_{1}=Q_{k} p\left(H_{k}\right) e_{1}=p(A) b,
$$

where p is the interpolating polynomial on the spectrum of H_{k} (not that of $A!$)

Known behaviour from Arnoldi theory: for many matrices, the eigenvalues of H_{k} approximate the extremal eigenvalues of A.

Arnoldi variants

We expect good results if (1) enough steps are taken, and (2) the function f takes its larger values in the extremal eigenvalues of A.

What if f takes its larger values at some internal point of the spectrum of A, e.g., $f(x)=\frac{1}{x}$ and A has both positive and negative eigenvalues (or complex values not all in the same half-plane)?

Variants with better approximation spaces can be constructed, e.g., extended Krylov, i.e., Krylov on A and A^{-1} 'at the same time', or rational Krylov, which takes poles $\mu_{1}, \mu_{2}, \ldots, \mu_{k} \in \mathbb{C}$ as input and constructs a basis of

$$
\left\{\sum_{j=1}^{k} \alpha_{j}\left(A-\mu_{j}\right)^{-1} b: \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{C}\right\}
$$

i.e., all vectors of the form $r(A) b$, where $r(x)$ is a rational function with poles μ_{1}, \ldots, μ_{k}.

