Example: control theory

Control theory (important subject in engineering) is the study of
dynamical systems + controllers.

Example can we keep an ‘inverted pendulum’ in the upright
position by applying a steering force?

z , where 6 is the angle formed by the pendulum

(12 o' clock <+ 6 = 0).

State x(t) =
Free system equations:
. 9 X2 X2 0 1
0 mg sin x1 mgxy mg 0

The system is not stable: A = l”?g é] has one positive and one

negative eigenvalue.



Example: controlling an inverted pendulum

Now we apply an additional steering force u:
: 0
X=Ax+ Bu, B= 1l

Can we choose a control u(t) so that the system is stable? Yes —
even better: we can choose one of the form u(t) = Fx(t),
F € R1*2

l.e., we can literally build a contraption (engine + camera) that
sets the appropriate force according to the current state only
(feedback control). u = [fl fg} x gives

: 0 1
x=(A+ BF)x = lf1+mg f2] X.

Choosing f1, f, appropriately we can move the eigenvalues of
A + BF arbitrarily.



The general setup

X =Ax+Bu, AcR™" BecR™m

Can we always stabilize a system? No — counterexample:

A A _|B
A= [ 0 Al B= N
No matter what we choose, we cannot change the dynamics of the

second block of variables. If Ay, has eigenvalues outside the LHP,
there is nothing we can do.



Controllability / Stabilizability

This structure may be ‘hidden’ behind a change of basis, for
instance A «+ KAK~1, B + KB.

How do we check for it? Krylov spaces:

The pair (A, B) is called controllable if

span(B,AB,...,AB,...) =R".



Controllability

Definition
(A, B) € R™" x RP*M is controllable iff K(A, B) = R”, where

K(A, B) := span(B, AB, A’B,...).

Lemma

There exists a nonsingular M € R"*" such that

A A B
—1 _ |A11 A -1p_ |b1
M AM_[0 Aﬂ], M B_lol

(With A1l € Rnlxnl, A € Rn2><n2, B € Rnlxm, and np 7& 0) if
and only if (A, B) is not controllable.



Proof

= Partition M = {I\/Il M2:| conformably. Then,

Af1B1

kg _
AB—M[ 0

] = My A%, B1, so K(A, B) C Im M.

< Let the columns of M; be a basis of K(A, B), and complete it
to a nonsingular M = [I\/Il /\/12}. Then, M~1AM is block
triangular (because Mj is A-invariant), and M~1B has zeros in the
second block row (because the columns of B lie in Im M;).

(Linear algebra characterization: K(A, B) is the smallest
A-invariant subspace that contains B. It's the space @, that we
obtain after we encounter breakdown in Arnoldi.)



Kalman decomposition

Kalman decomposition

For every matrix pair (A, B) € R™" x R™ ™ there is a change of
basis M such that

A A B
—1 _ 11 12 —1p 1
e - e B

with (A11, B1) controllable.

Proof: as above: take M; such that its columns are a basis of the
‘controllable space’ K(A, B), then complete it to a basis of R".



Controllability Lyapunov equation

Let A be a stable matrix. (A, B) is controllable iff the solution of
AX + XA* + BB* =0
is positive definite.

Proof < suppose (A, B) is not controllable. Then, (up to a change

of basis, Kalman decomposition)
A1 Al | X O A;; 0 BB 0|
[ 0 Azj [ 0 o] + [A’{Z Al Tl o o T

where Xi1 solves A11X11 + XAE + B; Bf =0.

X1 0
0 O




= Suppose (A, B) is controllable. Then, for each v # 0, v*A¥B is
not zero for all k = v*e*tB is not zero for all t —>
Vi Xv = [v*ertBB*e? tvdt # 0.

Indeed, if v*exp(tA)B = 0 for all t, then v*B = 0 (taking t = 0),

1
lim —v*(exp(tA) — I)B = v*Ab =0,
t—0 t

1 1
lim t—2v*(exp(tA) — | —tA)B = v*§A2b =0,

t—0



Bass algorithm

Let & > p(A); then A+ al has eigenvalues in the RHP, and the
Lyapunov equation

(A+al)X + X(A+ al)* = 2BB*

has a solution X > 0.
By the previous lemma, X > 0 (indeed, K(A + al, B) = K(A, B)).
Then,

(A—BB*X )X + X(A - BB*X™1)* = —2aX,

which proves that A — B(B*X~1) has eigenvalues in the LHP.

(Actually, if (A, B) is controllable, we can find F such that A+ BF
has any chosen spectrum.)



Stabilizability

Weaker condition: sometimes even if a system is not controllable
we can still ensure it's stable via a feedback control.

Definition

(A, B) is stabilizable if in its Kalman decomposition Ay, is stable
(i.e., /\(Azz) - LHP)

Note that this definition is well-posed even if M is non-unique: the
eigenvalues of Ajp are the eigenvalues of A|k(a g), and those of
App are the remaining eigenvalues of A (counting with their
algebraic multiplicity).



