Example: control theory

Control theory (important subject in engineering) is the study of dynamical systems + controllers.

Example can we keep an 'inverted pendulum' in the upright position by applying a steering force?
State $x(t)=\left[\begin{array}{l}\theta \\ \dot{\theta}\end{array}\right]$, where θ is the angle formed by the pendulum (12 o' clock $\leftrightarrow \theta=0$).

Free system equations:

$$
\dot{x}=\left[\begin{array}{l}
\dot{\theta} \\
\ddot{\theta}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
m g \sin x_{1}
\end{array}\right] \approx\left[\begin{array}{c}
x_{2} \\
m g x_{1}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
m g & 0
\end{array}\right] x .
$$

The system is not stable: $A=\left[\begin{array}{cc}0 & 1 \\ m g & 0\end{array}\right]$ has one positive and one negative eigenvalue.

Example: controlling an inverted pendulum

Now we apply an additional steering force u :

$$
\dot{x}=A x+B u, \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Can we choose a control $u(t)$ so that the system is stable? Yes even better: we can choose one of the form $u(t)=F_{x}(t)$,
$F \in \mathbb{R}^{1 \times 2}$
I.e., we can literally build a contraption (engine + camera) that sets the appropriate force according to the current state only (feedback control). $u=\left[\begin{array}{ll}f_{1} & f_{2}\end{array}\right] \times$ gives

$$
\dot{x}=(A+B F) x=\left[\begin{array}{cc}
0 & 1 \\
f_{1}+m g & f_{2}
\end{array}\right] x .
$$

Choosing f_{1}, f_{2} appropriately we can move the eigenvalues of $A+B F$ arbitrarily.

The general setup

$$
\dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} .
$$

Can we always stabilize a system? No - counterexample:

$$
A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] .
$$

No matter what we choose, we cannot change the dynamics of the second block of variables. If A_{22} has eigenvalues outside the LHP, there is nothing we can do.

Controllability / Stabilizability

This structure may be 'hidden' behind a change of basis, for instance $A \leftarrow K A K^{-1}, B \leftarrow K B$.

How do we check for it? Krylov spaces:

The pair (A, B) is called controllable if

$$
\operatorname{span}\left(B, A B, \ldots, A^{k} B, \ldots\right)=\mathbb{R}^{n}
$$

Controllability

Definition

$(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$ is controllable iff $K(A, B)=\mathbb{R}^{n}$, where

$$
K(A, B):=\operatorname{span}\left(B, A B, A^{2} B, \ldots\right)
$$

Lemma

There exists a nonsingular $M \in \mathbb{R}^{n \times n}$ such that

$$
M^{-1} A M=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right], \quad M^{-1} B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

(with $A_{11} \in \mathbb{R}^{n_{1} \times n_{1}}, A_{22} \in \mathbb{R}^{n_{2} \times n_{2}}, B_{1} \in \mathbb{R}^{n_{1} \times m}$, and $n_{2} \neq 0$) if and only if (A, B) is not controllable.

Proof

\Rightarrow Partition $M=\left[\begin{array}{ll}M_{1} & M_{2}\end{array}\right]$ conformably. Then,
$A^{k} B=M\left[\begin{array}{c}A_{11}^{k} B_{1} \\ 0\end{array}\right]=M_{1} A_{11}^{k} B_{1}$, so $K(A, B) \subseteq \operatorname{Im} M_{1}$.
\Leftarrow Let the columns of M_{1} be a basis of $K(A, B)$, and complete it to a nonsingular $M=\left[\begin{array}{ll}M_{1} & M_{2}\end{array}\right]$. Then, $M^{-1} A M$ is block triangular (because M_{1} is A-invariant), and $M^{-1} B$ has zeros in the second block row (because the columns of B lie in $\operatorname{Im} M_{1}$).
(Linear algebra characterization: $K(A, B)$ is the smallest A-invariant subspace that contains B. It's the space Q_{n} that we obtain after we encounter breakdown in Arnoldi.)

Kalman decomposition

Kalman decomposition

For every matrix pair $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$, there is a change of basis M such that

$$
M^{-1} A M=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right], \quad M^{-1} B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

with $\left(A_{11}, B_{1}\right)$ controllable.
Proof: as above: take M_{1} such that its columns are a basis of the 'controllable space' $K(A, B)$, then complete it to a basis of \mathbb{R}^{n}.

Controllability Lyapunov equation

Let A be a stable matrix. (A, B) is controllable iff the solution of

$$
A X+X A^{*}+B B^{*}=0
$$

is positive definite.
Proof \Leftarrow suppose (A, B) is not controllable. Then, (up to a change of basis, Kalman decomposition)

$$
\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{cc}
X_{11} & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
X_{11} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
A_{11}^{*} & 0 \\
A_{12}^{*} & A_{22}^{*}
\end{array}\right]+\left[\begin{array}{cc}
B_{1} B_{1}^{*} & 0 \\
0 & 0
\end{array}\right]=0
$$

where X_{11} solves $A_{11} X_{11}+X A_{11}^{*}+B_{1} B_{1}^{*}=0$.
\Rightarrow Suppose (A, B) is controllable. Then, for each $v \neq 0, v^{*} A^{k} B$ is not zero for all $k \Longrightarrow v^{*} e^{A t} B$ is not zero for all $t \Longrightarrow$ $v^{*} X v=\int v^{*} e^{A t} B B^{*} e^{A^{*} t} v d t \neq 0$. Indeed, if $v^{*} \exp (t A) B=0$ for all t, then $v^{*} B=0($ taking $t=0)$,

$$
\begin{gathered}
\lim _{t \rightarrow 0} \frac{1}{t} v^{*}(\exp (t A)-I) B=v^{*} A b=0 \\
\lim _{t \rightarrow 0} \frac{1}{t^{2}} v^{*}(\exp (t A)-I-t A) B=v^{*} \frac{1}{2} A^{2} b=0
\end{gathered}
$$

Bass algorithm

Let $\alpha>\rho(A)$; then $A+\alpha l$ has eigenvalues in the RHP, and the Lyapunov equation

$$
(A+\alpha I) X+X(A+\alpha I)^{*}=2 B B^{*}
$$

has a solution $X \succeq 0$.
By the previous lemma, $X \succ 0$ (indeed, $K(A+\alpha I, B)=K(A, B)$).
Then,

$$
\left(A-B B^{*} X^{-1}\right) X+X\left(A-B B^{*} X^{-1}\right)^{*}=-2 \alpha X
$$

which proves that $A-B\left(B^{*} X^{-1}\right)$ has eigenvalues in the LHP.
(Actually, if (A, B) is controllable, we can find F such that $A+B F$ has any chosen spectrum.)

Stabilizability

Weaker condition: sometimes even if a system is not controllable we can still ensure it's stable via a feedback control.

Definition

(A, B) is stabilizable if in its Kalman decomposition A_{22} is stable (i.e., $\Lambda\left(A_{22}\right) \subseteq L H P$).

Note that this definition is well-posed even if M is non-unique: the eigenvalues of A_{11} are the eigenvalues of $\left.A\right|_{K(A, B)}$, and those of A_{22} are the remaining eigenvalues of A (counting with their algebraic multiplicity).

