
Example: control theory
Control theory (important subject in engineering) is the study of
dynamical systems + controllers.

Example can we keep an ‘inverted pendulum’ in the upright
position by applying a steering force?

State x(t) =
[
θ

θ̇

]
, where θ is the angle formed by the pendulum

(12 o’ clock ↔ θ = 0).

Free system equations:

ẋ =
[
θ̇

θ̈

]
=

[
x2

mg sin x1

]
≈

[
x2

mgx1

]
=

[
0 1

mg 0

]
x .

The system is not stable: A =
[
0 1

mg 0

]
has one positive and one

negative eigenvalue.



Example: controlling an inverted pendulum
Now we apply an additional steering force u:

ẋ = Ax + Bu, B =
[
0
1

]
.

Can we choose a control u(t) so that the system is stable? Yes —
even better: we can choose one of the form u(t) = Fx(t),
F ∈ R1×2

I.e., we can literally build a contraption (engine + camera) that
sets the appropriate force according to the current state only
(feedback control). u =

[
f1 f2

]
x gives

ẋ = (A + BF )x =
[

0 1
f1 + mg f2

]
x .

Choosing f1, f2 appropriately we can move the eigenvalues of
A + BF arbitrarily.



The general setup

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m.

Can we always stabilize a system? No — counterexample:

A =
[
A11 A12
0 A22

]
, B =

[
B1
0

]
.

No matter what we choose, we cannot change the dynamics of the
second block of variables. If A22 has eigenvalues outside the LHP,
there is nothing we can do.



Controllability / Stabilizability
This structure may be ‘hidden’ behind a change of basis, for
instance A← KAK−1,B ← KB.

How do we check for it? Krylov spaces:

The pair (A,B) is called controllable if

span(B,AB, . . . ,AkB, . . . ) = Rn.



Controllability

Definition
(A,B) ∈ Rn×n × Rn×m is controllable iff K (A,B) = Rn, where

K (A,B) := span(B,AB,A2B, . . . ).

Lemma
There exists a nonsingular M ∈ Rn×n such that

M−1AM =
[
A11 A12
0 A22

]
, M−1B =

[
B1
0

]

(with A11 ∈ Rn1×n1 , A22 ∈ Rn2×n2 , B1 ∈ Rn1×m, and n2 6= 0) if
and only if (A,B) is not controllable.



Proof
⇒ Partition M =

[
M1 M2

]
conformably. Then,

AkB = M
[
Ak

11B1
0

]
= M1Ak

11B1, so K (A,B) ⊆ Im M1.

⇐ Let the columns of M1 be a basis of K (A,B), and complete it
to a nonsingular M =

[
M1 M2

]
. Then, M−1AM is block

triangular (because M1 is A-invariant), and M−1B has zeros in the
second block row (because the columns of B lie in Im M1).

(Linear algebra characterization: K (A,B) is the smallest
A-invariant subspace that contains B. It’s the space Qn that we
obtain after we encounter breakdown in Arnoldi.)



Kalman decomposition

Kalman decomposition
For every matrix pair (A,B) ∈ Rn×n × Rn×m, there is a change of
basis M such that

M−1AM =
[
A11 A12
0 A22

]
, M−1B =

[
B1
0

]
,

with (A11,B1) controllable.

Proof: as above: take M1 such that its columns are a basis of the
‘controllable space’ K (A,B), then complete it to a basis of Rn.



Controllability Lyapunov equation

Let A be a stable matrix. (A,B) is controllable iff the solution of

AX + XA∗ + BB∗ = 0

is positive definite.

Proof ⇐ suppose (A,B) is not controllable. Then, (up to a change
of basis, Kalman decomposition)[

A11 A12
0 A22

] [
X11 0
0 0

]
+

[
X11 0
0 0

] [
A∗11 0
A∗12 A∗22

]
+

[
B1B∗1 0
0 0

]
= 0.

where X11 solves A11X11 + XA∗11 + B1B∗1 = 0.



⇒ Suppose (A,B) is controllable. Then, for each v 6= 0, v∗AkB is
not zero for all k =⇒ v∗eAtB is not zero for all t =⇒
v∗Xv =

∫
v∗eAtBB∗eA∗tvdt 6= 0.

Indeed, if v∗ exp(tA)B = 0 for all t, then v∗B = 0 (taking t = 0),

lim
t→0

1
t v∗(exp(tA)− I)B = v∗Ab = 0,

lim
t→0

1
t2 v∗(exp(tA)− I − tA)B = v∗ 12A2b = 0,

...



Bass algorithm
Let α > ρ(A); then A + αI has eigenvalues in the RHP, and the
Lyapunov equation

(A + αI)X + X (A + αI)∗ = 2BB∗

has a solution X � 0.

By the previous lemma, X � 0 (indeed, K (A + αI,B) = K (A,B)).

Then,

(A− BB∗X−1)X + X (A− BB∗X−1)∗ = −2αX ,

which proves that A− B(B∗X−1) has eigenvalues in the LHP.

(Actually, if (A,B) is controllable, we can find F such that A + BF
has any chosen spectrum.)



Stabilizability
Weaker condition: sometimes even if a system is not controllable
we can still ensure it’s stable via a feedback control.
Definition
(A,B) is stabilizable if in its Kalman decomposition A22 is stable
(i.e., Λ(A22) ⊆ LHP).

Note that this definition is well-posed even if M is non-unique: the
eigenvalues of A11 are the eigenvalues of A|K(A,B), and those of
A22 are the remaining eigenvalues of A (counting with their
algebraic multiplicity).


