Recap: control theory

Study of linear systems of ODEs with control functions $u(t)$

$$
\dot{x}(t)=A x(t)+B u(t),
$$

$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$.
Goal: choose a feedback control $u(t)=F x(t)$ such that the closed-loop system $\dot{x}(t)=(A+B F) x(t)$ is stable, ie., $\operatorname{eig}(A+B F) \subseteq L H P$.
Always solvable? No: counterexample:

$$
\hat{A}=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right], \quad \hat{B}=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] \cdot \stackrel{\rightharpoonup}{X}_{2}=A_{22} \dot{\dot{x}}+O \cdot 4
$$

May be hidden behind a change of basis for the state variable,

$$
M y=\underline{x}
$$

$$
\dot{x}=A x+B u
$$

$$
A=M \hat{A} M^{-1}, \quad B=M \hat{B} . \quad \hat{y}=\hat{A} y+\hat{B} n
$$

Controllability
The pair (A, B) is called controllable if one of the following (equivalent) conditions holds:

- No invertible M gives $M^{-1} A M=\left[\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right], M^{-1} B=\left[\begin{array}{c}B_{1} \\ 0\end{array}\right]$.
- $K(A, B)=\operatorname{span}\left(B, A B, \ldots, A^{n-1} B\right)=\mathbb{R}^{n}$
- The Lyapunov equation $A X+X A^{*}+\underline{B B^{*}}=0$ has solution $x \succ 0$. \quad se jig $(A) \leq L H S)$

$$
x=\int_{0}^{\infty} \underbrace{\exp (A t) B B^{*} \exp \left(A^{*} t\right) d t}
$$

$$
x \geqslant 0 \quad x>0
$$

$\operatorname{renk}[S I-A, B]=n$ per sari $s \in \mathbb{C}$

Controllability: further conditions

Further equivalent conditions:
$-\left[\begin{array}{cc}A-s l & B\end{array}\right] \in \mathbb{R}^{n \times(n+1)}$ has full rank n for all $s \in \mathbb{C}$.
Proof: only nontrivial case when s is an eigenvalue of A.
Controllable iff $u^{*} B \neq 0$ for each left eigenvector u of A.
And the following ones which we don't prove here.
\checkmark For any $t>0$ and $\hat{x} \in \mathbb{R}^{n}$, one can choose the control function \underline{u} so that $x(t)=\hat{x}$.
$\Rightarrow \begin{aligned} & \text { One can choose } F \text { so that eig(} \underline{A+B F)} \text { is any prescribed set } \\ & \text { of } n \text { eigenvalues. }\end{aligned}$

$$
\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & 1 & \\
\\
& & 1 & \\
x \times x>x & 1 \\
& & M^{-1} B
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

Bass algorithm

We just show an easier trick: if (A, B) is controllable, compute a stabilizing control.

Let $\alpha>\rho(A)$; then $A+\alpha l$ has eigenvalues in the RHP, and the Lyapunov equation

$$
(A+\alpha I) X+X(A+\alpha I)^{*}=2 B B^{*}
$$

has a solution $X \succeq 0$.
By the previous lemma, $X \succ 0$ (note $K(A+\alpha I, B)=K(A, B)$).
Then,

$$
\left(A-B B^{*} X^{-1}\right) X+X\left(A-B B^{*} X^{-1}\right)^{*}=-2 \alpha X
$$

which proves that $A-B\left(B^{*} X^{-1}\right)$ has eigenvalues in the LHP.

Kalman decomposition

Kalman decomposition

For every matrix pair $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$, there is a change of basis M such that

$$
M^{-1} A M=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right], \quad M^{-1} B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

with $\left(A_{11}, B_{1}\right)$ controllable.
Proof: as above: take M_{1} such that its columns are a basis of the 'controllable space' $K(A, B)$, then complete it to a basis of \mathbb{R}^{n}.

Stabilizability

Weaker condition: sometimes even if a system is not controllable we can still ensure it's stable via a feedback control.

Definition

(A, B) is stabilizable if in its Kalman decomposition A_{22} is stable (i.e., $\Lambda\left(A_{22}\right) \subseteq L H P$).

Note that this definition is well-posed even if M is non-unique: the eigenvalues of A_{11} are the eigenvalues of $\left.A\right|_{K(A, B)}$, and those of A_{22} are the remaining eigenvalues of A (counting with their algebraic multiplicity).
(A, B) stabilizable iff rank $\left[\begin{array}{ll}A-s l & B\end{array}\right]=n$ for all $s \notin L H P$.

