
Optimal control
Several choices available for stabilizing feedback F : for instance,
you can choose different α’s in Bass algorithm.

Is there an ‘optimal’ one?

Linear-quadratic optimal control
Find u : [0,∞]→ R (piecewise C0, let’s say) that minimizes

E =
∫ ∞

0
x∗Qx + u∗Ru dt

s.t. ẋ = Ax + Bu, x(0) = x0.

Minimum ‘energy’ defined by a quadratic form (R � 0, Q � 0).

We assume R � 0: control is never free. Trickier problem
otherwise.



Optimal control — solution
Using calculus of variations tools, one can prove this result.

Pontryagin’s maximum principle
A pair of functions u, x solves the optimal control problem iff there
exists a function µ(t) (‘Lagrange multiplier’) such that 0 I 0
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Structure of the problem
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Pencils λE − A with A = AT , E = −ET are called even.

Eigenvalue pairing: if (λE − A)v = 0, then vT (−λE − A) = 0,
and −λ is an eigenvalue, too.
(With some more work, one can prove that the same holds for
Jordan chains, so the two eigenvalues have the same multiplicity.)

On a problem with matrices in Rn, eigenvalues usually come in
quadruples (λ, λ,−λ,−λ). They may be degenerate if λ is real or
pure imaginary.



The eigenvalues
If R � 0, row/column operations give

λE − A ∼ λ

 0 I 0
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This shows that λE − A has m simple eigenvalues at ∞, plus 2n
finite eigenvalues (with multiplicity): those of[

I
−I

]−1 [
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AT Q

]
.



Change of variables
The same idea, recast as a change of variables on the equations:
µ, x , u solve  0 I 0
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iff u = −R−1BTµ and µ, x solve[
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]
=
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]
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, G = BR−1BT .



Solving the reduced problem
Suppose that:
I H has n eigenvalues in the LHP and n in the RHP. (Recall: H

has “even eigensymmetry”).

I we find X such that
[

I
X

]
spans the stable (eigenvalues

∈ LHP) invariant subspace of H, i.e., H
[

I
X

]
=
[

I
X

]
R.

Then, the stable solutions of[
ẋ
µ̇

]
= H

[
x
µ

]
are given by [

x(t)
µ(t)

]
=
[

I
X

]
exp(Rt)v .

The initial condition x(0) = x0 gives v = x0. Moreover,
µ(t) = Xx(t), hence u(t) = −R−1BT Xx(t).



Algebraic Riccati equations

We have reduced the problem to H
[

I
X

]
=
[

I
X

]
R, or

[
A −G
−Q −AT

] [
I
X

]
=
[

I
X

]
R

R = A− GX , −Q − AT X = XA− XGX .

AT X + XA + Q − XGX = 0, Q � 0, G � 0

is called algebraic Riccati equation.

We look for a stabilizing solution, i.e., Λ(R) ⊆ LHP.
(Note that Λ(R) ⊂ Λ(H).)

Next goal: show that we can do what we claimed in the previous
slide.



Solvability conditions
Solutions of (ARE) ⇐⇒ n-dimensional invariant subspaces of H
with invertible top block.

If H has distinct eigenvalues, there are at most
(2n

n
)
solutions

(choose n eigenvalues out of the 2n. . . )

Does it have a (unique) stabilizing solution? H Must have
(exactly) n eigenvalues in the LHP, and the associated invariant

subspace must be expressible as Im
[

I
X

]
.



Hamiltonian matrices

H =
[

A −G
−Q −A∗

]
, Q = Q∗, G = G∗

is a Hamiltonian matrix, i.e., it satisfies JH = −H∗J , where

J =
[

I
−I

]
.

(Skew-self-adjoint with respect to the antisymmetric scalar product
defined by J .)

If Hv = λv , then (v∗J)H = (−λ)(v∗J): eigenvalues have ‘even
symmetry’, and the right eigenvector relative to λ is related to the
left one relative to −λ.

A similar relation can be proved for Jordan chains: λ and −λ have
Jordan chains of the same size.



Solvability conditions

Theorem
Assume Q � 0, and (A,B) stabilizable. Then, H has no
eigenvalues with Reλ = 0.

(Q � 0 can be weakened to Q � 0 and (A∗,Q∗) stabilizable.)
Proof (sketch)
Suppose instead H[ z1z2 ] = ıω[ z1z2 ]; from
0 = Re[ z∗

2 z∗
1 ]
[

A −G
−Q −A∗

]
[ z1z2 ] = z∗2 Gz2 + z∗1 Qz1 follows that z1 = 0,

z∗2 B = 0. But the latter together with −A∗z2 = −ıωz2 contradicts
stabilizability.

Hence, H has n eigenvalues in the LHP and n associated ones in
the RHP: it has exactly one stabilizing subspace.



Form of the invariant subspace

We know now that there exist U1,U2 ∈ Rn×n such that
[
U1
U2

]
spans the stable invariant subspace.
Moreover,

[
U∗1 U∗2

]
J =

[
U∗2 −U∗1

]
spans the left anti-stable

invariant subspace.

Left and right invariant subspaces relative to disjoint eigenvectors
are orthogonal =⇒

0 =
[
U∗2 −U∗1

] [U1
U2

]
= U∗2 U1 − U∗1 U2.

We’d like to show that U1 is invertible. Then (up to changing basis

in
[
U1
U2

]
) we can take U1 = I, U2 = X = X ∗.



Nonsingularity of U1

Suppose (A,B) stabilizable, Q � 0, G � 0. Then U1 is invertible.

We’d like to show that U1 is nonsingular. Suppose otherwise
U1v = 0, U2v 6= 0. Then,

−v∗U∗2 GU2v =
[
v∗U∗2 0

]
H
[

0
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]
= v∗

[
U∗2 −U∗1

] [U1
U2

]
Rv = 0.

implies B∗U2v = 0 and GU2v = 0. The first block row of[
A −G
−Q −A∗

] [
U1
U2

]
=
[
U1
U2

]
R

gives U1Rv = 0 =⇒ ker U1 is R-invariant; so we can find x ,
λ ∈ LHP such that U1x = 0, Rx = λx . Now the second block row
gives −A∗U2x = λU2x . This (together with B∗U2x = 0 from
above) contradicts stabilizability.



How to solve Riccati equations
I Newton’s method.
I Invariant subspace via unstructured methods (QR).
I Invariant subspace via ‘semi-structured’ methods (Laub trick).
I Invariant subspace via structured methods (URV).
I Doubling / Sign iteration.


