Optimal control

Several choices available for stabilizing feedback F : for instance, you can choose different α 's in Bass algorithm.

Is there an 'optimal' one?

Linear-quadratic optimal control

Find $u:[0, \infty] \rightarrow \mathbb{R}$ (piecewise C^{0}, let's say) that minimizes

$$
\begin{gathered}
E=\int_{0}^{\infty} x^{*} Q x+u^{*} R u d t \\
\text { s.t. } \dot{x}=A x+B u, x(0)=x_{0} .
\end{gathered}
$$

Minimum 'energy' defined by a quadratic form $(R \succeq 0, Q \succeq 0)$.
We assume $R \succ 0$: control is never free. Trickier problem otherwise.

Optimal control - solution

Using calculus of variations tools, one can prove this result.

Pontryagin's maximum principle

A pair of functions u, x solves the optimal control problem iff there exists a function $\mu(t)$ ('Lagrange multiplier') such that

$$
\left[\begin{array}{ccc}
0 & l & 0 \\
-l & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{\mu} \\
\dot{x} \\
\dot{u}
\end{array}\right]=\left[\begin{array}{ccc}
0 & A & B \\
A^{T} & Q & 0 \\
B^{T} & 0 & R
\end{array}\right]\left[\begin{array}{c}
\mu \\
x \\
u
\end{array}\right],
$$

$x(0)=x_{0}, \lim _{t \rightarrow \infty}\left[\begin{array}{c}\mu \\ x \\ u\end{array}\right]=0$.

Structure of the problem

$$
\mathcal{E}\left[\begin{array}{c}
\dot{\mu} \\
\dot{x} \\
\dot{u}
\end{array}\right]=\mathcal{A}\left[\begin{array}{l}
\mu \\
x \\
u
\end{array}\right], \quad \mathcal{A}=\left[\begin{array}{ccc}
0 & A & B \\
A^{T} & Q & 0 \\
B^{T} & 0 & R
\end{array}\right], \mathcal{E}=\left[\begin{array}{ccc}
0 & I & 0 \\
-l & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Pencils $\lambda \mathcal{E}-\mathcal{A}$ with $\mathcal{A}=\mathcal{A}^{T}, \mathcal{E}=-\mathcal{E}^{T}$ are called even.
Eigenvalue pairing: if $(\lambda \mathcal{E}-\mathcal{A}) v=0$, then $v^{\top}(-\bar{\lambda} \mathcal{E}-\mathcal{A})=0$, and $-\bar{\lambda}$ is an eigenvalue, too.
(With some more work, one can prove that the same holds for Jordan chains, so the two eigenvalues have the same multiplicity.)

On a problem with matrices in \mathbb{R}^{n}, eigenvalues usually come in quadruples $(\lambda, \bar{\lambda},-\lambda,-\bar{\lambda})$. They may be degenerate if λ is real or pure imaginary.

The eigenvalues

If $R \succ 0$, row/column operations give

$$
\lambda \mathcal{E}-\mathcal{A} \sim \lambda\left[\begin{array}{ccc}
0 & I & 0 \\
-I & 0 & 0 \\
0 & 0 & 0
\end{array}\right]-\left[\begin{array}{ccc}
-B R^{-1} B^{T} & A & 0 \\
A^{T} & Q & 0 \\
0 & 0 & I
\end{array}\right]
$$

This shows that $\lambda \mathcal{E}-\mathcal{A}$ has m simple eigenvalues at ∞, plus $2 n$ finite eigenvalues (with multiplicity): those of

$$
\left[\begin{array}{cc}
& I \\
-I &]^{-1}\left[\begin{array}{cc}
-B R^{-1} B^{T} & A \\
A^{T} & Q
\end{array}\right]
\end{array}\right.
$$

Change of variables

The same idea, recast as a change of variables on the equations: μ, x, u solve

$$
\left[\begin{array}{ccc}
0 & l & 0 \\
-l & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{\mu} \\
\dot{x} \\
\dot{u}
\end{array}\right]=\left[\begin{array}{ccc}
0 & A & B \\
A^{T} & Q & 0 \\
B^{T} & 0 & R
\end{array}\right]\left[\begin{array}{l}
\mu \\
x \\
u
\end{array}\right]
$$

iff $u=-R^{-1} B^{T} \mu$ and μ, x solve

$$
\left[\begin{array}{cc}
& I \\
-I &
\end{array}\right]\left[\begin{array}{c}
\dot{\mu} \\
\dot{x}
\end{array}\right]=\left[\begin{array}{cc}
-B R^{-1} B^{T} & A \\
A^{T} & Q
\end{array}\right]\left[\begin{array}{c}
\mu \\
x
\end{array}\right]
$$

or

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{\mu}
\end{array}\right]=\mathcal{H}\left[\begin{array}{l}
x \\
\mu
\end{array}\right], \quad \mathcal{H}=\left[\begin{array}{cc}
A & -G \\
-Q & -A^{T}
\end{array}\right], \quad G=B R^{-1} B^{T} .
$$

Solving the reduced problem

Suppose that:

- \mathcal{H} has n eigenvalues in the LHP and n in the RHP. (Recall: \mathcal{H} has "even eigensymmetry").
- we find X such that $\left[\begin{array}{c}I \\ X\end{array}\right]$ spans the stable (eigenvalues $\in L H P)$ invariant subspace of \mathcal{H}, i.e., $\mathcal{H}\left[\begin{array}{l}I \\ X\end{array}\right]=\left[\begin{array}{l}I \\ X\end{array}\right] \mathcal{R}$.
Then, the stable solutions of

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{\mu}
\end{array}\right]=\mathcal{H}\left[\begin{array}{l}
x \\
\mu
\end{array}\right]
$$

are given by

$$
\left[\begin{array}{l}
x(t) \\
\mu(t)
\end{array}\right]=\left[\begin{array}{c}
\prime \\
X
\end{array}\right] \exp (\mathcal{R} t) v .
$$

The initial condition $x(0)=x_{0}$ gives $v=x_{0}$. Moreover, $\mu(t)=X x(t)$, hence $u(t)=-R^{-1} B^{T} X x(t)$.

Algebraic Riccati equations

We have reduced the problem to $\mathcal{H}\left[\begin{array}{l}I \\ X\end{array}\right]=\left[\begin{array}{l}I \\ X\end{array}\right] \mathcal{R}$, or

$$
\begin{gathered}
{\left[\begin{array}{cc}
A & -G \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{c}
I \\
X
\end{array}\right] \mathcal{R}} \\
\mathcal{R}=A-G X, \quad-Q-A^{T} X=X A-X G X .
\end{gathered}
$$

$$
A^{T} X+X A+Q-X G X=0, \quad Q \succeq 0, G \succeq 0
$$

is called algebraic Riccati equation.
We look for a stabilizing solution, i.e., $\Lambda(\mathcal{R}) \subseteq L H P$.
(Note that $\Lambda(\mathcal{R}) \subset \Lambda(\mathcal{H})$.)
Next goal: show that we can do what we claimed in the previous slide.

Solvability conditions

Solutions of $($ ARE $) \Longleftrightarrow n$-dimensional invariant subspaces of \mathcal{H} with invertible top block.
If \mathcal{H} has distinct eigenvalues, there are at most $\binom{2 n}{n}$ solutions (choose n eigenvalues out of the $2 n \ldots$...)

Does it have a (unique) stabilizing solution? \mathcal{H} Must have (exactly) n eigenvalues in the LHP, and the associated invariant subspace must be expressible as $\operatorname{Im}\left[\begin{array}{l}I \\ X\end{array}\right]$.

Hamiltonian matrices

$$
\mathcal{H}=\left[\begin{array}{cc}
A & -G \\
-Q & -A^{*}
\end{array}\right], \quad Q=Q^{*}, G=G^{*}
$$

is a Hamiltonian matrix, i.e., it satisfies $J \mathcal{H}=-\mathcal{H}^{*} J$, where
$J=\left[\begin{array}{ll} & I \\ -I & \end{array}\right]$.
(Skew-self-adjoint with respect to the antisymmetric scalar product defined by J.)

If $\mathcal{H} v=\lambda v$, then $\left(v^{*} J\right) \mathcal{H}=(-\bar{\lambda})\left(v^{*} J\right)$: eigenvalues have 'even symmetry', and the right eigenvector relative to λ is related to the left one relative to $-\bar{\lambda}$.

A similar relation can be proved for Jordan chains: λ and $-\bar{\lambda}$ have Jordan chains of the same size.

Solvability conditions

Theorem

Assume $Q \succ 0$, and (A, B) stabilizable. Then, \mathcal{H} has no eigenvalues with $\operatorname{Re} \lambda=0$.
($Q \succ 0$ can be weakened to $Q \succeq 0$ and $\left(A^{*}, Q^{*}\right)$ stabilizable.)
Proof (sketch)
Suppose instead $\mathcal{H}\left[\begin{array}{c}z_{1} \\ z_{2}\end{array}\right]=\omega \omega\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]$; from
$0=\operatorname{Re}\left[z_{2}^{*} z_{1}^{*}\right]\left[\begin{array}{cc}A & -G \\ -Q & -A^{*}\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]=z_{2}^{*} G z_{2}+z_{1}^{*} Q z_{1}$ follows that $z_{1}=0$, $z_{2}^{*} B=0$. But the latter together with $-A^{*} z_{2}=-\imath \omega z_{2}$ contradicts stabilizability.

Hence, \mathcal{H} has n eigenvalues in the LHP and n associated ones in the RHP: it has exactly one stabilizing subspace.

Form of the invariant subspace

We know now that there exist $U_{1}, U_{2} \in \mathbb{R}^{n \times n}$ such that $\left[\begin{array}{l}U_{1} \\ U_{2}\end{array}\right]$ spans the stable invariant subspace.
Moreover, $\left[\begin{array}{ll}U_{1}^{*} & U_{2}^{*}\end{array}\right] J=\left[\begin{array}{ll}U_{2}^{*} & -U_{1}^{*}\end{array}\right]$ spans the left anti-stable invariant subspace.

Left and right invariant subspaces relative to disjoint eigenvectors are orthogonal \Longrightarrow

$$
0=\left[\begin{array}{ll}
U_{2}^{*} & -U_{1}^{*}
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right]=U_{2}^{*} U_{1}-U_{1}^{*} U_{2}
$$

We'd like to show that U_{1} is invertible. Then (up to changing basis in $\left[\begin{array}{l}U_{1} \\ U_{2}\end{array}\right]$) we can take $U_{1}=I, U_{2}=X=X^{*}$.

Nonsingularity of U_{1}

Suppose (A, B) stabilizable, $Q \succeq 0, G \succeq 0$. Then U_{1} is invertible.
We'd like to show that U_{1} is nonsingular. Suppose otherwise $U_{1} v=0, U_{2} v \neq 0$. Then,
$-v^{*} U_{2}^{*} G U_{2} v=\left[\begin{array}{ll}v^{*} U_{2}^{*} & 0\end{array}\right] \mathcal{H}\left[\begin{array}{c}0 \\ U_{2} v\end{array}\right]=v^{*}\left[\begin{array}{ll}U_{2}^{*} & -U_{1}^{*}\end{array}\right]\left[\begin{array}{l}U_{1} \\ U_{2}\end{array}\right] \mathcal{R} v=0$. implies $B^{*} U_{2} v=0$ and $G U_{2} v=0$. The first block row of

$$
\left[\begin{array}{cc}
A & -G \\
-Q & -A^{*}
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right]=\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] \mathcal{R}
$$

gives $U_{1} \mathcal{R} v=0 \Longrightarrow \operatorname{ker} U_{1}$ is \mathcal{R}-invariant; so we can find x, $\lambda \in L H P$ such that $U_{1} x=0, \mathcal{R} x=\lambda x$. Now the second block row gives $-A^{*} U_{2} x=\lambda U_{2} x$. This (together with $B^{*} U_{2} x=0$ from above) contradicts stabilizability.

How to solve Riccati equations

- Newton's method.
- Invariant subspace via unstructured methods (QR).
- Invariant subspace via 'semi-structured' methods (Laub trick).
- Invariant subspace via structured methods (URV).
- Doubling / Sign iteration.

