
Invariant subspace methods for CAREs
X solves CARE A∗X + XA + Q = XGX iff[

A −G
−Q −AT

] [
I
X

]
=

[
I
X

]
R, R = A− GX .

One can find X through an invariant subspace of the Hamiltonian.

>> [A,G,Q] = carex(4) %if test suite is installed
>> n = length(A);
>> H = [A -G; -Q -A’];
>> [U, T] = schur(H);
>> [U, T] =ordschur(U, T, ’lhp’);
>> X = U(n+1:2*n, 1:n) / U(1:n, 1:n);

People are not satisfied with this method though — it is not
structured backward stable.

Eigenvalues close to the imaginary axis can be ‘mixed up’ — try
carex(14) for instance.



Symplectic transformations
Ideal setting: make transformations at each step that are
orthogonal and symplectic, i.e., orthogonal w.r.t the scalar product

J =
[
0 I
−I 0

]
: they satisfy ST JS = J .

For instance:
I If Q ∈ Rn×n is any orthogonal matrix, then blkdiag(Q, Q) is

orthogonal and symplectic.
I A Givens matrix that acts on entries k and n + k (i.e.,

G = eye(2*n); G([k,n+k], [k,n+k]) = [c s; -s c];)
is orthogonal and symplectic.



Laub trick: let U =
[
U1 U3
U2 U4

]
the unitary matrix produced by

schur(H). Then,
[

U1
U2

]
is an orthogonal matrix that spans the

stable subspace. We know that −J
[

U1
U2

]
=

[
U2

−U1

]
is orthogonal to

it (and spans the left unstable invariant subspace).

It turns out that V =
[
U1 U2
U2 −U1

]
is orthogonal and symplectic,

and V THV =
[
R S
0 −R∗

]
, with R upper triangular and S

symmetric (Hamiltonian Schur form).



An orthogonal symplectic algorithm
This produces the same subspace as the previous method, so it is
not really a ‘structured’ method. Can one do a ‘symplectic QR’
and compute the Hamiltonian Schur form using a sequence of
orthosymplectic transformations?

Open problem for a while; it turns out that the Hamiltonian Schur
form does not exist for all Hamiltonian matrices (there are
counterexamples with eigenvalues on the unit circle). =⇒
algorithms must be unstable for nearby matrices.

(This problem was known as Van Loan’s curse.)



Chu–Liu–Mehrmann algorithm
Closest thing to a solution: Chu–Liu–Mehrmann algorithm. Based
on a different decomposition: H = URV T , with U, V
orthosymplectic and

R =
[
R11 R12
0 R22

]
with R11, R∗

22 upper triangular.
Can be computed ‘almost’ directly in O(n3) (it’s an LU-like
decomposition).



URV — simpler version (produces Hessenberg R22)

I Left-multiply by blkdiag(Q, Q) to get
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

I Left-multiply by a Givens on (1, n + 1) to get
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

I Left-multiply by blkdiag(Q, Q) to get
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

I Right-multiply by blkdiag(Q, Q) to get
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

I Right-multiply by a Givens on (2, n + 2) to get
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

I Right-multiply by blkdiag(Q, Q) to get
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ 0
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗



Using URV
Note that H = URV + symplecticity implies

H = V
[
−RT

22 RT
12

0 −RT
11

]
UT .

Hence
H2 = V

[
−R11RT

22 ∗
0 −R22RT

11

]
V T

can be used to compute eigenvalues (easily) and eigenvectors of H
(for instance: the columns of V cause breakdown at step 2 in
Arnoldi).


