Matrix functions and automatic differentiation

Just some advertising for automatic differentiation: a trick popular now in machine learning that allows one to compute derivatives of arbitrary functions on a computer.

Problem

How does one compute derivatives of an arbitrary (computable) function f on a computer?

First attempt: numerical differentiation $f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}$. Problem: It is an approximated method. Even for "tame" functiones, h too small \Longrightarrow cancellation in the subtraction.

Error $O(\mathbf{u} / h)$ from the computation of the numerator, so the best we can do is error $O\left(\mathbf{u}^{1 / 2}\right)$ with $h=\mathbf{u}^{1 / 2}$.

Matrix functions and automatic differentiation

Idea

- Take a function, e.g. $f(x)=\frac{x^{2}+5}{1+\exp (x)}$.
- Write "matrix-friendly" code to compute it:

$$
\begin{aligned}
& \mathrm{n}=\operatorname{size}(\mathrm{X}, 1) ; \\
& \mathrm{Y}=\operatorname{inv}(\operatorname{eye}(\mathrm{n})+\operatorname{expm}(\mathrm{X})) *(\mathrm{X} * \mathrm{X}+5 * \operatorname{eye}(\mathrm{n})) ;
\end{aligned}
$$

(inv used here for clarity; normally \backslash is better.)
(Note that the matrices $I+\exp (X)$ and $X^{2}+5 I$ commute, so the order in the product does not matter as long as my expression contains only functions of a single matrix X.)

- Then, one can read derivatives of f off functions of Jordan blocks.

$$
f\left(\left[\begin{array}{lll}
x & 1 & \\
& x & 1 \\
& & x
\end{array}\right]\right)=\left[\begin{array}{lll}
f(x) & f^{\prime}(x) & \frac{f^{\prime \prime}(x)}{2} \\
& f(x) & f^{\prime}(x) \\
& & f(x)
\end{array}\right] .
$$

Automatic differentiation

This trick (known as automatic differentiation) computes derivatives up to machine precision error $O(\mathbf{u})$.

It is something fundamentally different from numerical differentiation; it is more similar to symbolic differentiation with a computer algebra system, but easier to do algorithmically.

We can achieve it just by rewriting code to be matrix-friendly. (See next example)

```
function \(y=\) somefunction( \(x\) )
\(\mathrm{a}=\mathrm{x} * \mathrm{x}+1\);
z = 2 / a;
while \(z<5\)
    \(z=z^{\wedge} 2 ;\)
end
\(y=\exp (z)\);
```

This function is not continuous at "decision points" (when $z=5$ at some iteration of the while).

```
function y = somefunction(x)
```

$\mathrm{n}=\operatorname{size}(\mathrm{x}, 1)$;
a $=x * x+\operatorname{eye}(n)$;
$z=2$ * inv(a);
while $z(1,1)<5$
z = z^2;
end
$\mathrm{y}=\operatorname{expm}(\mathrm{z})$;

Demistifying automatic differentiation

Actually, we do not need matrices here: all operations are on triangular Toeplitz matrices, so we can just store the first row.

In essence, this is propagating Taylor expansions: at each step we store (e.g. with $n=3$) Taylor expansions in x for each quantity appearing in the code:

$$
\mathrm{a}:\left[\begin{array}{lll}
a(x) & a^{\prime}(x) & a^{\prime \prime}(x)
\end{array}\right], \quad \mathrm{b}:\left[\begin{array}{lll}
b(x) & b^{\prime}(x) & b^{\prime \prime}(x)
\end{array}\right],
$$

and we update them according to various operations: for instance, a * b becomes

$$
\begin{gathered}
{\left[\begin{array}{lll}
a & a^{\prime} & a^{\prime \prime}
\end{array}\right] *\left[\begin{array}{lll}
b & b^{\prime} & b^{\prime \prime}
\end{array}\right]=} \\
{\left[\begin{array}{lll}
a b & a^{\prime} b+a b^{\prime} & a^{\prime \prime} b+2 a^{\prime} b^{\prime}+a b^{\prime \prime}
\end{array}\right] .}
\end{gathered}
$$

This could be implemented with a special 'Taylor' class and operator overriding.

Special case: dual numbers

A different formalism for $n=2$ (first derivative): dual numbers.

- Replace each quantity a with $a+\varepsilon a^{\prime}$.
- Operations are performed with usual algebraic rules plus $\varepsilon^{2}=0$.
- $\mathrm{a} * \mathrm{~b}$ becomes $\left(a+\varepsilon a^{\prime}\right)\left(b+\varepsilon b^{\prime}\right)=a b+\left(a^{\prime} b+a b^{\prime}\right) \varepsilon$.
- The input variable x becomes $x+\varepsilon 1$.

Various ways to think about it:

- ε is "infinitesimal".
- Operations in $\mathbb{R}[\varepsilon] /\left(\varepsilon^{2}\right)$.
- $\varepsilon=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

Complex step differentiation

Another cheap trick: if you have a real holomorphic function $f: \mathbb{R} \rightarrow \mathbb{R}$, and code to compute it also for complex inputs, then for $x \in \mathbb{R}$

$$
f(x+i h)=f(x)+f^{\prime}(x) i h-\frac{f^{\prime \prime}(x)}{2} h^{2}+O\left(h^{3}\right)
$$

so

$$
f^{\prime}(x)=\frac{\operatorname{Im}(f(x+i h))}{h}+O\left(h^{2}\right)
$$

Avoids the subtraction, and achieves one more order of accuracy. If one sets $h=\mathbf{u}^{1 / 3}$, error of the order of $\mathbf{u}^{2 / 3}$.

In practice, the actual accuracy obtained depends on how exactly complex arithmetic is used in computing $f(x)$.

What machine learning does

This is called forward mode of automatic differentiation. There is also a reverse mode which is more popular in some field (it is called back-propagation in machine learning).

General idea: After having computed $f(x)$, "roll back" the code and (starting from the last line) determine iteratively the contribution of each intermediate variable to $f^{\prime}(x)$.

Requires more complicated transformations to the code to be implemented. We will not see details.

General wisdom: for a function $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, computing J_{f} (all-to-all derivative) is faster with forward mode if $n \ll m$ (many outputs), and with reverse mode if $n \gg m$ (many inputs).

