
Matrix functions and automatic differentiation
Just some advertising for automatic differentiation: a trick popular
now in machine learning that allows one to compute derivatives of
arbitrary functions on a computer.

Problem
How does one compute derivatives of an arbitrary (computable)
function f on a computer?

First attempt: numerical differentiation f ′(x) ≈ f (x+h)−f (x)
h .

Problem: It is an approximated method. Even for “tame”
functiones, h too small =⇒ cancellation in the subtraction.

Error O(u/h) from the computation of the numerator, so the best
we can do is error O(u1/2) with h = u1/2.



Matrix functions and automatic differentiation
Idea
I Take a function, e.g. f (x) = x2+5

1+exp(x) .
I Write “matrix-friendly” code to compute it:

n = size(X, 1);
Y = inv(eye(n) + expm(X)) * (X*X + 5*eye(n));

(inv used here for clarity; normally \ is better.)
(Note that the matrices I + exp(X ) and X 2 + 5I commute, so
the order in the product does not matter as long as my
expression contains only functions of a single matrix X .)

I Then, one can read derivatives of f off functions of Jordan
blocks.

f


x 1

x 1
x


 =

f (x) f ′(x) f ′′(x)
2

f (x) f ′(x)
f (x)

 .



Automatic differentiation
This trick (known as automatic differentiation) computes
derivatives up to machine precision error O(u).

It is something fundamentally different from numerical
differentiation; it is more similar to symbolic differentiation with a
computer algebra system, but easier to do algorithmically.

We can achieve it just by rewriting code to be matrix-friendly. (See
next example)



function y = somefunction(x)
a = x*x + 1;
z = 2 / a;
while z < 5

z = z^2;
end
y = exp(z);

This function is not continuous at “decision points” (when z = 5
at some iteration of the while).

function y = somefunction(x)
n = size(x, 1);
a = x*x + eye(n);
z = 2 * inv(a);
while z(1,1) < 5

z = z^2;
end
y = expm(z);



Demistifying automatic differentiation
Actually, we do not need matrices here: all operations are on
triangular Toeplitz matrices, so we can just store the first row.

In essence, this is propagating Taylor expansions: at each step we
store (e.g. with n = 3) Taylor expansions in x for each quantity
appearing in the code:

a :
[
a(x) a′(x) a′′(x)

]
, b :

[
b(x) b′(x) b′′(x)

]
,

and we update them according to various operations: for instance,
a * b becomes [

a a′ a′′
]
∗

[
b b′ b′′

]
=

[
ab a′b + ab′ a′′b + 2a′b′ + ab′′

]
.

This could be implemented with a special ‘Taylor’ class and
operator overriding.



Special case: dual numbers
A different formalism for n = 2 (first derivative): dual numbers.

I Replace each quantity a with a + εa′.
I Operations are performed with usual algebraic rules plus

ε2 = 0.
I a * b becomes (a + εa′)(b + εb′) = ab + (a′b + ab′)ε.
I The input variable x becomes x + ε1.

Various ways to think about it:
I ε is “infinitesimal”.
I Operations in R[ε]/(ε2).

I ε =
[
0 1
0 0

]
.



Complex step differentiation
Another cheap trick: if you have a real holomorphic function
f : R→ R, and code to compute it also for complex inputs, then
for x ∈ R

f (x + ih) = f (x) + f ′(x)ih − f ′′(x)
2 h2 + O(h3),

so
f ′(x) = Im(f (x + ih))

h + O(h2).

Avoids the subtraction, and achieves one more order of accuracy.

If one sets h = u1/3, error of the order of u2/3.

In practice, the actual accuracy obtained depends on how exactly
complex arithmetic is used in computing f (x).



What machine learning does
This is called forward mode of automatic differentiation. There is
also a reverse mode which is more popular in some field (it is
called back-propagation in machine learning).

General idea: After having computed f (x), “roll back” the code
and (starting from the last line) determine iteratively the
contribution of each intermediate variable to f ′(x).

Requires more complicated transformations to the code to be
implemented. We will not see details.

General wisdom: for a function Rn → Rm, computing Jf (all-to-all
derivative) is faster with forward mode if n� m (many outputs),
and with reverse mode if n� m (many inputs).


