The matrix exponential
We will now discuss some specific important matrix functions.

First one:

1 1
expm(A):I+A+§A2+§A3+....

Useful to recall it: the solution of the ODE initial value problem

d
av(t) = Av(t), v(0)=w

is v(t) = expm(At)vp.
Proof: we can differentiate term-by-term

t2 t3
V(t) = v + tAvyy + 5A2V0 + §A3V0 + ...



How to compute expm(A)?

It is easy to come up with ways that turn out to be unstable.
[Moler, Van Loan, “Nineteen dubious ways to compute the exponential of a
matrix”, '78 & '03].

Example truncated Taylor series, [ + A + %Az + %A3 cee %Ak.

(See example in the previous slide set.)



Growth in matrix powers

The main problem in computing matrix power series: intermediate
growth of coefficients.
Example Even on a nilpotent matrix, entries may grow.
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Typical behavior for non-normal matrices. Growth + cancellation
= trouble.

(For normal matrices, ||A%|| = ||A|l* = [Amax|¥.)



“Humps”

Similarly, exp(tA) may grow for small values of t before ‘settling
down’.
Example

>> A = [-0.97 25; 0 -0.3];

>> t = linspace(0,20,100);

>> for i = 1:length(t); y(i) = norm(expm(t(i)*A)); end
>> plot(t, y)

For the same reason, it is also a bad idea to use an ODE solver on
X'(t) = AX(t), X(0)=1I,

Nice fact: explicit Euler produces exp(At) ~ (I + LA)".



Padé approximants

Padé approximants to the exponential (in x = 0) are known
explicitly.

Padé approximants to exp(x)

|exp(x) — Npg(x)/Dpg(x)| = O(xPT9*1), where
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exp(A) & (Dpq(A)) ™ Npqg(A).

The main danger comes from Dpq(A) L.
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Backward error of Padé approximants

Are Padé approximants reliable when || Al is small, at least?

Recall: perfect scalar approximation does not imply good matrix
approximation.

Let H = f(A), where f(x) = log(e™ N""Eig) H is a matrix
function, so it commutes with A.

(Note that e”ﬂ%&i% =1+ O(xP+971), so the log exists for x
sufficiently small).

One has exp(H) = exp(—A)(Dpg(A)) "I Npg(A), so

(Dpg(A)) I Npg(A) = exp(A) exp(H) = exp(A + H)

(since A and H commute).

We can regard H as a sort of ‘backward error’: the Padé
approximant (Dpg(A)) 1 Npe(A) is the exact exponential of a
certain perturbed matrix A+ H.

Can one bound MZ”"



Bounding ||H||

f is analytic, so f(x) = cixPTITL 4 ouxPTI+2 4 axPTa+3

H — f(A) = ClAP+q+1 + CZAP+Q+2 4 C3Xp+q+3 +...
IH]| < |al|AIPTIT + [ |A][PTIF2 + |l | AIPTIT3 4. ..

All these quantities can be computed, explicitly or with
Mathematica (but it's a lot of work).
Luckily, someone did it for us. For instance:

[Higham book '08, p. 244]

If p =g =13 and [|A]| < 5.4, then H < u (machine precision).

Degree 13 achieves a good ratio between accuracy and number of
required operations (with Paterson—-Stockmayer + noting that
numerator and denominator are of the form p(x?) + xq(x?).)
Evaluating Ny3,13 and Di3 13 requires 6 matmuls.



Scaling and squaring
What if ||A|| > 5.47 Trick: exp(A) = (exp(1A))°.
Algorithm (scaling and squaring)

1. Find s = 2% such that ||1A|| < 5.4.
2. Compute IF = D13’13(B)_1N13’13(B), where D13’13 and N13713
are given polynomials and B = %A.

3. Compute F2* by repeated squaring.

This is Matlab’s expm, currently (more or less — approximants of
degree smaller than 13 are used in some cases).



Is scaling and squaring stable?

Note that ‘humps’ may still give problems: exp(B) may be much
larger than exp(A) = exp(B)Qk, leading to cancellation in the
squares.

Is scaling and squaring stable for all matrices? Numerically it
seems so, but no definitive answer.



